## Stands For Opportunity

## CDA6530: Performance Models of Computers and Networks

## Chapter 1: Review of Practical Probability

## Probability Definition

- Sample Space (S) which is a collection of objects (all possible scenarios or values). Each object is a sample point.
$\square$ Set of all persons in a room
a $\{1,2, \ldots, 6\}$ sides of a dice
$\square\{0,1\}$ for shooter results
$\square(0,1)$ real number
- An event $E$ is a set of sample points - Event $\mathrm{E} \subseteq$ S


## Probability Definition

- Probability P defined on events:
- $0 \leq P(E) \leq 1$
- If $E=\phi \quad P(E)=0$; If $E=S \quad P(E)=1$
- If events $A$ and $B$ are mutually exclusive,

$$
P(A \cup B)=P(A)+P(B)
$$

- Classical Probability P:
- $P(E)=$ \# of sample points in E / \# of sample points in $S$
- $A^{c}$ is the complement of event $A$ :
- $A^{c}=\{w$ : w not in $A\}$
- $P\left(A^{c}\right)=1-P(A)$
- Union: $A \cup B=\{w$ : w in A or B or both $\}$
a Intersection: $A \cap B=\{w$ : in $A$ and $B\}$
- $P(A \cup B)=P(A)+P(B)-P(A \cap B)$
- How to prove it based on probability definition?
- For simplicity, define $P(A B)=P(A \cap B)$


## Conditional Probability

- Meaning of $P(A \mid B)$
- Given that event $B$ has happened, what is the probability that event $A$ also happens?
$\square P(A \mid B)=P(A B) / P(B)$ $\square$ Physical meaning? (hint: use graph)
- Constraint sample space (scale up)

$$
P(s \mid B)= \begin{cases}P(s) / P(B) & \text { if } s \in B \\ 0, & \text { otherwise }\end{cases}
$$

## Example of Conditional Probability

- A box with 5000 chips, 1000 from company X, other from $Y$. $10 \%$ from $X$ is defective, $5 \%$ from $Y$ is defective.
- $A=$ "chip is from $X$ ", $B=$ "chip is defective"
- Questions:
- Sample space?
- $P(B)=$ ?
- $P(A \cap B)=P($ chip made by $X$ and it is defective $)$
- $P(A \cap B)=$ ?
- $P(A \mid B)=$ ?
- $P(A \mid B) ? P(A B) / P(B)$


## Statistical Independent (S.I.)

- If $A$ and $B$ are S.I., then $P(A B)=P(A) P(B)$ - $P(A \mid B)=P(A B) / P(B)=P(A)$
- Theory of total probability - $P(A)=\sum^{n}{ }_{j=1} P\left(A \mid B_{j}\right) P\left(B_{j}\right)$
where $\left\{B_{j}\right\}$ is a set of mutually exclusive exhaustive events, and $B_{1} \cup B_{2} \cup \ldots B_{n}=S$
- Let's derive it for $n=2$ :
- $A=A B \cup A B^{c}$ mutually exclusive
- $P(A)=P(A B)+P\left(A B^{c}\right)$

$$
=P(A \mid B) P(B)+P\left(A \mid B^{c}\right) P\left(B^{c}\right)
$$

## Example of Law of Total

## Probability

- A man shoots a target. When sunny day, he has 0.8 prob. to hit the target; when raining day, he has 0.4 prob. to hit. The weather has 0.7 prob. to be sunny, and 0.3 prob. to be raining.
- P(hit the target today)?


## Application of S.I.

- $\mathrm{R}_{\mathrm{i}}$ : reliability of component i
- $R_{i}=P$ (component $i$ works normally)


$$
R_{s y s}=R_{1} \cdot R_{2} \cdot\left[1-\left(1-R_{3}\right)^{3}\right] \cdot R_{4} \cdot\left[1-\left(1-R_{5}\right)^{2}\right]
$$

## Simple Derivation of Bayes' Formula

- Bayes:

$$
\begin{aligned}
& P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)} \\
& =\frac{P(B \mid A) P(A)}{P(B \mid A) P(A)+P\left(B \mid A^{c}\right) P\left(A^{c}\right)}
\end{aligned}
$$

- Conditional prob.:

$$
\begin{aligned}
& P(A \mid B)=P(A B) / P(B) \\
& P(B \mid A)=P(A B) / P(A)
\end{aligned}
$$

## Bayes' Theorem

- Calculate posterior prob. given observation
$\square$ Events $\left\{F_{1}, F_{2}, \cdots, F_{n}\right\}$ are mutually exclusive
- $\cup_{i=1}^{n} F_{i}=S$
- E is an observable event
a $P\left(E \mid F_{i}\right), P\left(F_{i}\right)$ are known
- As E happens, which $F_{k}$ is mostly likely to have happened?

$$
P\left(F_{k} \mid E\right)=\frac{P\left(E \mid F_{k}\right) P\left(F_{k}\right)}{\sum_{i=1}^{n} P\left(E \mid F_{i}\right) P\left(F_{i}\right)}
$$

a Law of total prob. $P(E)=\sum_{i=1}^{n} P\left(E \mid F_{i}\right) P\left(F_{i}\right)$

## Example 1

- A man shoots a target. When sunny day, he has 0.8 prob. to hit the target; when raining day, he has 0.4 prob. to hit. The weather has 0.7 prob. to be sunny, and 0.3 prob. to be raining.
- Q: the man misses the target today, what is prob. that today is sunny? Raining?
- The raining prob. is enlarged given the shooting result


## Example 2

- A blood test is 95\% accurate (detects a sick person as sick), but has 1\% false positive (detects a healthy person as sick). We know $0.5 \%$ population are sick.
- Q: if a person is tested positive, what is the prob. she is really sick?
- Model: D: Alice is sick, $E$ : Alice is tested positive
- Q : $\mathrm{P}(\mathrm{D} \mid \mathrm{E})$ ?
- Solution: It is easy to know that $P(E \mid D)=0.95, P(D)=0.005$

Thus we use Bayes formula $P(D \mid E)=P(E \mid D) P(D) / P(E)$
Law of total prob.: $P(E)=P(E \mid D) P(D)+P\left(E \mid D^{c}\right) P\left(D^{c}\right)$

$$
=0.95 * 0.005+0.01 * 0.995
$$

Thus: $P(D \mid E)=0.323$
Testing positive only means suspicious, not really sick, although testing has only 1\% false positive.

- Worse performance when P(D) decreases.
- Example: whether to conduct breast cancel testing in younger age?


## Bayes Application ---Naïve Bayes Classification

- Email: Spam (S) or non-spam (H)
- From training data, we know: $\mathrm{P}\left(\mathrm{w}_{\mathrm{i}} \mid \mathrm{S}\right), \mathrm{P}\left(\mathrm{w}_{\mathrm{i}} \mid \mathrm{H}\right)$ a $\mathrm{w}_{\mathrm{i}}$ : keyword $i$ in an email
- Define $E$ : the set of keywords contained in an email
- For any email, $P(E \mid S)=\Pi P\left(w_{i} \mid S\right), P(E \mid H)=\Pi P\left(w_{i} \mid H\right)$
- Implicit assumption that keywords are independent
- Q: for an email, prob. to be a spam(ham)?
- Model for Question: P(S|E), P(H|E)

$$
\begin{aligned}
& P(S \mid E)=\frac{P(E \mid S) P(S)}{P(E)} \\
& P(H \mid E)=\frac{P(E \mid H) P(H)}{P(E)}
\end{aligned}
$$

Reference: Naive Bayes classifier
http://en.wikipedia.org/wiki/Naive_Bayes_classifier

## - Questions?

