EEL 6616 Spring 2019 Homework 2

1) Show by using the method of Lagrange multiplier that minimizing $\|\theta(k+1)-\theta(k)\|^{2}$ under the constraint $y(k)=w^{T}(k) \theta(k+1)$ results in the following projection algorithm

$$
\theta(k+1)=\theta(k)-w(k) \frac{w^{T}(k) \theta(k)-y(k)}{w^{T}(k) w(k)}
$$

2) (a) Show that $A \in R^{2 \times 2}$ is positive definite (p.d.) iff $a_{11}>0, a_{22}>0$, and $a_{11} a_{22}>\left(a_{12}+a_{21}\right)^{2} / 4$. (b) Find examples of 2×2 symmetric (but not diagonal) matrices such that $A \geq 0, A<0$ and A is neither positive nor negative semidefinite. In each case, give $\lambda_{i}(A)$. (c) Find an example of two symmetric positive definite matrices A and B such that the product is neither symmetric nor positive definite. Give $\lambda_{i}(A B)$ and $\lambda_{i}\left((A B)+(A B)^{T}\right)$.
3) Let $w(t)=\sin (t)$. (a) Find and plot $\lambda(t)=\int_{0}^{t} w^{2}(t) d t$. (b) Show that there exist α_{1}, α_{2} and $\delta>0$ such that $\alpha_{2} \geq \int_{t_{0}}^{t_{0}+\delta} w^{2}(t) d t \geq \alpha_{1}$ for all $t_{0} \geq 0$. (c) Show that the following limit exists, independently of t_{0}

$$
R_{w}=\lim _{\delta \rightarrow \infty} \frac{1}{\delta} \int_{t_{0}}^{t_{0}+\delta} w^{2}(t) d t
$$

where $R_{w}>0$. d) Repeat part c) with $w(t)=\binom{\sin (t)}{a \sin (t+\phi)}$. What condition must a, ϕ satisfy so that R_{w} is p.d.

