Memento

Learning Secrets from Process Footprints^[3] Suman Jana Vitaly Shmatikov

CAP6135 Malware & Software Vulnerability Analysis

Sidhanth Sheelavanth¹ under Prof. Cliff Zou¹

¹University of Central Florida Dept. of EECS

April 16, 2014

About Paper

• Authors - Suman Jana , Vitaly Shmatikov. UT - Austin.

7.4%

- IEEE Symposium on Security and Privacy 2012.
- Best Student Paper Award.
- Partly funded by NSF grants.
- Demo side channel attack.

Outline

1 Introduction

- 2 Why Do it ?
- 3 Attack Overview.
- Attack Details.
 - Browser Mem Management.
 - When it works ?
- ⁵ Experimental Setup.
- 6 Results.
- 7 Extensions of Attack.
 - Advanced Attacks.
 - CPU Scheduling Stats.
- 8 Defenses.
- 9 Presenter's Notes.
 - Pros.
 - Cons.
- Appendix.

Outline

1 Introduction

2 Why Do it ?

- 3 Attack Overview.
- 4 Attack Details.
 - Browser Mem Management.
 - When it works ?
- ⁵ Experimental Setup.
- 6 Results.
- 7 Extensions of Attack.
 - Advanced Attacks.
 - CPU Scheduling Stats.
- 8 Defenses.
- 9 Presenter's Notes.
 - Pros.
 - Cons.
- Appendix.

Outline

- 1 Introduction
- 2 Why Do it ?

3 Attack Overview.

- Attack Details.
 - Browser Mem Management.
 - When it works ?
- **5** Experimental Setup.
- 6 Results.
- 7 Extensions of Attack.
 - Advanced Attacks.
 - CPU Scheduling Stats.
- 8 Defenses.
- 9 Presenter's Notes.
 - Pros.
 - Cons.
- Appendix.

- 1 Introduction
- 2 Why Do it ?
- 3 Attack Overview.
- 4 Attack Details.
 - Browser Mem Management.
 - When it works ?
- 5 Experimental Setup.
- 6 Results.
- 7 Extensions of Attack.
 - Advanced Attacks.
 - CPU Scheduling Stats.
- 8 Defenses.
- 9 Presenter's Notes.
 - Pros.
 - Cons.
- Appendix.

- 1 Introduction
- 2 Why Do it ?
- 3 Attack Overview.
- 4 Attack Details.
 - Browser Mem Management.
 - When it works ?
- Experimental Setup.
- 6 Results.
- 7 Extensions of Attack.
 - Advanced Attacks.
 - CPU Scheduling Stats.
- 8 Defenses.
- 9 Presenter's Notes.
 - Pros.
 - Cons.
- Appendix.

- 1 Introduction
- 2 Why Do it ?
- 3 Attack Overview.
- 4 Attack Details.
 - Browser Mem Management.
 - When it works ?
- Experimental Setup.
- Results.
- 7 Extensions of Attack.
 - Advanced Attacks.
 - CPU Scheduling Stats.
- 8 Defenses.
- 9 Presenter's Notes.
 - Pros.
 - Cons.
- Appendix.

- 1 Introduction
- 2 Why Do it ?
- 3 Attack Overview.
- 4 Attack Details.
 - Browser Mem Management.
 - When it works ?
- 5 Experimental Setup.
- 6 Results.
- Extensions of Attack.
 - Advanced Attacks.
 - CPU Scheduling Stats.
- 8 Defenses.
- 9 Presenter's Notes.
 - Pros.
 - Cons.
- O Appendix.

- 1 Introduction
- 2 Why Do it ?
- 3 Attack Overview.
- 4 Attack Details.
 - Browser Mem Management.
 - When it works ?
- 5 Experimental Setup.
- 6 Results.
- Extensions of Attack.
 - Advanced Attacks.
 - CPU Scheduling Stats.
- Defenses.
- 9 Presenter's Notes.
 - Pros
 - Cons.
- Appendix.

Outline

- 1 Introduction
- 2 Why Do it ?
- 3 Attack Overview.
- 4 Attack Details.
 - Browser Mem Management.
 - When it works ?
- 5 Experimental Setup.
- Results.
- Extensions of Attack.
 - Advanced Attacks.
 - CPU Scheduling Stats.
- 8 Defenses.
- 9 Presenter's Notes.
 - Pros.
 - Cons.

• Appendix.

- 1 Introduction
- 2 Why Do it ?
- 3 Attack Overview.
- 4 Attack Details.
 - Browser Mem Management.
 - When it works ?
- 5 Experimental Setup.
- Results.
- Extensions of Attack.
 - Advanced Attacks.
 - CPU Scheduling Stats.
- 8 Defenses.
- Presenter's Notes.
 - Pros.
 - Cons.
- 10 Appendix.

$14.8\,\%$

Outline

1 Introduction.

- 2 Why Do it ?
- 3 Attack Overview.
- Attack Details.
 - Browser Mem Management.
 - When it works ?
- **5** Experimental Setup.
- 6 Results.
- 7 Extensions of Attack.
 - Advanced Attacks.
 - CPU Scheduling Stats.
- 8 Defenses.
- 9 Presenter's Notes.
 - Pros.
 - Cons.
- Appendix.

Introduction

 \circ Memento^[1] -

Memento (2000)

R 113 min - Mystery | Thriller - 11 October 2000 (France)

 $18.5\,\%$

Top 5000

A man, suffering from short-term memory loss, uses notes and tattoos to hunt for the man he thinks killed his wife.

Director: Christopher Nolan

Writers: Christopher Nolan (screenplay), Jonathan Nolan (short story "Memento Mori")

Stars: Guy Pearce, Carrie-Anne Moss, Joe Pantoliano | See full cast and crew »

- Side Channel Attack.
 - **[P]** Timing(CPU, mem), Power Analysis(SPA,DPA), Acoustic Cryptanalysis , Differential Fault, Data Remanence.^[2]

- Secrets Webpage Identity, Finer grained information.
- Process Footprint DRS/WS/RSS.

PS C:∖Us	ers\\$id>	get-proces	ss chrome				
Handles	NPMCK>	PM(K)	WS (K)	UM(M)	CPU(s)	Id	ProcessName
167	33	81844	66392	270	4.98	380	chrome
162	34	62176	49672	241	4.85	3536	chrome
161	28	52988	40256	216	2.57	4040	chrome
1610	101	130828	190828	489	2,684.47	6040	chrome
163	34	57264	45744	230	4.63	6964	chrome
306	37	183208	185720	505	1,963.55	7268	chrome
213	41	88940	89224	287	29.33	7396	chrome
159	24	36772	27980	198	25.29	7444	chrome
168	28	67800	64464	246	34.12	7480	chrome
165	35	65516	51644	231	12.26	7600	chrome

- Side Channel Attack.
 - **[P]** Timing(CPU, mem), Power Analysis(SPA,DPA), Acoustic Cryptanalysis , Differential Fault, Data Remanence.^[2]

- Secrets Webpage Identity, Finer grained information.
- Process Footprint DRS/WS/RSS.

PS	C:\Us	ers\\$id>	get-proce					
Han	dles	NPMCK>	PM(K)	WS (K)	VMKM>	CPU(s)	Id	ProcessName
	167	33	81844	66392	270	4.98	380	chrome
	162	34	62176	49672	241	4.85	3536	chrome
	161	28	52988	40256	216	2.57	4040	chrome
	1610	101	130828	190828	489	2,684.47	6040	chrome
	163	34	57264	45744	230	4.63	6964	chrome
	306	37	183208	185720		1,963.55	7268	chrome
	213	41	88940	89224	287	29.33	7396	chrome
	159	24	36772	27980	198	25.29		chrome
	168	28	67800	64464	246	34.12		chrome
	165	35	65516	51644	231	12.26	7600	chrome

- Side Channel Attack.
 - **[P]** Timing(CPU, mem), Power Analysis(SPA,DPA), Acoustic Cryptanalysis , Differential Fault, Data Remanence.^[2]

- Secrets Webpage Identity, Finer grained information.
- Process Footprint DRS/WS/RSS.

Handles	NPMCKD	PM(K)	WS (K)	VM(M)	CPU(s)	I d	ProcessName
167	33	81844	66392	270	4.98	380	chrome
162	34	62176	49672	241	4.85	3536	chrome
161	28	52988	40256	216	2.57	4040	chrome
1610	101	130828	190828	489	2,684.47	6040	chrome
163	34	57264	45744	230	4.63	6964	chrome
306	37	183208	185720	505	1,963.55	7268	chrome
213	41	88940	89224	287	29.33	7396	chrome
159	24	36772	27980	198	25.29	7444	chrome
168	28	67800	64464	246	34.12	7480	chrome
165	35	65516	51644	231	12.26	7600	chrome

- Side Channel Attack.
 - **[P]** Timing(CPU, mem), Power Analysis(SPA,DPA), Acoustic Cryptanalysis , Differential Fault, Data Remanence.^[2]

- Secrets Webpage Identity, Finer grained information.
- Process Footprint DRS/WS/RSS.

[P]							
PS C:∖Us	ers\Sid>	get-process	chrome				
Handles	NPMCKD	РМСКЭ	WS (K)	UM(M)	CPU(s)	Id	ProcessName
167	33	81844	66392	270	4.98	380	chrome
162	34	62176	49672	241	4.85	3536	chrome
161	28	52988	40256	216	2.57	4040	chrome
1610	101	130828	190828	489	2,684.47	6040	chrome
163	34	57264	45744	230	4.63	6964	chrome
306	37	183208	185720	505	1,963.55	7268	chrome
213	41	88940	89224	287	29.33	7396	chrome
159	24	36772	27980	198	25.29	7444	chrome
168	28	67800	64464	246	34.12	7480	chrome
165	35	65516	51644	231	12.26	7600	chrone

$25.9\,\%$

Outline YAAAAWN !!

1 Introduction.

2 Why Do it ?

- 3 Attack Overview.
- 4 Attack Details.
 - Browser Mem Management.
 - When it works ?
- ⁵ Experimental Setup.
- 6 Results.
- 7 Extensions of Attack.
 - Advanced Attacks
 - CPU Scheduling Stats.
- 8 Defenses.
- 9 Presenter's Notes.
 - Pros.
 - Cons.

O Appendix.

• Symptom of larger problem. Illusion of harmlessness (System isolation mechanisms).

- OS mechanisms increasingly leveraged. Android, Network Daemons, Chrome, IE.
- Related Work. Fails with non-deterministic programs (ESP not required).
 - · Zhang, Wang^{|4]} . /proc ↔ ESP. Keystroke sniffing · Dawn Song ^[8] . Timing analysis on SSH.
- Different Attack model. *Network* Attacker vs *Local* Attacker.

• Symptom of larger problem. Illusion of harmlessness (System isolation mechanisms).

- OS mechanisms increasingly leveraged.
 - Android, Network Daemons, Chrome, IE.
- Related Work. Fails with non-deterministic programs (ESP not required).
 - $^{>}$ Zhang,Wang^[4] . /proc ↔ ESP. Keystroke sniffing $^{>}$ Dawn Song ^[5] . Timing analysis on SSH.
- Different Attack model. *Network* Attacker vs *Local* Attacker.

• Symptom of larger problem. Illusion of harmlessness (System isolation mechanisms).

- OS mechanisms increasingly leveraged.
 - Android, Network Daemons, Chrome, IE.
- Related Work. Fails with non-deterministic programs (ESP not required).
 - \sim Zhang,Wang^[4] . /proc \leftrightarrow ESP. Keystroke sniffing \sim Dawn Song $^{[6]}$. Timing analysis on SSH.
- Different Attack model. *Network* Attacker vs *Local* Attacker.

• Symptom of larger problem. Illusion of harmlessness (System isolation mechanisms).

- OS mechanisms increasingly leveraged.
 - Android, Network Daemons, Chrome, IE.
- Related Work. Fails with non-deterministic programs (ESP not required).
 - Zhang, Wang^[4] . $/proc \leftrightarrow ESP$. Keystroke sniffing
 - Dawn Song ^[5]. Timing analysis on SSH.
- Different Attack model. *Network* Attacker vs *Local* Attacker.

• Symptom of larger problem. Illusion of harmlessness (System isolation mechanisms).

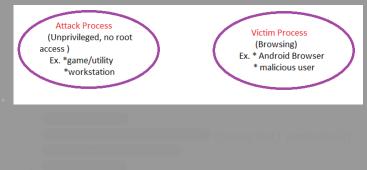
- OS mechanisms increasingly leveraged.
 - Android, Network Daemons, Chrome, IE.
- Related Work. Fails with non-deterministic programs (ESP not required).
 - \odot Zhang, Wang^{[4]} . /proc \leftrightarrow ESP. Keystroke sniffing
 - Dawn Song ^[5]. Timing analysis on SSH.
- Different Attack model. *Network* Attacker vs *Local* Attacker.

• Symptom of larger problem. Illusion of harmlessness (System isolation mechanisms).

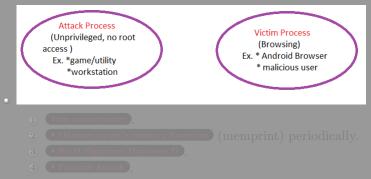
- OS mechanisms increasingly leveraged.
 - Android, Network Daemons, Chrome, IE.
- Related Work. Fails with non-deterministic programs (ESP not required).
 - Zhang, Wang^[4] . $/proc \leftrightarrow ESP$. Keystroke sniffing
 - Dawn Song ^[5]. Timing analysis on SSH.
- Different Attack model. *Network* Attacker vs *Local* Attacker.

• Symptom of larger problem. Illusion of harmlessness (System isolation mechanisms).

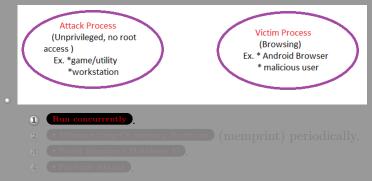
- OS mechanisms increasingly leveraged.
 - Android, Network Daemons, Chrome, IE.
- Related Work. Fails with non-deterministic programs (ESP not required).
 - Zhang, Wang^[4] . $/proc \leftrightarrow ESP$. Keystroke sniffing
 - Dawn Song ^[5]. Timing analysis on SSH.
- Different Attack model. *Network* Attacker vs *Local* Attacker.

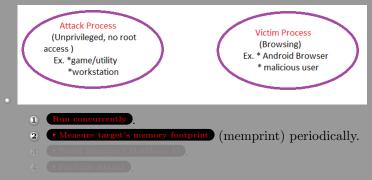

33.3 %

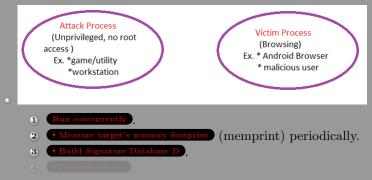
Outline MUST.. KEEP .. EYes .. op..zzz..

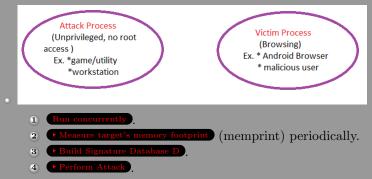

- 1 Introduction
- 2 Why Do it ?
- 3 Attack Overview.
- 4 Attack Details.
 - Browser Mem Management.
 - When it works ?
- ⁵ Experimental Setup.
- 6 Results.
- 7 Extensions of Attack.
 - Advanced Attacks
 - CPU Scheduling Stats.
- 8 Defenses.
- 9 Presenter's Notes.
 - Pros.
 - Cons.

O Appendix.


• 2 Processes in parallel on same host as different users.


• 2 Processes in parallel on same host as different users.


• 2 Processes in parallel on same host as different users.


• 2 Processes in parallel on same host as different users.

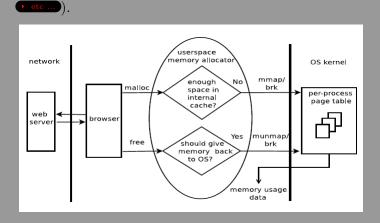
• 2 Processes in parallel on same host as different users.

• 2 Processes in parallel on same host as different users.

$40.7\,\%$

Outline

life, the universe and everything ? 42 .


- 1 Introduction
- 2 Why Do it ?
- 3 Attack Overview.
- 4 Attack Details.
 - Browser Mem Management.
 - When it works ?
- 5 Experimental Setup.
- 6 Results
- 7 Extensions of Attack.
 - Advanced Attacks
 - CPU Scheduling Stats.
- ⁸ Defenses.
- 9 Presenter's Notes.
 - Pros.
 - Cons.

• Appendix.

Attack Details Browser Mem Managemen

• Different browsers, different allocators (jemalloc, tcmalloc,

44.4%

- Allocator optimization & behaviour , *Sensitivity*.
- Not directly translated, Varies, Memprint, Noise.

Attack Details When it works ?

- Diversity.
- Stability.
- Which process to monitor?
 - Monolithic browsers.
 - Micro Kernel browsers.
- Network attacks.

Monolithic

Micro-Kernel

$51.9\,\%$

Outline

progress bar at the top says 50%. YES!!

- 1 Introduction
- 2 Why Do it ?
- 3 Attack Overview.
- 4 Attack Details.
 - Browser Mem Management.
 - When it works ?
- Experimental Setup.
- 6 Results.
- 7 Extensions of Attack.
 - Advanced Attacks
 - CPU Scheduling Stats.
- 8 Defenses.
- 9 Presenter's Notes.
 - Pros.
 - Cons.

• Appendix.

$55.6\,\%$

Experimental Setup

• Browsers - Chrome, Firefox, Android

- OS Windows,Linux,Android.
- Memory Signature gathering by automated scripts.
- ALEXA top 100,000 websites.
- **Memprint** statistics collected.
 - DRS change recorded using PID.
 - Scaled to 100,000 webpages , attacker pauses victim .
 - FixSched, Attack.
- Plugins,addons,extensions alter in predictable ways.Offset calculated or blocker used.

$55.6\,\%$

Experimental Setup

- Browsers Chrome, Firefox, Android
- OS Windows,Linux,Android.
- Memory Signature gathering by automated scripts.
- ALEXA top 100,000 websites.
- **Memprint** statistics collected.
 - DRS change recorded using PID.
 - Scaled to 100,000 webpages , attacker pauses victim .
 - FixSched, Attack.
- Plugins,addons,extensions alter in predictable ways.Offset calculated or blocker used.

Experimental Setup

- Browsers Chrome, Firefox, Android
- OS Windows,Linux,Android.
- Memory Signature gathering by automated scripts.
- ALEXA top 100,000 websites.
- Memprint statistics collected.
 - DRS change recorded using PID.
 - Scaled to 100,000 webpages , attacker pauses victim .

55.6 %

- FixSched, Attack.
- Plugins,addons,extensions alter in predictable ways.Offset calculated or blocker used.

Experimental Setup

- Browsers Chrome, Firefox, Android
- OS Windows,Linux,Android.
- Memory Signature gathering by automated scripts.
- ALEXA top 100,000 websites.
- **Memprint** statistics collected.
 - DRS change recorded using PID.
 - \sim Scaled to 100,000 webpages , attacker pauses victim .

55.6%

- FixSched, Attack.
- Plugins,addons,extensions alter in predictable ways.Offset calculated or blocker used.

Experimental Setup

- Browsers Chrome, Firefox, Android
- OS Windows,Linux,Android.
- Memory Signature gathering by automated scripts.
- ALEXA top 100,000 websites.
- **Memprint** statistics collected.
 - DRS change recorded using PID.
 - \odot Scaled to 100,000 webpages , attacker pauses victim .

55.6%

- FixSched, Attack.
- Plugins, addons, extensions alter in predictable ways. Offset calculated or blocker used.

Outline maybe if I start clapping early .. hel stop ?

- 1 Introduction
- 2 Why Do it ?
- 3 Attack Overview.
- 4 Attack Details.
 - Browser Mem Management.
 - When it works ?
- Experimental Setup.
- 6 Results.
- 7 Extensions of Attack.
 - Advanced Attacks
 - CPU Scheduling Stats.
- 8 Defenses.
- 9 Presenter's Notes.
 - Pros.
 - Cons.

• Appendix.

- False + , False -.
- Distinguishability
 - wrt fixed ambiguity sets.
 - distinguishability = $(\mu \sigma) (\mu_{false} + \sigma_{false})$
 - positive or negative ? Statistics
- Recognizability
 - true positive rate.Not every page produces a match.

63 %

- Fixsched and Attack visited 5-15 times.
- Threshold = highest
 - $J(sig_p, memprint(visitto ambiguity page)).$
- Statistics
- Factors affecting accuracy of

measurement.(method,concurrent workload,measurement rate,variations).

- \circ False + , False -.
- Distinguishability .
 - wrt fixed ambiguity sets.
 - distinguishability = $(\mu \sigma) (\mu_{false} + \sigma_{false})$
 - positive or negative ? Statistics
- Recognizability
 - true positive rate.Not every page produces a match.

63 %

- Fixsched and Attack visited 5-15 times.
- Threshold = highest
 - $J(sig_p, memprint(visitto ambiguity page)).$
- Statistics
- Factors affecting accuracy of

measurement.(method,concurrent workload,measurement rate,variations).

- False + , False -.
- Distinguishability .
 - wrt fixed ambiguity sets.
 - distinguishability = $(\mu \sigma) (\mu_{false} + \sigma_{false})$
 - positive or negative ? Statistics
- Recognizability
 - true positive rate.Not every page produces a match.

63 %

- Fixsched and Attack visited 5-15 times.
- \circ Threshhold = highest

 $J(sig_p, memprint(visitto ambiguity page)).$

- **Statistics**
- Factors affecting accuracy of measurement.(method,concurrent workload,measurement rate,variations).

- False + , False -.
- Distinguishability .
 - wrt fixed ambiguity sets.
 - distinguishability = $(\mu \sigma) (\mu_{false} + \sigma_{false})$
 - positive or negative ? Statistics
- Recognizability
 - true positive rate.Not every page produces a match.

63 %

- Fixsched and Attack visited 5-15 times.
- Threshold = highest

 $J(sig_p, memprint(visittoambiguitypage)).$

- **Statistics**
- Factors affecting accuracy of measurement.(method,concurrent workload,measurement rate,variations).

$66.7\,\%$

Outline

wonder if I have anterograde amnesia ?...

- 1 Introduction
- Why Do it ?
- 3 Attack Overview.
- 4 Attack Details.
 - Browser Mem Management.
 - When it works ?
- 5 Experimental Setup.
- 6 Results.
- Extensions of Attack.
 - Advanced Attacks.
 - CPU Scheduling Stats.
- 8 Defenses.
- 9 Presenter's Notes.
 - Pros.
 - Cons.

• Appendix.

$70.4\,\%$

Extensions of Attack Advanced Attacks

- Variations.
- Web Sessions.
- Similar memprint disambiguation.

 $^{[3]}Fig.19,23$

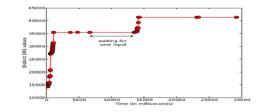


Figure 19. Evolution of the Firefox memory footprint during a Google search session.

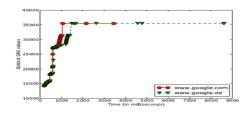
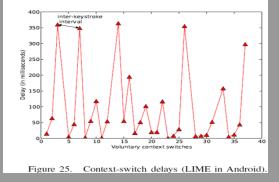


Figure 23. Evolution of the Firefox memory footprint when loading google.com and google.de (US-based browser).


74.1%

Extensions of Attack CPU Scheduling Stats

- ESP, keystroke timing relation.^[4]
- top ltm1, context switches, *schedstat*, Android
- Use this to differentiate.

INTER-KEYSTROKE TIMINGS IN MILLISECONDS: KEYLOGGER VS. STATUS MEASUREMENTS (ANDROID).

Timings	MMS app		bash	
	True	Measured	True	Measured
1	445	449	256	256
2	399	399	320	320
3	176	176	165	175
4	236	240	393	391
5	175	173	255	256

 $^{[3]}Fig.5, TableV$

Outline hmm. 8 's my new fav number.

- 1 Introduction
- 2 Why Do it ?
- 3 Attack Overview.
- 4 Attack Details.
 - Browser Mem Management.

77.8%

- When it works ?
- Experimental Setup.
- 6 Results.
- Extensions of Attack.
 - Advanced Attacks.
 - CPU Scheduling Stats.
- 8 Defenses.
- 9 Presenter's Notes.
 - Pros
 - Cons.

• Appendix.

Defenses

• Changing the OS.

- Not a OS specific attack.
- Can be calculated.
- Designers must cooperate.
- Changing the application.
 - Browser defenses (network,proxy,incognito etc ...) dont work.

81.5%

- Reduce $app \leftrightarrow OS$ correlation.
- Kernel hardening patches.
- Memory usage abstraction.
- monolithic browsers.

Defenses

• Changing the OS.

- Not a OS specific attack.
- Can be calculated.
- Designers must cooperate.
- Changing the application.
 - Browser defenses (network,proxy,incognito etc ...) dont work.

81.5%

- Reduce $app \leftrightarrow OS$ correlation.
- Kernel hardening patches.
- Memory usage abstraction.
- monolithic browsers.

85.2%

Outline nope. It's 9..

- 1 Introduction
- 2 Why Do it ?
- 3 Attack Overview.
- 4 Attack Details.
 - Browser Mem Management.
 - When it works ?
- Experimental Setup.
- 6 Results.
- Extensions of Attack.
 - Advanced Attacks.
 - CPU Scheduling Stats.
- Defenses.
- Presenter's Notes.
 - Pros.
 - Cons.

O Appendix.

- Novel side-channel attack.(Elaborate,complete).
- Proved Hypothesis.
- Structured, well written and precise.

92.6%

[P]Presenter's Notes

• Elaborate attack, result is identity.

• Complexity.

- Space $\mathcal{O}(nmw)$
- Time $\mathcal{O}(n^2)$.
- Solutions not concrete.
 - Asynchronous CPUs.
 - blinding.

• Combination with other side-channel attacks.

Network attacks don't work.

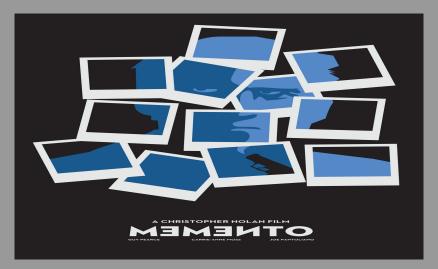
- Elaborate attack, result is identity.
- Complexity.
 - Space $\mathcal{O}(nmw)$.
 - Time $\mathcal{O}(n^2)$.
- Solutions not concrete.
 - Asynchronous CPUs.
 - blinding.
- Combination with other side-channel attacks.
 - Network attacks don't work.

- Elaborate attack, result is identity.
- Complexity.
 - Space $\mathcal{O}(nmw)$.
 - Time $\mathcal{O}(n^2)$.
- Solutions not concrete.
 - Asynchronous CPUs.
 - blinding.
- Combination with other side-channel attacks.

- Elaborate attack, result is identity.
- Complexity.
 - Space $\mathcal{O}(nmw)$.
 - Time $\mathcal{O}(n^2)$.
- Solutions not concrete.
 - Asynchronous CPUs.
 - blinding.
- Combination with other side-channel attacks.
 - Network attacks don't work.

- Elaborate attack, result is identity.
- Complexity.
 - Space $\mathcal{O}(nmw)$.
 - Time $\mathcal{O}(n^2)$.
- Solutions not concrete.
 - Asynchronous CPUs.
 - blinding.
- Combination with other side-channel attacks.
 - Network attacks don't work.

References


- [1] http://www.imdb.com/title/tt0209144/
- ^[2] www.wikipedia.com
- [3] Jana, Suman and Shmatikov, Vitaly, Memento: Learning Secrets from Process Footprints in IEEE symposium, 2012.

96.3%

- [4] K. Zhang and X. Wang. Peeping Tom in the neighborhood: Keystroke eavesdropping on multi-user systems. In USENIX Security, 2009.
- [5] D. Song, D. Wagner, and X. Tian. Timing analysis of keystrokes and timing attacks on SSH. In USENIX Security, 2001.

$100\,\%$

Don't **forget** to watch.

QUESTIONS ?

$16.7\,\%$

Size of Target's Mem Footprint

• Only info needed is mem size.

- Most OS's have no restriction on this.
 - Different OS

___Windows

____PDH Library

_____cmdlets , get-process(wss,host stats)

_Linux

__DRS field in /proc/<pid>/statm

- __Data(mmap) + heap(brk) + code(stack)
- ___mm→total_vm shared_vm

Android

___ps,manifest,kvm_getprocs

$16.7\,\%$

Size of Target's Mem Footprint

- Only info needed is mem size.
- Most OS's have no restriction on this.

```
Different OS

___Windows

___PDH Library

___cmdlets , get-process(wss,host stats)

__Linux

___DRS field in /proc/<pid>/statm

___Data(mmap) + heap(brk) + code(stack)

___mm→total_vm - shared_vm

__Android
```



```
16.7\,\%
```

Size of Target's Mem Footprint

- Only info needed is mem size.
- Most OS's have no restriction on this.

```
• Different OS
Windows
 __PDH Library
 ____cmdlets , get-process(wss,host stats)
Linux
   DRS field in /proc/<pid>/statm
   _Data(mmap) + heap(brk) + code(stack)
  mm→total vm - shared vm
Android
 ____ps,manifest,kvm_getprocs
```


Building Signature Database

• Create Attack Signatures , Build Database.

- Visit w pages n times.
- Calculate **memprint** = (E, e),
- E = int footprint size.(DRS,6th field of proc), e = frequency.
- Comparison of memprints.
 - $((E,e_1)\epsilon m_1) \land ((E,e_2)\epsilon m_2) \implies (E,min(e_1,e_2))\epsilon m_1 \cap m_2$
 - $((E,e_1)\epsilon m_1) \land ((E,e_2)\epsilon m_2) \implies (E,max(e_1,e_2))\epsilon m_1 \cup m_2$
- Similarity using jaccard index.

 $J(m_1, m_2) = \frac{|m_1 \cap m_2|}{|m_1 \cup m_2|}$

◀ Overview

Building Signature Database

• Create Attack Signatures , Build Database.

- Visit w pages n times.
- Calculate **memprint** = (E, e),
- E = int footprint size.(DRS,6th field of proc), e = frequency.

• Comparison of memprints.

- $((E,e_1)\epsilon m_1) \land ((E,e_2)\epsilon m_2) \implies (E,min(e_1,e_2))\epsilon m_1 \cap m_2$
- $((E,e_1)\epsilon m_1) \land ((E,e_2)\epsilon m_2) \implies (E,max(e_1,e_2))\epsilon m_1 \cup m_2$
- Similarity using jaccard index.

 $J(m_1, m_2) = \frac{|m_1 \cap m_2|}{|m_1 \cup m_2|}$

◀ Overview

Building Signature Database

• Create Attack Signatures , Build Database.

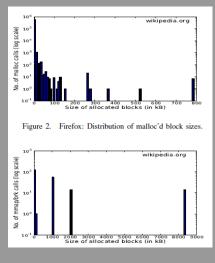
- Visit w pages n times.
- Calculate **memprint** = (E, e),
- E = int footprint size.(DRS,6th field of proc), e = frequency.
- Comparison of memprints.
 - $\cdot ((E, e_1)\epsilon m_1) \land ((E, e_2)\epsilon m_2) \Longrightarrow (E, \min(e_1, e_2))\epsilon m_1 \cap m_2$
 - $\cdot ((E,e_1)\epsilon m_1) \wedge ((E,e_2)\epsilon m_2) \implies (E,max(e_1,e_2))\epsilon m_1 \cup m_2$
- Similarity using jaccard index.

 $J(m_1, m_2) = \frac{|m_1 \cap m_2|}{|m_1 \cup m_2|}$

Overview

Perform Attack

Attack memprint is matched against signature database.


```
Algorithm 1 Main steps of the matching algorithm
Input: Signature database D, attack memprint s_m
Output: Matched page or no match
for each page p in D do
  for each signature sig_p for page p in D do
    if J(s_m, sig_p) > threshold then
      Return matched page p
    end if
  end for
end for
Return no match
```

• Overview

66.7%

Allocators

```
valgrind \
--smc-check=all --trace-children=yes
--tool=massif \
--pages-as-heap=yes --detailed-freg=1
--threshold=0.5 \
--alloc-fn=mmap \
--alloc-fn=syscall \
--alloc-fn=pages_map \
--alloc-fn=chunk alloc \
--alloc-fn=arena run alloc \
--alloc-fn=arena_bin_malloc_hard \
--alloc-fn=malloc \
--alloc-fn=realloc \
--alloc-fn='operator new(unsigned lon
--alloc-fn=huge_malloc \
--alloc-fn=posix_memalign \
--alloc-fn=moz_xmalloc \
--alloc-fn=JS ArenaAllocate \
--alloc-fn=PL ArenaAllocate \
--alloc-fn=NS_Alloc_P \
--alloc-fn=NS Realloc P \
--alloc-fn='XPConnectGCChunkAllocator
--alloc-fn='PickChunk(JSRuntime*)' \
--alloc-fn='RefillFinalizableFreeList
--alloc-fn=sqlite3MemMalloc \
--alloc-fn=mallocWithAlarm \
--alloc-fn=sglite3Malloc \
<insert-firefox-command-here>
```


Attack Details

83.3 %

Distinguishability

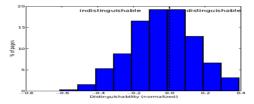


Figure 7. Chrome: Distinguishability of 1,000 random pages, 100,000-page ambiguity set (FixSched measurement). 43% of sites are distinguishable.

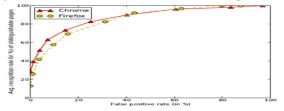
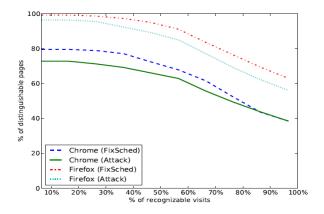



Figure 11. Chrome and Firefox: Average recognition rate vs. false positive rate for 1,000 pages, 10 visits each, with a 20,000-page (Chrome) and 10,000-page (Firefox) ambiguity set (FixSched measurement).

Recognizability

100%

Figure 14. Chrome and Firefox: Recognizability of 100 random distinguishable pages (Attack and FixSched measurements). No false positives.

Verification