EEL 4612 Homework \# 1 - Due Tu Jan 28

1. Obtain the transfer function of the system described by the following state-space model:
$\binom{\dot{x_{1}}}{x_{2}}=\left(\begin{array}{cc}-5 & -1 \\ 3 & -1\end{array}\right)\binom{x_{1}}{x_{2}}+\binom{2}{5} u$ $y=\left(\begin{array}{ll}1 & 2\end{array}\right)\binom{x_{1}}{x_{2}}$
2. Obtain the transfer matrix of the system described by the following state-space model:
$\left(\begin{array}{l}\dot{x_{1}} \\ x_{2} \\ x_{3}\end{array}\right)=\left(\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ -2 & -4 & -6\end{array}\right)\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)+\left(\begin{array}{ll}0 & 0 \\ 0 & 1 \\ 1 & 0\end{array}\right) u$
$y=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$
3. Find the eigenvalues of the matrix

$$
A=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

Find a matrix P to diagonalize the matrix A such that the new matrix has the eigenvalues of A as its diagonal elements.
4. Obtain the controllable and observable canonical forms for

$$
\frac{Y(s)}{U(s)}=\frac{s+6}{s^{2}+5 s+6}
$$

Use MATLAB to find state-space representation for

$$
\frac{Y(s)}{U(s)}=\frac{10.4 s^{2}+47 s+160}{s^{3}+14 s^{2}+56 s+160}
$$

5. Use MATLAB to find the partial-fraction expansion of the function
$F(s)=\frac{5(s+4)}{(s+3)^{2}(s+1)(s+2)}$
