

CDA6530: Performance Models of Computers and Networks

Cliff Zou Fall 2012

Course Information

- Teacher: Cliff Zou
 - □ Office: HEC243 407-823-5015
 - □ Email: czou@cs.ucf.edu
 - □ Office hour: TuTh 12pm 1:30pm
- Course Webpage:
 - http://www.cs.ucf.edu/~czou/CDA6530/index.html
 - Syllabus is on the webpage and WebCourse
- UCF Tegrity for online lecture video streaming
 - WebCourse has a Tegrity link
 - Posted several hours after each class
- Use Webcourse@UCF for homework assignment and grading
 - Keep grade private

Stands For Opportunity

- Homework submission
- Also have a simple BBS channel

Objectives

- What you need for performance analysis:
 - Review practical probability theory
 - Review several useful random processes
 - Basic queuing theory
 - Practical analysis techniques
 - Useful tools (Matlab and basic usage of NS2)
 - Basic simulation techniques
 - Discrete-time simulation
 - Discrete event simulation
 - Example cases/papers on performance modeling
 - Prepare for your own research

Course Materials

- Reference textbook:
 - Introduction to Probability Models, Ninth Edition by Sheldon M. Ross.
 - Simulation, fouth edition by Sheldon M. Ross.
- Reference courses:
 - CMPSCI673 Performance Evaluation, by Don Towsley, UMass.
 - Course: <u>COMS6180 Modeling and Performance</u> <u>Evaluation</u>, by Visal Misra, Columbia Univ.
- Other references that we can find online

Course Introduction

Coursework	times	approx %
Written homework	2	20%
 Programming projects 	5	60%
 Midterm exam 	1	20%

Written homework

 Mainly for the first half course on knowledge: probability, random process, queuing theory

Programming projects

- Emphasis for the second half of the course
- Example:
 - Basic usage of Matlab on statistical analysis
 - Internet worm propagation simulation
 - Networking simulation using NS2
 - Discrete-event simulation

Course Introduction

Midterm exam

 Focus on the first half content on probability, random process, queuing theory

Programming projects

- Simple project: each student individual work
- Complex project: Two students as a group
- No final exam (to reduce workload)

□ Questions?