
CDA6530: Performance Models of Computers and Networks

Chapter 2:  Review of Practical Random 
VariablesVariables



DefinitionDefinition
R d i bl (R V ) X Random variable (R.V.) X:
 A function on sample space

X S R X: S → R
 Cumulative distribution function (CDF):

 Probability distribution function (PDF)
 Distribution function
 FX(x) = P(X<x) 

 Probability density function (pdf):y y (p )
 Used for continuous R.V.
FX(x) =

R x
−∞ fX(t)dt fX(x) =

dFX(x)
dx
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X( )
R
∞ fX( ) fX( ) dx



Two Classes of R VTwo Classes of R.V.
Discrete R V Discrete R.V.
 Bernoulli 
 Binomial 
 Geometric 
 Poisson 

Continuous R V Continuous R.V.
 Uniform
 Exponential, Erlangp , g
 Normal

 Closely related
Exponential  Geometric Exponential    Geometric

 Normal  Binomial, Poisson
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BernoulliBernoulli 

A t i l/ i t t i ith A trial/experiment, outcome is either 
“success” or “failure”.
 X=1 if success, X=0 if failure
 P(X=1)=p,  P(X=0)=1-p

 Bernoulli Trials
 A series of independent repetition of Bernoulli p p

trial.
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BinomialBinomial

A B lli t i l ith titi A Bernoulli trials with n repetitions
 Binomial: X = No. of successes in n trails

 X∼ B(n, p)
P (X = k) ≡ f(k;n, p) =

Ã
n
k

!
pk(1− p)n−k

Ã
k

!
where 

Ã
n
!
= n!

( k)!k!

Ã
k

!
(n−k)!k!
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Binomial ExampleBinomial Example
A communication channel with (1 p) being the A communication channel with (1-p) being the 
probability of successful transmission of a bit. Assume 
we design a code that can tolerate up to e bit errors withwe design a code that can tolerate up to e bit errors with 
n bit word code.

 Q: Probability of successful word transmission?
 Model: sequence of bits trans. follows a Bernoulli Trails 

 Assumption: each bit error or not is independent
 P(Q) = P(e or fewer errors in n trails) P(Q)  P(e or fewer errors in n trails)

=
Pe
i=0 f(i;n, p)Ã

n
!

i i=
Pe
i=0

Ã
n
i

!
pi(1− p)n−i
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GeometricGeometric

Still b t B lli T il b t f diff t Still about Bernoulli Trails, but from a different 
angle.
X N f t i l til th fi t X: No. of trials until the first success

 Y: No. of failures until the first success
 P(X=k) = (1-p)k-1p       P(Y=k)=(1-p)kp

X YX Y
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PoissonPoisson

Li iti f Bi i l h Limiting case for Binomial when:
 n is large and p is small

 n>20 and p<0 05 would be good approximation n>20 and p<0.05 would be good approximation
 Reference: wiki

 λ=np is fixed, success rate
X N f i ti i t l ( ti X: No. of successes in a time interval (n time 
units)

P (X = k) = e−λλ
k

k!

 Many natural systems have this distribution 
The number of phone calls at a call center per minute

( ) k!

 The number of phone calls at a call center per minute. 
 The number of times a web server is accessed per minute. 
 The number of mutations in a given stretch of DNA after a 

t i t f di ti
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certain amount of radiation. 



Continous R V - UniformContinous R.V - Uniform

X i if ( β) if X: is a uniform r.v. on (α, β) if⎧⎨ 1
β , ifα < x < β

f(x) =
⎨⎩β−α, ifα < x < β

0 otherwise

 Uniform r.v. is the basis for simulation 
other distributionsother distributions
 Introduce later
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ExponentialExponential 

X r.v. X: 

f(x) =

⎧⎨λe−λx, if x ≥ 0

 FX(x)= 1-e-λ x

f(x) =
⎨⎩0 if x < 0

X( ) e

 Very important distributiony p
 Memoryless property
 Corresponding to geometric p g g

distr.
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ErlangErlang

X (k th E l ) r.v. X (k-th Erlang):

 K-th Erlang is the sum 
of k Exponential distrof k Exponential distr.
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NormalNormal

X r.v. X:

1 ( )2/2 2
f(x) = 1√

2πσ
e−(x−μ)2/2σ2,−∞ < x <∞

 Corresponding to 
Binomial and PoissonBinomial and Poisson 
distributions 
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NormalNormal

If X N( 2) th If X~N(μ, σ2), then 
 r.v. Z=(X-μ)/σ follows standard normal N(0,1)

P(Z ) i d t d Φ( ) P(Z<x) is denoted as Φ(x)
 Φ(x) value can be obtained from standard normal 

distribution table (next slide)distribution table (next slide)
 Used to calculate the distribution value of a 

normal random variable X~N(μ σ2)normal random variable X~N(μ, σ2)
P(X<α) = P(Z < (α-μ)/σ) 

= Φ( (α-μ)/σ )= Φ( (α-μ)/σ )
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Standard Normal Distr TableStandard Normal Distr. Table

 P(X<x) = Φ(x)
 Φ(-x) = 1- Φ(x)  why?
 About 68% of the area under the curve falls within 1 

standard deviation of the mean. 
Ab t 95% f th d th f ll ithi 2 About 95% of the area under the curve falls within 2 
standard deviations of the mean. 

 About 99 7% of the area under the curve falls within 3
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 About 99.7% of the area under the curve falls within 3 
standard deviations of the mean. 



Normal Distr ExampleNormal Distr. Example
 An average light bulb manufactured by Acme An average light bulb manufactured by Acme 

Corporation lasts 300 days,  68% of light bulbs lasts 
within 300+/- 50 days. Assuming that bulb life is 
normally distributed.
 Q1: What is the probability that an Acme light bulb will last at 

most 365 days? y
 Q2: If we installed 100 new bulbs on a street exactly one year 

ago, how many bulbs still work now? What is the distribution of 
the number of remaining bulbs?

 Step 1: Modeling
 X~N(300, 502)   μ=300, σ=50.  Q1 is P(X≤ 365)

define Z = (X-300)/50, then Z is standard normal
 For Q2, # of remaining bulbs, Y, is a Bernoulli trial with 100 

repetitions
 Y follows Binomial distribution (approximate to normal distr.)

Y N( np np(1 p) ) refer to Wikipedia
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 Y ~ N( np, np(1-p) )      refer to Wikipedia
 E[Y] = np = 100 * [1- P(X ≤ 365)] 



Memoryless PropertyMemoryless Property

M l f G t i d E ti l Memoryless for Geometric and Exponential 
 Easy to understand for Geometric

Each trial is independent how many trials before Each trial is independent  how many trials before 
hit does not depend on how many times I have 
missed before.missed before.

 X: Geometric r.v., PX(k)=(1-p)k-1p;    
 Y:  Y=X-n   No. of trials given we failed first n times
 PY(k) = P(Y=k|X>n)=P(X=k+n|X>n)

= P (X=k+n,X>n)
P (X>n)

= P (X=k+n)
P (X>n)P (X>n) P (X>n)

= (1−p)k+n−1p
(1−p)n = p(1− p)k−1 = PX(k)
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df b bilit d it f ti pdf:  probability density function 
 Continuous r.v.  fX(x)

 pmf: probability mass function
 Discrete r.v. X:   PX(x)=P(X=x)  
 Also denoted as pX(x) or simply p(x)
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Mean (Expectation)Mean (Expectation)

Di t X Discrete r.v.  X
 E[X] =  kPX(k)

 Continous r.v.  X
 E[X] = 

Z ∞
kf(k)dk

 Bernoulli:  E[X] = 0(1-p) + 1· p = p

Z
−∞

f( )

 Binomial: E[X]=np  (intuitive meaning?)

 Geometric: E[X]=1/p  (intuitive meaning?)
 Poisson: E[X]=λ (remember λ=np)
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MeanMean

C ti Continuous r.v.
 Uniform:  E[X]= (α+β)/2

E ti l E[X] 1/λ Exponential:  E[X]= 1/λ
 K-th Erlang E[X] = k/λ

Normal: E[X]= Normal: E[X]=μ
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Function of Random VariablesFunction of Random Variables

R V X R V Y (X) R.V. X,      R.V. Y=g(X)
 Discrete r.v. X:

 E[g(X)] =  g(x)p(x)
 Continuous r.v. X:

 E[g(X)] = 
Z ∞
−∞

g(x)f(x)dx

 Variance:  Var(X) = E[ (X-E[X])2 ]
= E[X2] – (E[X])2= E[X ] – (E[X])
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Joint Distributed Random VariablesJoint Distributed Random Variables

F (x y)=P(X≤ x Y≤ y) FXY(x,y)=P(X≤ x, Y≤ y)
 FXY(x,y)=FX(x)FY(y)   independent
 FX|Y(x|y) = FXY(x y)/FY(y) FX|Y(x|y)  FXY(x,y)/FY(y)

 E[α X +β Y]=α E[X]+β E[Y][ β ] [ ] β [ ]
 If X, Y independent 

 E[g(X)h(Y)]=E[g(X)]· E[h(Y)]
C i Covariance
 Measure of how much two variables change together 
 Cov(X Y)=E[ (X-E[X])(Y-E[Y]) ] Cov(X,Y) E[ (X E[X])(Y E[Y]) ]

= E[XY] – E[X]E[Y]
 If X and Y independent, Cov(X,Y)=0
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Limit Theorems - InequalityLimit Theorems - Inequality

M k ’ I lit Markov’s Inequality
 r.v. X≥ 0: ∀ α>0,  P(X≥ α) ≤ E[X]/α 

 Chebyshev’s Inequality
 r.v. X, E[X]=μ, Var(X)=σ2

 ∀ k>0,  P(|X-μ|≥ k)≤ σ2/k2

 Provide bounds when only mean and y
variance known
 The bounds may be more conservative than The bounds may be more conservative than 

derived bounds if we know the distribution
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Inequality ExamplesInequality Examples

If =2E[X] then P(X≥ )≤ 0 5 If α=2E[X], then P(X≥α)≤ 0.5
 A pool of articles from a publisher. Assume we know 

that the articles are on average 1000 characters longthat the articles are on average 1000 characters long 
with a standard deviation of 200 characters.

 Q: what is the prob. a given article is between 600 and 
1400 characters?1400 characters?

 Model: r.v. X: μ=1000, σ=200, k=400 in Chebyshev’s
 P(Q) = 1- P(|X-μ|≥ k) ( ) (| μ| )

≥ 1- (σ/k)2 =0.75

 If we know X follows normal distr : If we know X follows normal distr.:
 75% chance of an article being between 770 and 

1230 characters long 
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Strong Law of Large NumberStrong Law of Large Number

i i d (i d d t d id ti ll di t ib t d) i.i.d. (independent and identically-distributed)
 Xi: i.i.d. random variables,  E[Xi]=μ

With probability 1,  
(X +X + +X )/n as n(X1+X2+ +Xn)/n μ,  as n∞

F d ti f i l b f i l ti tFoundation for using large number of simulations to 
obtain average results
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Central Limit TheoremCentral Limit Theorem

X : i i d random variables E[X ] Var(X ) 2 Xi: i.i.d. random variables,  E[Xi]=μ Var(Xi)=σ2

 Y= X1 +X2 + · · ·+Xn − nμ
σ
√
n

 Then,  Y ∼ N(0,1)   as n∞
Th f h l di t ib ti i h

√

 The reason for why normal distribution is everywhere

 Sample mean Sample mean 
X̄ =

nX
i=1

Xi/n

E[X̄] = μ

V ar(X̄) = σ2/n

25
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ExampleExample

L t X i 1 2 10 b i i d X i if Let Xi, i=1,2,, 10 be i.i.d., Xi is uniform 
distr. (0,1). Calculate P (

10X
Xi > 7)

 E[Xi]=0.5, Var(Xi)=1/12

(
X
i=1

i )

[ i] 0 5, a ( i) /

P (
10X

Xi > 7) = P (

P10
i=1Xi − 5q >

7− 5q )P (
X
i=1

Xi > 7) P (q
10(1/12)

> q
10(1/12)

)

1 Φ(2 2) 0 0139≈ 1−Φ(2.2) = 0.0139

Φ(x): prob. standard normal distr. < x
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Conditional ProbabilityConditional Probability

S X d Y h j i t f ( ) Suppose r.v. X and Y have joint pmf p(x,y)
 p(1,1)=0.5, p(1,2)=0.1, p(2,1)=0.1, p(2,2)=0.3

Q C f f Q: Calculate the pmf of X given that Y=1

p (1)=p(1 1)+p(2 1)=0 6 pY(1)=p(1,1)+p(2,1)=0.6
 X sample space {1,2}
 pX|Y (1|1) =P(X=1|Y=1) = P(X=1, Y=1)/P(Y=1) pX|Y (1|1) P(X 1|Y 1)   P(X 1, Y 1)/P(Y 1)

= p(1,1)/pY(1) = 5/6

 Similarly,  pX|Y(2,1) = 1/6
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Expectation by ConditioningExpectation by Conditioning

X d Y th E[X|Y] i l r.v. X and Y. then E[X|Y] is also a r.v.
 Formula:  E[X]=E[E[X|Y]]

 Make it clearer,  EX[X]= EY[ EX[X|Y] ]
 It corresponds to the “law of total probability”

 EX[X]=  EX[X|Y=y] · P(Y=y)
 Used in the same situation where you use the law 

of total probabilityof total probability
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ExampleExample

X d N i d d t r.v. X and N, independent
 Y=X1+X2+ +XN

 Q: compute E[Y]?Q co pute [ ]
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Example 1Example 1
A company’s network has a design problem on its A company’s network has a design problem on its 
routing algorithm for its core router. For a given packet, 
it forwards correctly with prob. 1/3 where the packetit forwards correctly with prob. 1/3 where the packet 
takes 2 seconds to reach the target; forwards it to a 
wrong path with prob. 1/3, where the packet comes back 
after 3 seconds; forwards it to another wrong with prob. 
1/3, where the packet comes back after 5 seconds.

 Q: What is the expected time delay for the packet reach 
the target?the target?
 Memoryless
 Expectation by condition
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Example 2Example 2
Suppose a spam filter gives each incoming email an Suppose a spam filter gives each incoming email an 
overall score. A higher score means the email is more 
likely to be spam. By running the filter on training set oflikely to be spam.  By running the filter on training set of 
email (known normal + known spam), we know that 80% 
of normal emails have scores of 1.5  0.4; 68% of spam 
emails have scores of 4  1. Assume the score of 
normal or spam email follows normal distr.

 Q1: If we want spam detection rate of 95% what threshold should Q1: If we want spam detection rate of 95%, what threshold should 
we configure the filter?

 Q2: What is the false positive rate under this configuration?
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Example 3Example 3

A b ll i d f b ttl t i i A ball is drawn from an bottle containing 
three white and two black balls. After each 
ball is drawn, it is then placed back. This 
goes on indefinitely. goes o de te y
 Q: What is the probability that among the first 

four drawn balls, exactly two are white?four drawn balls, exactly two are white?

Ã !
P (X = k) ≡ f(k;n, p) =

Ã
n
k

!
pk(1− p)n−k
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Example 4Example 4

A t f b tt h lif ti ith 40 A type of battery has a lifetime with μ=40 
hours and σ=20 hours. A battery is used 
until it fails, at which point it is replaced by 
a new one. a e o e

 Q: If we have 25 batteries, what’s the Q: If we have 25 batteries, what s the 
probability that over 1100 hours of use can 
be achieved?be achieved?

 Approximate by central limit theorem
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Example 5Example 5

If th b f ff b d ti f If the prob. of a person suffer bad reaction from 
the injection of a given serum is 0.1%, 
d t i th b bilit th t t f 2000determine the probability that out of 2000 
individuals (a). exactly 3  (b). More than 2 
i di id l ff b d ti ?individuals suffer a bad reaction?
 (c). If we inject one person per minute, what is the 

average time between two bad reaction injections?average time between two bad reaction injections?

 Poisson distribution (for rare event in a large number ( g
of event series)
 Can use Binomial, but too much computation

Geometric
34

 Geometric



Example 6Example 6
A group of n camping people work on A group of n camping people work on 
assembling their individual tent individually. The 
time for a person finishes is modeled by r v Xtime for a person finishes is modeled by r.v. X. 
 Q1: what is the PDF for the time when the first tent is 

ready?
Q2 h t i th PDF f th ti h ll t t Q2: what is the PDF for the time when all tents are 
ready?

 Suppose Xi are i.i.d., i=1, 2, , n
 Q: compute PDF of r.v. Y and Z where

Y (X X X ) Y= max(X1, X2, , Xn)
 Z= min(X1, X2, , Xn)
 Y, Z can be used for modeling many phenomenon
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Example 7Example 7

(t tb k #23 P 169) (textbook #23 on Page 169)
 A coin having probability p of coming up 

f fheads is flipped until two of the most recent 
three flips are heads. Let N denote the 

b f h d Fi d E[N]number of heads. Find E[N].

P(N ) P(Y 3 Y 3 Y 2)

0 0 0 1 0 0 0 0 1 0 0 1 0 1

 P(N=n) = P(Y2≥ 3, , Yn-1≥ 3, Yn≤ 2)
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