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Warm Ups 

 

1) John takes 75 minutes to mow one acre and Sally takes 60 minutes to mow one acre. How 

many minutes would it take them working together to mow a 6 acre lot? 

 

Solution 

Let t be the number of minutes both John and Sally mow the 6 acre lot. It follows that John 

would mow 
𝑡

75
 acres and Sally would mow 60 acres. Since they mow 6 acres together, we have: 

 
𝑡

75
+

𝑡

60
= 6 

4𝑡

300
+

5𝑡

300
= 6 

9𝑡 = 6(300) 

𝑡 = 200 
 

Thus, it would take them 200 minutes (3 hours and 20 minutes) to mow the six acre lot, working 

together. 

 

 

2) A class has n students in it. Their average test grade was 78. When Alice’s grade is removed 

from the group, the remaining students had an average test grade of 73. What is the maximum 

value of n for which this information is plausible? For this value of n, what must Alice’s test 

score be? 

 

Solution 

The sum of the all of the students' scores is 78n. The sum of the scores without Alice's test is 

73(n - 1), since there are n - 1 students remaining with an average score of 73. Let A be Alice's 

test score. This gives us the following equation: 

 

73(𝑛 − 1) + 𝐴 = 78𝑛 

73𝑛 − 73 + 𝐴 = 78𝑛 

𝐴 = 5𝑛 + 73 
 

If we assume that the maximum test score is 100, then we find that the largest integer n that 

allows for 𝐴 ≤ 100 is 𝑛 = 5. For this value of n, Alice scored 5(5) + 73 = 98. 

 

 

  



3) The 15th term in an arithmetic sequence is 68. If the sum of the first twenty terms of the 

sequence is 1000, what is the value of the first term of the sequence? 

 

Solution 

Let the sequence be denoted as a1, a2, ..., a20 with a common difference of d. Using the given 

information, we have: 

 

𝑎15 = 68,
(𝑎1 + 𝑎20)20

2
= 1000 

 

Thus, we find that 𝑎1 + 𝑎20 = 100, simplifying the second equation. Now, utilizing the common 

difference, we find that 

 

𝑎1 = 𝑎15 − 14𝑑 

𝑎20 = 𝑎15 + 5𝑑 
 

Adding these two equations we find: 

 

𝑎1 + 𝑎20 = 𝑎15 − 14𝑑 + 𝑎15 + 5𝑑 

100 = 2𝑎15 − 9𝑑 

100 = 2(68) − 9𝑑 

9𝑑 = 36 

𝑑 = 4 
 

It follows that 𝑎1 = 𝑎15 − 14𝑑 = 68 − 14(4) = 12. 

 

 

4) Consider writing the positive integers in increasing order. What would be the 2014th digit 

written? (For example, the 20th digit written would be 1, since there are 9 digits in 1 – 9 and 10 

digits in 10 – 14, so the 20th digit would be the 1 in writing 15.) 

 

Solution 

The first nine digits correspond to 1 - 9. The next 180 digits correspond to 10 - 99. Thus, we are 

looking for the 2014 - 9 - 180 = 1825th digit written when we start with writing 100. Since these 

numbers each have three digits, we calculate that 1825/3 = 608, using integer division. This 

means that we will write 1824 digits writing the numbers 100 through 707. The 1825th digit we 

write starting at 100 is 7, the first digit while writing 708. Thus, 7 is the 2014th digit written 

overall. 

 

  



5) What is the value of √6 + √6 + √6 + ⋯ ? 

 

Solution 

Let x equal the quantity in question. 

𝑥 = √6 + √6 + √6 + ⋯ 

𝑥2 = 6 + √6 + √6 + √6 + ⋯ 

𝑥2 = 6 + 𝑥 

𝑥2 − 𝑥 − 6 = 0 
(𝑥 − 3)(𝑥 + 2) = 0 

 

Since we know that x is positive, we can conclude that x must be 3. 

 

 

 

Exercises 

 

1) How many positive integers are divisors of exactly two of the three numbers 157, 185 and 206? 

 

Solution 

First, let's prime factorize the three numbers given: 

 

   157 = 3757, 185 = 25310, and 206 = 21256 

 

Notice that no pair of these numbers share more than one prime factor in common. Thus, the 

only positive integers that are divisors of exactly two of these numbers are individual primes 

raised to a power. For example, all the values of the form 3a with 1 ≤ a ≤ 7 are divisors of 157 

and 185, but not 206. There are precisely 7 of these. Similarly, all numbers of the form 2b  with 1 

≤ b ≤ 5 are divisors of 185 and 206 but not 157. Finally all the values of the form 5c with 1 ≤ c ≤ 6 

are divisors of 157 and 206 but not 185. Adding these up, we have 18 integers that are divisors of 

exactly two of the given three numbers. 

 

  



2) How many zeroes are at the end of 2014!? 

 

Solution 

This is equivalent to asking, "what is the highest power of 10 that divides evenly into 2014!"? To 

answer this question, we simply need to know the highest power of 2 and 5 that divide evenly 

into 2014!. Let's try to solve a more general problem and then apply our solution to this specific 

instance: 

 

What is the highest power of a prime number p that divides evenly into n!? 

 

Imagine writing out n! = 1 x 2 x 3 x ... x n. 

 

We can cross off every pth value and add one to our count of times p divides into n! Since we are 

starting with the pth value (and not the first), the number of values we cross off is ⌊
𝑛

𝑝
⌋. But, we're 

not done. What if p2 is on the list? Then, we would have only crossed off 1 factor of p for this 

term, but in reality it has another factor of p. In fact, for all multiples of p2, we only crossed off 1 

of 2 (or more) possible multiples. Thus, we want to make a second pass through our values, 

crossing off one more copy of p from each multiple of p2, of which there are ⌊
𝑛

𝑝2⌋. But of course, 

if p3 were on the list, we would have only crossed off 2 of its copies of p. This argument 

continues for k iterations, where pk ≤ n ≤ pk+1. Mathematically, we can express our answer most 

simply using an infinite summation, since the latter terms will all be 0. Thus, the number of times 

a prime p divides into n! is: 

 

     ∑ ⌊
𝑛

𝑝𝑘⌋∞
𝑘=1  

 

Applying our result to the specific query, we can run this calculation twice, once with n = 2014 

and p = 2 and another time with n = 2014 and p = 5. Of the two results, we want to take the 

minimum, since each copy of 10 has one copy of 2 and one copy of 5. It should be fairly clear to 

see that increasing p will reduce the sum, thus, it suffices to determine the number of times 5 

divides evenly into 2014! Manually calculating the sum we get: 

 

⌊
2014

5
⌋ + ⌊

2014

25
⌋ + ⌊

2014

125
⌋ + ⌊

2014

625
⌋ = 402 + 80 + 16 + 3 = 501 

 

  



3) Determine the following sum in terms of n: ∑ ⌊𝑙𝑜𝑔2𝑖⌋2𝑛

𝑖=1 . Note: ⌊𝑥⌋ denotes the largest integer 

less than or equal to x. 

 

Solution 

Notice that each term in the sum is an integer ranging from 0 to n, inclusive. (Only the first term 

is 0 and only the last term is n. The rest are in between 1 and n - 1, inclusive.) 

 

Thus, we must determine the number of times each of these terms appears in the sum.  

 

The value k appears in the sum for each value of i ranging from 2k to 2k+1 - 1, since log22
k = k 

and log22
k+1 = k + 1. 

 

There are precisely 2k+1 - 1 - 2k + 1 = 2k+1 - 2k = 2k values in this range. Thus, an equivalent 

expression to the one above is 

 

𝑛 + ∑ 𝑘2𝑘

𝑛−1

𝑘=1

 

 

Let's work on the summation portion of this expression. Let this sum be S. 

 

       𝑆 = 1(21) + 2(22) + 3(23) + 4(24) + ⋯ + (𝑛 − 1)(2𝑛−1). 

 

Multiply this expression through by 2: 

 

2𝑆 = 1(22) + 2(23) + 3(24) + 4(25) + ⋯ + (𝑛 − 2)(2𝑛−1) + (𝑛 − 1)(2𝑛) 

Now, let's subtract the bottom equation from the top, notice the terms realigned: 

 

         𝑆 = 1(21) + 2(22) + 3(23) + 4(24) + ⋯ + (𝑛 − 1)(2𝑛−1). 

−2𝑆 =                  1(22) + 2(23) + 3(24) + ⋯ + (𝑛 − 2)(2𝑛−1) + (𝑛 − 1)(2𝑛) 

 --------------------------------------------------------------------------------------------------- 

 −𝑆 =                21 +      22   +   23    +     24  + ⋯ +                  2𝑛−1    − (𝑛 − 1)(2𝑛) 
 

All of the positive terms on the right hand side form a geometric sequence of n - 1 terms with a 

first term of 2 and a common ratio of 2, which has a sum of 
2(1−2𝑛−1)

1−2
= 2𝑛 − 2. 

 

Simplifying, we have 𝑆 =  −(2𝑛 − 2) + (𝑛 − 1)2𝑛 = (𝑛 − 1)2𝑛 − 2𝑛 + 2 = (𝑛 − 2)2𝑛 + 2. 

 

Finally, to get our final sum, we simply must add n to this to obtain 

 

(𝑛 − 2)2𝑛 + 𝑛 + 2 
 

 

  



4) If the graphs of y = 2|x – a| + b and y = -2|x – c| + d intersect at both (5, 6) and (7, 8), what is 

the value of a – b + c – d? 

 

Solution 

The first graph looks like a 'V' while the second one looks like an upside down 'V', based on the 

slopes of 2 and -2, respectively. The "vertex" of the first V is (a, b) and the vertex of the second 

V is (c, d). Thus, the slope of the line segment connecting (a, b) and (7, 8) is 2 and the slope of 

the line segment connecting (5, 6) and (a, b) is -2. Similarly, we find that the slope between (5, 6) 

and (c, d) is 2 and the slope between (c, d) and (7, 8) is -2. This gives us four equations for these 

four slopes: 

 

  
8−𝑏

7−𝑎
= 2,  

6−𝑏

5−𝑎
= −2,  

6−𝑑

5−𝑐
= 2,  

8−𝑑

7−𝑐
= −2  

 

Solving the first system of two equations, we have: 

 

8 − 𝑏 = 2(7 − 𝑎) = 14 − 2𝑎 

6 − 𝑏 = −2(5 − 𝑎) = −10 + 2𝑎 
 

By solving the first equation for b we find, 𝑏 = 2𝑎 − 6. By substituting for b in the second 

equation, we get 6 − (2𝑎 − 6) = −10 + 2𝑎, thus 4𝑎 = 22 and 𝑎 =
11

2
, 𝑏 = 5. 

 

Solving the second system of two equations, we have: 

 

6 − 𝑑 = 2(5 − 𝑐) = 10 − 2𝑐 

8 − 𝑑 = −2(7 − 𝑐) = −14 + 2𝑐 
 

 

Similarly, using the first equation, we find, 𝑑 = 2𝑐 − 4. Substituting into the second equation we 

find 8 − (2𝑐 − 4) = −14 + 2𝑐, thus 4𝑐 = 26 and 𝑐 =
13

2
, 𝑑 = 9. 

 

It follows that the quantity 𝑎 − 𝑏 + 𝑐 − 𝑑 = −2. 

 

Note: an easier solution exists utilizing the fact that the two Vs that meet form a parallelogram 

with parallel sides with slopes 2 and -2. We simply note that if we travel from (5, 6) to (a, b) and 

travel from (7, 8) to (c, d), due to the vectors of travel being exact opposites, the sum of the two 

vectors is 0i + 0j. Let the vector from (5, 6) to (a, b) be v1, then we can express the point (a, b) as 

5i + 6j + v1. It follows that the point (c, d) is 7i + 8j - v1. If we sum up the coordinates of the 

points (a, b) and (c, d) using these representations, we get the sum as 

 

5i + 6j + v1 + 7i + 8j - v1 = 12i + 14j. 

 

This sum is also (a+c)i + (b+d)j. Equating both components of these two representations, we find 

that a+c = 12 and b+d = 14, thus, 𝑎 − 𝑏 + 𝑐 − 𝑑 = (𝑎 + 𝑐) − (𝑏 + 𝑑) = 12 − 14 = −2. 

 



5) During a particular tennis tournament, Sarah won three matches and lost none. These three 

matches increased her winning percentage by precisely 2. Determine the number of matches 

Sarah had won prior to the tournament, assuming that she had previously won at least one match. 

Is it possible to determine the total number of matches she had played prior to the tournament? 

 

Solution 

Let the number of matches Sarah won prior to the tournament be W and the number of matches 

she played in total before the tournament be T. Using the given information, we have the 

following equation: 

 

     
𝑊

𝑇
+ .02 =

𝑊+3

𝑇+3
 

 

Multiplying through by 50T(T+3) to clear all fractions, we find: 

 

  50(𝑇 + 3)𝑊 + 𝑇(𝑇 + 3) = 50(𝑊 + 3)𝑇 

  50𝑇𝑊 + 150𝑊 + 𝑇2 + 3𝑇 = 50𝑇𝑊 + 150𝑇 

  𝑇2 − 147𝑇 + 150𝑊 = 0 
 

This is a quadratic equation in T, with a sum of roots of 147 and a product of roots that is a 

multiple of 150. Let T1 be one of the two roots of this equation. Then we have that T1(147 - T1) 

has 150 as a factor. There are 12 factors of 150: 1, 2, 3, 5, 6, 10, 15, 25, 30, 50, 75 and 150. 

Without loss of generality, we have six cases to check: 

 

1) 1 | T1 and 150 | (147 - T1) 

2) 2 | T1 and 75 | (147 - T1) 

3) 3 | T1 and 50 | (147 - T1) 

4) 5 | T1 and 30 | (147 - T1) 

5) 6 | T1 and 25 | (147 - T1) 

6) 10 | T1 and 15 | (147 - T1) 

 

Case #1 is out because its second constraint would force T1 to be negative or make W = 0. 

 

Case #2 has the solutions T1 = 72 or T1 = 75. 

 

Case #3 has no solutions since neither 47 nor 97 is divisible by 3. 

 

Case #4 doesn't have any solutions since two numbers both divisible by 5 can't add up to 147. 

 

Case #5 gives the same two solutions as Case #2. (In attempting to satisfy the second equation, 

we try T1 = 22, 47, 72, 97 and 122, of which only 72 is divisible by 6.) 

 

Case #6, like Case #4 yields no solutions since two numbers that sum to 147 can't both be 

divisible by 5. 

 



Thus, the number of total games played before the tournament was either 72 or 75. Regardless of 

which of these two totals was correct, the corresponding number of wins must satisfy the 

equation 150𝑊 = 72 × 75, thus 𝑊 =
72×75

150
= 36. 

 

Sarah won exactly 36 matches prior to the tournament, but the total number of games she had 

played can not be uniquely determined. (But we do know it was either 72 or 75.) 

   

 

 

  



Investigations 

 

1) In the xy-plane, what is the length of the shortest path from (0, 0) to (12, 13) that does not go 

inside the circle (x – 6)2 + (y – 8)2 = 25? 

 

Solution 

The solution will reference the drawing shown below, with the shortest path drawn in. 

(Apologies for the inaccuracies; it was hand drawn.) 

 

 
Since the circle is in the straight line path between the points, our shortest route will be to walk 

to the circle on a tangent line, trace a portion of the circle and then walk on another tangent line 

to the finish point. The triangle inequality can be used to prove that this route is the shortest. If 

we never touch the circle, our path can be seen as a path that goes around a larger circle, which is 

the result of "stretching out" the current path. (Think of a rubber band being tied from point D to 

point E around the circle centered at C.) If we do touch the circle, our first point of tangency, 



coming from D must be A or to the left of A. If it is the latter, we are required to walk around the 

circle for a greater distance than the path shown and will eventually reach A. In this case, the 

straight line distance to A is shorter than hitting the circle at another point and tracing the circle 

to A, since all straight line distances are shorter than any alternative. Any alternative to tracing 

the circle leaves the circle and hits the circle. As we use shorter and shorter segments to do this, 

their length approaches the length of the corresponding arc of the circle from above. 

 

Since CAD and CBE are right triangles with the right angles at A and B, respectively, we can 

quickly use the Pythagorean Theorem in conjuction with the distance formula to fill in the side 

lengths AD and BE as 5√3 and 6, respectively. What remains is determining the radian measure 

for angle θ. We can use the dot product between the vectors CD and CE to determine the angle 

measure of α + β + θ: 

 

CD = -6i - 8j 

CE = 6i + 5j 

 

𝐶𝐷°𝐶𝐸 = (−6𝑖 − 8𝑘)°(6𝑖 + 5𝑗) = −6(6) − 8(5) = −76 = |𝐶𝐷||𝐶𝐸|cos (𝛼 + 𝛽 + 𝜃) 
 

|𝐶𝐷| =  √62 + 82 = √100 = 10, |𝐶𝐸| =  √62 + 52 = √61 

 

Thus, cos(𝛼 + 𝛽 + 𝜃) =
−76

10√61
. 

 

Consequently, we can find sin(𝛼 + 𝛽 + 𝜃) and tan(𝛼 + 𝛽 + 𝜃): 

 

sin(𝛼 + 𝛽 + 𝜃) = √1 − 𝑐𝑜𝑠2(𝛼 + 𝛽 + 𝜃) = √1 −
762

6100
= √

6100 − 5776

6100
= √

324

6100
=

9

5√61
 

 

 

tan(𝛼 + 𝛽 + 𝜃) =
sin (𝛼 + 𝛽 + 𝜃)

cos (𝛼 + 𝛽 + 𝜃)
=

18

10√61
−76

10√61

= −
9

38
 

 

Since 𝑡𝑎𝑛𝛼 =
6

5
, we have: 

 

tan(𝛽 + 𝜃) = tan((𝛼 + 𝛽 + 𝜃) − 𝛼) =
tan(𝛼 + 𝛽 + 𝜃) − 𝑡𝑎𝑛𝛼

1 + tan(𝛼 + 𝛽 + 𝜃) 𝑡𝑎𝑛𝛼
 

 

Thus, tan(𝛽 + 𝜃) =
−

9

38
−

6

5

1−
9

38
×

6

5

=
−273

190
136

190

=
−273

136
. 

 

Finally, since 𝑡𝑎𝑛𝛽 = √3, we have: 

 



tan(𝜃) = tan((𝛽 + 𝜃) − 𝛽) =
tan(𝛽 + 𝜃) − 𝑡𝑎𝑛𝛽

1 + tan(𝛽 + 𝜃) 𝑡𝑎𝑛𝛽
=

−273
136 − √3

1 −
273√3

136

=
273 + 136√3

273√3 − 136
 

 

It follows that one expression for the shortest distance between the points given that doesn't go 

into the circle given is 5√3 + 6 + 5𝑡𝑎𝑛−1(
273+136√3

273√3−136
). This is approximately 19.5891546. 

 

 

 

 

  



2) Let m and n be positive integers with m > n. Prove that m2 – n2, 2mn and m2 + n2 form a 

Pythagorean Triple. Determine the least set of further constraints on m and n that guarantees that 

the Pythagorean Triple designated is a primitive Pythagorean Triple. Note: a primitive 

Pythagorean Triple is one where the greatest common divisor of the three side lengths is 1. 

 

Solution 

First, we must show that the first two given items squared equals the third item squared. Since m 

and n are integers, it follows that the given values are integers also, so showing that the values 

satisfy the Pythagorean Theorem will show that they are a Pythagorean Triple. 

 

(𝑚2 − 𝑛2)2 + (2𝑚𝑛)2 = 𝑚4 − 2𝑚2𝑛2 + 𝑛4 + 4𝑚2𝑛2 = 𝑚4 + 2𝑚2𝑛2 + 𝑛4 = (𝑚2 + 𝑛2)2 
 

Let a = gcd(m, n) and let m = am' and n = an'. If a > 1, then we notice that the Pythagorean Triple 

produced by the three expressions all share a2 as a common factor. Formally, we have: 

 

𝑚2 − 𝑛2 = (𝑎𝑚′)2 − (𝑎𝑛′)2 = 𝑎2(𝑚′2
− 𝑛′2

) 

2𝑚𝑛 = 2(𝑎𝑚′)(𝑎𝑛′) = 𝑎2(2𝑚′𝑛′) 

𝑚2 + 𝑛2 = (𝑎𝑚′)2 + (𝑎𝑛′)2 = 𝑎2(𝑚′2
+ 𝑛′2

) 
 

Thus, we see that if m and n share a common factor, the corresponding triple produced shares 

that factor squared. In order for the triple to be primitive, we see that gcd(m, n) = 1 is a 

requirement. 

 

Unfortunately, the proof above doesn't show that if gcd(m, n) = 1, that the triple is primitive. It 

just shows that if the gcd isn't one, then the triple ISN'T a primitive one. 

 

If we quickly look to make a parity argument, we see that if m and n are both odd, all three 

values will end up even, also producing a non-primitive triple. Let's prove this formally. Let m = 

2a+1 and n = 2b+1 for arbitrary positive integers a and b. (Note that no Pythagorean triple has 1 

in it, so we know that a and b are positive.) 
 

𝑚2 − 𝑛2 = (2𝑎 + 1)2 − (2𝑏 + 1)2 = 4𝑎2 + 4𝑎 + 1 − 4𝑏2 − 4𝑏 − 1 = 4(𝑎2 + 𝑏2 − 𝑎 − 𝑏) 

2𝑚𝑛 = 2(2𝑎 + 1)(2𝑏 + 1) 

𝑚2 + 𝑛2 = (2𝑎 + 1)2 + (2𝑏 + 1)2 = 4𝑎2 + 4𝑎 + 1 + 4𝑏2 + 4𝑏 + 1 = 4(𝑎2 + 𝑏2 + 𝑎 + 𝑏) + 2 

 

Notice that all three are even. (We can factor 2 out from both terms in the last expression.) 

 

Thus, we know that if a triple is to be primitive, we must have gcd(m, n) = 1, with exactly one of 

the two values being odd. It remains to be shown that no further restrictions are needed; namely, 

if these two items are true, that the corresponding triple IS primitive. 

 

 

 

  



3) Simplify the expression 

 √1 +
1

12 +
1

22 + √1 +
1

22 +
1

32 + √1 +
1

32 +
1

42 + ⋯ + √1 +
1

20132 +
1

20142 

 

Solution 

The goal here is to obtain some sort of "telescopic" sum, or to discover a pattern to prove via 

mathematical induction. Let Tn be the nth term in the sum. Thus, 𝑇1 =
3

2
, 𝑇2 =

7

6
, and 𝑇3 =

13

12
. We 

see that each of these terms is rational and the denominator of the nth term is simply n(n+1). The 

latter makes sense since we create a common denominator of n2 and (n+1)2 in the nth term before 

taking the square root. Let's algebraically work out a simplified form for Tn: 

 

𝑇𝑛 = √1 +
1

𝑛2
+

1

(𝑛 + 1)2
= √

𝑛2(𝑛 + 1)2 + (𝑛 + 1)2 + 𝑛2

𝑛2(𝑛 + 1)2
 

=
√𝑛4 + 2𝑛3 + 𝑛2 + 𝑛2 + 2𝑛 + 1 + 𝑛2

𝑛(𝑛 + 1)
 

=
√𝑛4 + 2𝑛3 + 3𝑛2 + 2𝑛 + 1

𝑛(𝑛 + 1)
 

=
√(𝑛2 + 𝑛 + 1)2

𝑛(𝑛 + 1)
 

=
𝑛2 + 𝑛 + 1

𝑛(𝑛 + 1)
 

=
𝑛(𝑛 + 1) + 1

𝑛(𝑛 + 1)
 

= 1 +
1

𝑛(𝑛 + 1)
 

= 1 +
1

𝑛
−

1

𝑛 + 1
 

 

Note that we have two "creative" steps here. One is recognizing that n4 + 2n3 + 3n2 + 2n + 1 is a 

perfect square that isn't commonly taught and the other is the partial fraction decomposition at 

the very end of the problem that will make evaluating our sum easier. 

 

Now that we've worked out a simplified expression for each term, we can rewrite our summation 

and solve it as follows: 

 

∑ (1 +
1

𝑘
−

1

𝑘 + 1
)

2013

𝑘=1

= 

∑ 1 +

2013

𝑘=1

∑
1

𝑘

2013

𝑘=1

− ∑
1

𝑘 + 1

2013

𝑘=1

= 



2013 + 1 + ( ∑
1

𝑘

2013

𝑘=2

) − ( ∑
1

𝑘

2014

𝑘=2

) = 

2014 + ( ∑
1

𝑘

2013

𝑘=2

) − ( ∑
1

𝑘

2013

𝑘=2

) −
1

2014
= 

2014 −
1

2014
 

 

 

4) What is the smallest non-negative integer of the form 

 

   ±13 ± 23 ± 33 ± ⋯ ± 20143, 

 

for some choice of signs? Provide proof of this minimum as well as one choice of signs that 

satisfies it. 

 

Solution 

Note that the even terms don't affect the parity of the expression, only the odd terms do. There 

are exactly 1007 odd terms, thus the total sum of terms must be odd. This excludes 0 as a 

possible value of the expression. 

 

We will now construct one possible choice of signs to achieve a sum of 1. There are many that 

are possible. 

 

Consider any sequence of four terms in a row from the larger sequence. If our goal is to 

"minimize" the absolute value of the sum of these terms, it makes sense to make two terms 

positive and two negative. Furthermore, it probably makes sense to choose the same sign for the 

smallest and largest terms, to get as close to 0 as possible. Let's see what value we get with this 

choice of terms for an arbitrary starting integer a: 

 

(𝑎 + 3)3 − (𝑎 + 2)3 − (𝑎 + 1)3 + 𝑎3 = 9𝑎2 + 27𝑎 + 27 − 6𝑎2 − 12𝑎 − 8 − 3𝑎2 − 3𝑎 − 1 

= 12𝑎 + 18 
 

Now, let's take the next four terms, but flip all four signs to get a negative value, in an attempt to 

offset this positive value: 

 

−(𝑎 + 7)3 + (𝑎 + 6)3 + (𝑎 + 5)3 − (𝑎 + 4)3 = 

−((𝑎 + 2) + 7)3 + ((𝑎 + 4) + 2)3 + ((𝑎 + 4) + 1)3 − (𝑎 + 4)3 = 
 

= −(12(𝑎 + 4) + 18) = −12𝑎 − 30 
 

Thus, adding eight consecutive terms together with these two choices of signs yields a value of  

 

12𝑎 + 18 − (12𝑎 − 30) = −48 
 



It follows that if we choose opposite signs for the next 8 consecutive integers, their sum would 

be 48. Thus, putting it all together, we find that for any 16 consecutive integers a through a + 15, 

 
𝑎3 − (𝑎 + 1)3 − (𝑎 + 2)3 + (𝑎 + 3)3 − (𝑎 + 4)3 + (𝑎 + 5)3 + (𝑎 + 6)2 − (𝑎 + 7)3 

−(𝑎 + 8)3 + (𝑎 + 9)3 + (𝑎 + 10)3 − (𝑎 + 11)3 + (𝑎 + 12)3 − (𝑎 + 13)3 − (𝑎 + 14)3 + (𝑎 + 15)3 

= 0 

 

Applying this principle to our given problem, we can use these choice of signs for every 

consecutive set of 16 integers from 15 to 2014, (There are 
2000

16
= 125 of these.), obtaining a sum 

of 0 for this assignment of signs. 

 

Now, our goal will be to get a value of 1 in choosing the remaining 14 signs. Given our previous 

work, we already know that: 

 

−73 + 83 + 93 − 103 + 113 − 123 − 133 + 143 = 48 
 

Now, we can use brute force to try to set the remaining signs. We first set 6's sign to be negative, 

and work from there: 

 

−33 + 43 + 53 − 63 = −54 
 

Putting this together, we get a sum of -6. Finally, we can offset this negative with −13 + 23. 

 

Thus, we have proven that if we set our first 14 signs to −, +, −, +, +, −, −, +, +, −, +, −, −, +, 

and then set every remaining set of 16 signs to +, −, −, +, −, +, +, −, −, +, +, −, +, −, −, +, the 

corresponding sum will be 1, the smallest possible non-negative sum. 

 

 

5) (a) Suppose that a power of 2 contains the substring 2014. What is the fewest possible number  

          of digits after the ‘2014’? 

   

    (b) Is it possible for a power of 2 to begin with the four digits 2014? 

 

Solution - Part (a) 

Let's consider the possibilities from the smallest value (0) on up. 

 

Any power of 2 greater than 2 itself is equivalent to 0 mod 4, but any number that ends in 2014 is 

equivalent to 2 mod 4. Thus, no power of two ends in 2014. More formally, any positive integer 

that ends in 2014 can be expressed as 

 

10000n + 2014, where n is a integer. 

 

10000n + 2014 ≡ 0 + 2 ≡ 2 (mod 4), since 10000 is divisible by 4. 

 

Now, consider an integer that ends in 2014x, where x is a single digit. 

 



We know that any power of 2 greater than 16 is equivalent to 0 mod 32. Let's consider any 

integer ending in 2014x mod 32. Any integer ending in 2014x can be expressed as 

 

100000n + 20140 + x, with 0 ≤ x < 10. 

 

100000n + 20140 + x ≡ 0 + 12 + x ≡ (12 + x) mod 32 

 

The smallest positive value for x that makes this quantity equivalent to 0 mod 32 is 20. But, this 

is impossible since x is a digit. It follows that no digit can replace x to create a value divisible by 

32, thus, no power of two ends in 2014x, for any digit x. 

 

Attempting to create a similar argument for integers that end in 2014xy, where x and y are digits 

fails. The reason such an argument fails is that we would be forced to look at the integer mod 64, 

the highest power of 2 that evenly divides into 106. In this case, we have enough flexibility with 

both x and y that the modulus equation can be satisfied; there's no way to show that no solution 

exists. 

 

To finish the proof, we ought to use brute force to find the first power of 2 that ends in 2014xy 

for some digits x and y. Since we only care about the remainder when dividing by 1000000, we 

can write a simple C program to do our search, taking the modulus of each intermediate value 

with 1000000. 

 

What the modulus argument does tell us is that since 201400 ≡ 56 (mod 64), it follows that if a 

power of two ends in 2014xy, it must end in either 201408 or 201472, corresponding to the two 

positive integers less than 100 that we can add to 201400 to create an integer divisible by 64. 

 

After running the C program shown below 

 
#include <stdio.h> 

 

#define LOW 201400 

#define HIGH 201499 

#define MAX 10000 

 

int main() { 

 

    int i, lastDigits = 1; 

 

    for (i=0; i<MAX; i++) { 

        if (lastDigits >= LOW && lastDigits <= HIGH) 

            printf("power %d, ending = %d\n", i, lastDigits); 

        lastDigits = (lastDigits*2)%1000000; 

    } 

 

    return 0; 

} 

 



we find that 2437 ends in 201472 and 23983 ends in 201408. 

 

Since the behavior of successive powers of 2 mod 106 is cyclic, we find a period of 12,500, 

implying that exactly one of every eight possible combinations of can be produced as the last six 

digits of a perfect power of two. 

 

Solution - Part (b) 

This turns out to be true due to the irrationality of log102. We will provide a proof by 

contradiction to show prove the assertion. Though specific values will be plugged into this proof, 

we can slightly modify the proof to apply to any set of starting digits one could choose. 

 

Consider any number that starts with 2014. It can be written in scientific notation as 𝑥(10𝑛), 

where 2.014 ≤ 𝑥 < 2.015 and n is a positive integer. Consider taking the log of this quantity 

base 10: 

 

𝑙𝑜𝑔10(𝑥(10𝑛)) = 𝑙𝑜𝑔10𝑥 + 𝑙𝑜𝑔1010𝑛 = 𝑛 + 𝑙𝑜𝑔10𝑥 

 

The fractional part of this expression, denoted as {𝑛 + 𝑙𝑜𝑔10𝑥} =  𝑙𝑜𝑔10𝑥. Our goal is to prove 

that there exists some integer m for which 𝑙𝑜𝑔102.014 ≤ {𝑙𝑜𝑔102𝑚} <  𝑙𝑜𝑔102.015. 

 

Let 
1

𝑐
= 𝑙𝑜𝑔102.015 − 𝑙𝑜𝑔102.014. We will now prove that in any interval of size c (or greater), 

there must be at least one term of the form {𝑙𝑜𝑔102𝑚}, for some positive integer m. 

 

Let us consider the ⌈𝑐 + 1⌉ terms {𝑙𝑜𝑔1021}, {𝑙𝑜𝑔1022}, ..., {𝑙𝑜𝑔102⌈𝑐+1⌉} in terms of where they 

reside in the ⌈𝑐⌉ intervals [0, 
1

⌈𝑐⌉
), [

1

⌈𝑐⌉
,

2

⌈𝑐⌉
), ..., [

⌈𝑐−1⌉

⌈𝑐⌉
1). By the Pigeonhole Principle, one of these 

intervals must contain at least two of the given terms. Without loss of generality, let these terms 

be {𝑙𝑜𝑔102𝑖} and {𝑙𝑜𝑔102𝑗}, with the previous term being strictly smaller than the latter term.  

 

Note that the two terms can't be equal as that contradicts the fact that log102 is irrational. To see 

this, note that if these terms are equal, then dividing the corresponding powers of 2 will yield a 

perfect power of 10, giving an equation of the form 2i-j = 10k, where i, j and k are integers. This 

implies that k = (i - j)log102, implying that 𝑙𝑜𝑔102 =
𝑘

𝑖−𝑗
, a rational number, which we know isn't 

possible. 

 

Let 𝑐′ = {𝑙𝑜𝑔102𝑗} − {𝑙𝑜𝑔102𝑖}. We know that 𝑐′ <
1

𝑐
, since both terms are contained in an 

interval of size 
1

⌈𝑐⌉
. Now, let's consider two cases: 

 

Case 1: j > i. In this case, we have 𝑐′ = {𝑙𝑜𝑔102𝑗−𝑖}. Let s = j - i.  This means that for some 

integer k, if {𝑙𝑜𝑔102𝑘} = 𝑥, then{𝑙𝑜𝑔102𝑘+𝑠} = {𝑥 + 𝑐′}. Since log102
0 = 0, we find that as we 

repeatedly use this exponent s, that we have {𝑙𝑜𝑔102𝑎𝑠} = 𝑎𝑐′, for all integers a,  0 ≤ a < 
1

𝑐′
. 

Thus, each "multiple" of c' appears as a fractional part of some exponent. Formally, let a be the 

largest integer in the given range such that {𝑙𝑜𝑔102𝑎𝑠} < 𝑙𝑜𝑔102.014. By definition, 



{𝑙𝑜𝑔102(𝑎+1)𝑠} > 𝑙𝑜𝑔102.014. But, {𝑙𝑜𝑔102(𝑎+1)𝑠} =  {𝑙𝑜𝑔102𝑎𝑠} + 𝑐′ < 𝑙𝑜𝑔102.014 + 𝑐′ <

𝑙𝑜𝑔102.014 +
1

𝑐
= 𝑙𝑜𝑔102.015, proving that there exists a power of 2 for which the fractional 

part of its base 10 logarithm resides in the range [𝑙𝑜𝑔102.014, 𝑙𝑜𝑔102.015), implying that some 

power of 2 starts with 2014 in this case. 

 

 

Case 2: j < i. In this case we have 1 − 𝑐′ = {𝑙𝑜𝑔102𝑖−𝑗}. Let s = i - j.  This means that if 

{𝑙𝑜𝑔102𝑘} = 𝑥, then{𝑙𝑜𝑔102𝑘+𝑠} = {𝑥 − 𝑐′}. Since log102
0 = 0, we find that as we repeatedly use 

this exponent s, that we have {𝑙𝑜𝑔102𝑎𝑠} = 1 − 𝑎𝑐′, for all integers a,  0 ≤ a < 
1

𝑐′
. Thus, counting 

"backwards" from 1, each multiple of c' appears as a fraction part of some exponent. Formally, 

let a be the smallest integer in the given range such that {𝑙𝑜𝑔102𝑎𝑠} ≥ 𝑙𝑜𝑔102.015. By definition, 

{𝑙𝑜𝑔102(𝑎+1)𝑠} < 𝑙𝑜𝑔102.015. But, {𝑙𝑜𝑔102(𝑎+1)𝑠} =  {𝑙𝑜𝑔102𝑎𝑠} − 𝑐′ ≥ 𝑙𝑜𝑔102.015 − 𝑐′ >

𝑙𝑜𝑔102.015 −
1

𝑐
= 𝑙𝑜𝑔102.014, proving that there exists a power of 2 for which the fractional 

part of its base 10 logarithm resides in the range [𝑙𝑜𝑔102.014, 𝑙𝑜𝑔102.015), implying that some 

power of 2 starts with 2014 in this case as well. 

 

Since we've shown the existence of a power of 2 such that the fractional part of its base 10 

logarithm lies in the range, [𝑙𝑜𝑔102.014, 𝑙𝑜𝑔102.015), it follows that there must exist a power of 

2 that starts with the digits 2014. 

 

The following python program prints out the first power of 2 that starts with 2014: 

 
def start(number, mystr): 

 

    numberstr = str(number) 

    if numberstr[:len(mystr)] == mystr: 

        return True 

    return False 

 

def main(): 

 

    ans = 1 

    i = 0 

    while not(start(ans,"2014")): 

        ans = ans*2 

        i += 1  

    print(i,ans) 

 

main() 

 

Note: Python was used here because it uses built in large integers, so no special API or syntax is 

necessary to carry out multiplication of large integers. 

 

  



Running the program we find that the first power of 2 that starts with 2014 is a 2340 digit 

number. Namely, 

 

27771 =  

 

201417084271274463294263673947471555051170526061704116586733068266977697508849

445982646772639189657467401428453651677475855997072327266421050186626004910624

299346008579269970081537138257476219109648584491845180551777448704053270311528

686680394769735852034655896048885642669208407836065849685451912792474159000283

470540380689006470484748260061175972111947524048446056794917669556363019835768

430276481457131118151060189669706161436074055641335915175682674211913706070505

840748558161040724278013801824767994302386579058305907842178265363226602808083

013455962481347233564666978474210311303223415688744686479472172075965692620410

194588946864725225307614147347533144615863916519999056393567070494490845529000

579810231299951528463043508087307172003417748469511117243033752814276956948343

274205030518373675741972753601206341421981385645959017977723266310805643726449

782559355674230789471359480076743404900276217900004019384301643741589488532939

065326205724401070344304779177720607175668310709774264483174829634400254488642

742959799896289796804074606984674302131502782007859708583191326019755089677128

393345569719876624786794496504243645447458005583404013270251839001618506877689

810392402527196474683002307220248623850918705666378166350980069950241985185038

005582492488464498764819593186349760995846311836328730657765984465475786075557

138549762932391395494903271147312009619481455286874424348362612678745445516283

081911653560881631859067902543828801470861327831423084118299511239230720644982

603742829328488449768993620499819974642569924720161630328891872396737124661616

538584520936589133529167220650395206257445931399736626283158201921935277354509

774493077044525847092133324844683822084288650231356041650429117496980344217929

758966217910685704183037466133544919693097561440065591919712363848701531098777

039126818307089510723886840409930390847122411517914119577848708839272591159443

062884359169410699100379999195646789170852183083804354606903746455274194768361

200882503563242889985446963585856225435139082316386704547645335051256604516881

467759289776811181098790546355519137457942669349966414206259255454191801889624

659655346777449337333969511512720690216877286944586323326849930576732783390911

235248316289760052323579467396931362561816959057374349772862725226289531523909

087402321363006287202033055534051773343845742939109282585563370693225347022848 

 

 


