CALCULUS

DERIVATIVES AND LIMITS

DERIVATIVE DEFINITION

$$\frac{d}{dx}(f(x)) = f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
BASIC PROPERTIES

$$(cf(x))' = c(f'(x))$$

$$(f(x) \pm g(x))' = f'(x) \pm g'(x)$$

$$\frac{d}{dx}(c) = 0$$
MEAN VALUE THEOREM
If is differentiable on the interval (a, b) and
continuous at the end points there exists a
c in (a, b) such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$
PRODUCT RULE

$$(f(x)g(x))' = f(x)'g(x) + f(x)g(x)'$$
QUOTIENT RULE

$$\frac{d}{dx}(\frac{f(x)}{g(x)}) = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}$$
POWER RULE

$$\frac{d}{dx}(x^n) = nx^{n-1}$$
CHAIN RULE

$$\frac{d}{dx}(f(g(x))) = f'(g(x))g'(x)$$
LIMIT EVALUATION METHOD – FACTOR AND CANCEL

$$x^2 - x - 12$$
(x + 3)(x - 4)
(x - 4) (x - 4)

$$\lim_{x \to -3} \frac{x^2 - x - 12}{x^2 + 3x} = \lim_{x \to -3} \frac{(x+3)(x-4)}{x(x+3)} = \lim_{x \to -3} \frac{(x-4)}{x} = \frac{7}{3}$$

L'HOPITAL'S RULE

If
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{0}{0}$$
 or $\frac{\pm \infty}{\pm \infty}$ then $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$

EEWeb.com **Electrical Engineering Community**

- Latest News
- **Engineering Community**
- **Online Toolbox**
- **Technical Discussions**
- **Professional Networking**
- Personal Profiles and Resumes
- **Community Blogs and Projects** •
- Find Jobs and Events

CHAIN RULE AND OTHER EXAMPLES

 $\frac{d}{dx}([f(x)]^n) = n[f(x)]^{n-1}f'(x)$ $\frac{d}{dx}\left(e^{f(x)}\right) = f'(x)e^{f(x)}$ $\frac{d}{dx}(\ln[f(x)]) = \frac{f'(x)}{f(x)}$ $\frac{d}{dx}(\sin[f(x)]) = f'(x)\cos[f(x)]$ $\frac{d}{dx}(\cos[f(x)]) = -f'(x)\sin[f(x)]$ $\frac{d}{dx}(\tan[f(x)]) = f'(x)\sec^2[f(x)]$ $\frac{d}{dx}(\sec[f(x)]) = f'(x)\sec[f(x)]\tan[f(x)]$ $\frac{d}{dx}(\tan^{-1}[f(x)]) = \frac{f'(x)}{1 + [f(x)]^2}$ $\frac{d}{dx}(f(x)^{g(x)}) = f(x)^{g(x)} \left(\frac{g(x)f'(x)}{f(x)} + \ln(f(x))g'(x)\right)$

PROPERTIES OF LIMITS

These properties require that the limit of
$$f(x)$$
 and $g(x)$ exist

$$\lim_{x \to a} [cf(x)] = c \lim_{x \to a} f(x)$$

$$\lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$$

$$\lim_{x \to a} [f(x)g(x)] = \lim_{x \to a} f(x) \lim_{x \to a} g(x)$$

$$\lim_{x \to a} \left[\frac{f(x)}{g(x)}\right] = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \text{ if } \lim_{x \to a} g(x) \neq 0$$

$$\lim_{x \to a} [f(x)]^n = \left[\lim_{x \to a} f(x)\right]^n$$

LIMIT EVALUATIONS AT +-∞

 $\lim_{x\to\infty} e^x = \infty$ and $\lim_{x\to\infty} e^x = 0$ $\lim_{x \to \infty} \ln(x) = \infty \text{ and } \lim_{x \to 0^+} \ln(x) = -\infty$ If r > 0 then $\lim_{x \to \infty} \frac{c}{x^r} = 0$ If $r > 0 \& x^r$ is real for x < 0 then $\lim_{x \to -\infty} \frac{c}{x^r} = 0$ $\lim_{x \to \pm \infty} x^r = \infty \text{ for even } r$ $\lim_{x \to \infty} x^r = \infty \& \lim_{x \to -\infty} x^r = -\infty \text{ for odd } r$

 $\cos x$

 $-\sin x$

 $\sec^2 x$

sec x tan x

 $-\csc x \cot x$

 $=-\frac{1}{\sqrt{1-r^2}}$

 $=\frac{1}{1+x^2}$

 $\frac{1}{x}$

 $=\frac{1}{x\ln(a)}$

 $-\csc^2 x$

EEWeb.com