

CDA6530: Performance Models of Computers and Networks

Chapter 2: Review of Practical Random Variables

Definition

- Random variable (R.V.) X:
 - A function on sample space
 - $\square X: S \rightarrow R$
- Cumulative distribution function (CDF):
 - Probability distribution function (PDF)
 - Distribution function
 - $\Box F_X(x) = P(X < x)$
- Probability density function (pdf):
 - Used for continuous R.V.

$$F_X(x) = \int_{-\infty}^x f_X(t)dt$$
 $f_X(x) = \frac{dF_X(x)}{dx}$

Two Classes of R.V.

- Discrete R.V.
 - Bernoulli
 - Binomial
 - Geometric
 - Poisson
- Continuous R.V.
 - Uniform
 - Exponential, Erlang
 - Normal
- Closely related
 - □ Exponential ←→ Geometric
 - □ Normal ←→ Binomial, Poisson

Bernoulli

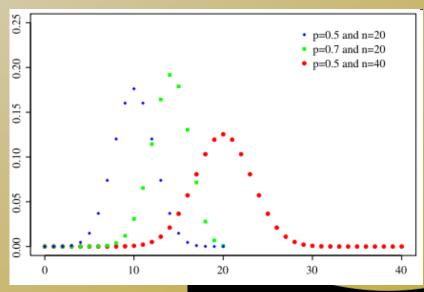
- A trial/experiment, outcome is either "success" or "failure".
 - □ X=1 if success, X=0 if failure
 - $\neg P(X=1)=p, P(X=0)=1-p$
- Bernoulli Trials
 - A series of independent repetition of Bernoulli trial.

Binomial

- A Bernoulli trials with n repetitions
- □ Binomial: X = No. of successes in n trails

$$P(X=k) \equiv f(k;n,p) = \binom{n}{k} p^k (1-p)^{n-k}$$

where
$$\binom{n}{k} = \frac{n!}{(n-k)!k!}$$



Binomial Example (1)

- A communication channel with (1-p) being the probability of successful transmission of a bit. Assume we design a code that can tolerate up to e bit errors with n bit word code.
- Q: Probability of successful word transmission?
- Model: sequence of bits trans. follows a Bernoulli Trails
 - Assumption: each bit error or not is independent
 - P(Q) = P(e or fewer errors in n trails)

$$= \sum_{i=0}^{e} f(i; n, p)$$

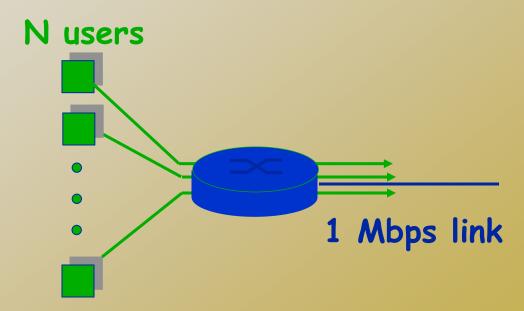
$$= \sum_{i=0}^{e} {n \choose i} p^{i} (1-p)^{n-i}$$

Binomial Example (2)

---- Packet switching versus circuit switching

Packet switching allows more users to use network!

- 1 Mb/s link
- each user:
 - 100 kb/s when "active"
 - active 10% of time
- circuit-switching:
 - □ 10 users
- packet switching:
 - with 35 users,prob. of > 10 active lessthan .0004

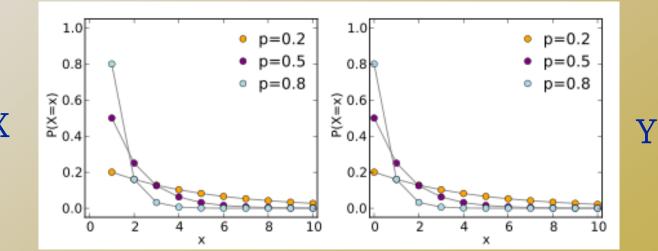


Q: how did we know 0.0004?

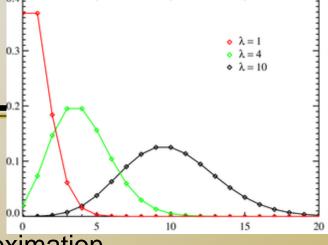
Geometric

- Still about Bernoulli Trails, but from a different angle.
- X: No. of trials until the first success
- Y: No. of failures until the first success

$$P(X=k) = (1-p)^{k-1}p P(Y=k)=(1-p)^{k}p$$



Poisson



- □ Limiting case for Binomial when:
 - n is large and p is small
 - n>20 and p<0.05 would be good approximation
 - Reference: wiki
 - \neg λ =np is fixed, success rate
- □ X: No. of successes in a time interval (n time units) $P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$
- Many natural systems have this distribution
 - The number of phone calls at a call center per minute.
 - The number of times a web server is accessed per minute.
 - The number of mutations in a given stretch of DNA after a certain amount of radiation.

Continous R.V - Uniform

 \square X: is a uniform r.v. on (α, β) if

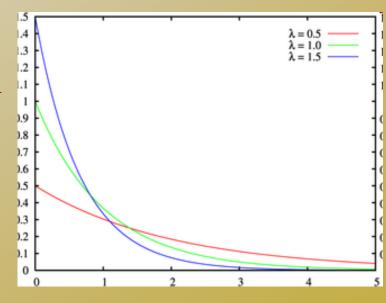
$$f(x) = \begin{cases} \frac{1}{\beta - \alpha}, & \text{if } \alpha < x < \beta \\ 0 & \text{otherwise} \end{cases}$$

- Uniform r.v. is the basis for simulation other distributions
 - Introduce later

Exponential

□ r.v. X:

- Very important distribution
 - Memoryless property
 - Corresponding to geometric distr.

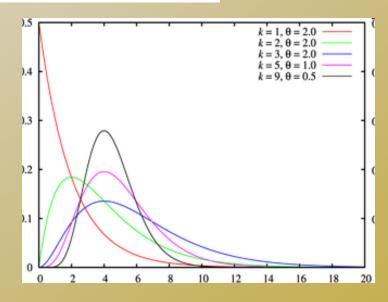


Erlang

□ r.v. X (k-th Erlang):

$$f(x; k, \lambda) = \frac{\lambda^k x^{k-1} e^{-\lambda x}}{(k-1)!} \quad \text{for } x, \lambda \ge 0.$$

 K-th Erlang is the sum of k Exponential distr.

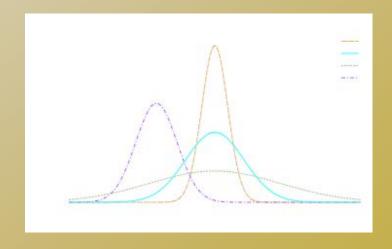


Normal

□ r.v. X:

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-(x-\mu)^2/2\sigma^2}, -\infty < x < \infty$$

 Corresponding to Binomial and Poisson distributions



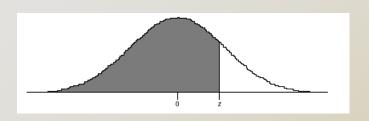
Normal

- \square If X~N(μ , σ^2), then
 - \square r.v. Z=(X- μ)/ σ follows standard normal N(0,1)
 - □ P(Z<x) is denoted as $\Phi(x)$
 - $\neg \Phi(x)$ value can be obtained from standard normal distribution table (next slide)
 - □ Used to calculate the distribution value of a normal random variable $X\sim N(\mu, \sigma^2)$

$$P(X < \alpha) = P(Z < (\alpha - \mu)/\sigma)$$

$$= \Phi((\alpha - \mu)/\sigma)$$

Standard Normal Distr. Table



Z	F(x)	Z	F(x)	z	F(x)
-2.5	0.006	-1	0.159	0.5	0.691
-2.4	0.008	-0.9	0.184	0.6	0.726
-2.3	0.011	-0.8	0.212	0.7	0.758
-2.2	0.014	-0.7	0.242	0.8	0.788
-2.1	0.018	-0.6	0.274	0.9	0.816
-2	0.023	-0.5	0.309	1	0.841
-1.9	0.029	-0.4	0.345	1.1	0.864
-1.8	0.036	-0.3	0.382	1.2	0.885
-1.7	0.045	-0.2	0.421	1.3	0.903
-1.6	0.055	-0.1	0.46	1.4	0.919
-1.5	0.067	0	0.5	1.5	0.933
-1.4	0.081	0.1	0.54	1.6	0.945
-1.3	0.097	0.2	0.579	1.7	0.955
-1.2	0.115	0.3	0.618	1.8	0.964
-1.1	0.136	0.4	0.655	1.9	0.971

$\Box P(X < x)$	$=\Phi($	(X))
-----------------	----------	-----	---

- About 68% of the area under the curve falls within 1 standard deviation of the mean.
- About 95% of the area under the curve falls within 2 standard deviations of the mean.
- About 99.7% of the area under the curve falls within 3
 standard deviations of the mean.

15

Normal Distr. Example

- An average light bulb manufactured by Acme Corporation lasts 300 days, 68% of light bulbs lasts within 300+/- 50 days. Assuming that bulb life is normally distributed.
 - Q1: What is the probability that an Acme light bulb will last at most 365 days?
 - Q2: If we installed 100 new bulbs on a street exactly one year ago, how many bulbs still work now on average? What is the distribution of the number of remaining bulbs?

Step 1: Modeling

- □ X~N(300, 50²) μ =300, σ =50. Q1 is P(X≤ 365) define Z = (X-300)/50, then Z is standard normal
- □ For Q2, # of remaining bulbs, Y, is a Bernoulli trial with 100 repetitions with small prob. $p = [1 P(X \le 365)]$
 - Y follows Poisson distribution (approximated from Binomial distr.)
 - \Box E[Y] = λ = np = 100 * [1- P(X \leq 365)]

Memoryless Property

- Memoryless for Geometric and Exponential
- Easy to understand for Geometric
 - □ Each trial is independent → how many trials before hit does not depend on how many times I have missed before.
 - \square X: Geometric r.v., $P_X(k)=(1-p)^{k-1}p$;
 - Y: Y=X-n No. of trials given we failed first n times

$$P_{Y}(k) = P(Y=k|X>n) = P(X=k+n|X>n)$$

$$= \frac{P(X=k+n,X>n)}{P(X>n)} = \frac{P(X=k+n)}{P(X>n)}$$

$$= \frac{(1-p)^{k+n-1}p}{(1-p)^n} = p(1-p)^{k-1} = P_X(k)$$

- pdf: probability density function
 - \Box Continuous r.v. $f_X(x)$
- pmf: probability mass function
 - \square Discrete r.v. X: $P_X(x)=P(X=x)$
 - \square Also denoted as $P_X(x)$ or simply P(x)

Mean (Expectation)

Discrete r.v. X

$$\Box$$
 E[X] = \sum kP_X(k)

Continous r.v. X

$$\Box E[X] = \int_{-\infty}^{\infty} k f(k) dk$$

- □ Bernoulli: $E[X] = O(1-p) + 1 \cdot p = p$
- □ Binomial: E[X]=np (intuitive meaning?)
- □ Geometric: E[X]=1/p (intuitive meaning?)
- □ Poisson: $E[X]=\lambda$ (remember $\lambda=np$)

Mean

- Continuous r.v.
 - □ Uniform: $E[X] = (\alpha + \beta)/2$
 - □ Exponential: $E[X] = 1/\lambda$
 - \square *K*-th Erlang E[X] = k/λ
 - □ Normal: $E[X] = \mu$

Function of Random Variables

- \square R.V. X, R.V. Y=g(X)
- Discrete r.v. X:

$$\Box$$
 E[g(X)] = \sum g(x)p(x)

Continuous r.v. X:

$$\Box E[g(X)] = \int_{-\infty}^{\infty} g(x)f(x)dx$$

□ Variance: $Var(X) = E[(X-E[X])^2]$ = $E[X^2] - (E[X])^2$

Joint Distributed Random Variables

- $\neg F_{XY}(x,y)=P(X\leq x, Y\leq y)$
- $\neg F_{XY}(x,y)=F_X(x)F_Y(y)$ independent
- \square $E[\alpha X + \beta Y] = \alpha E[X] + \beta E[Y]$
- □ If X, Y independent
 - \Box $E[g(X)h(Y)]=E[g(X)]\cdot E[h(Y)]$
- Covariance
 - Measure of how much two variables change together
 - Cov(X,Y)=E[(X-E[X])(Y-E[Y])]= E[XY] E[X]E[Y]
 - If X and Y independent, Cov(X,Y)=0

Limit Theorems - Inequality

- Markov's Inequality
 - \square r.v. $X \ge 0$: $\forall \alpha > 0$, $P(X \ge \alpha) \le E[X]/\alpha$
- Chebyshev's Inequality
 - \neg r.v. X, E[X]= μ , Var(X)= σ^2
 - $\neg \forall k>0, P(|X-\mu|\geq k)\leq \sigma^2/k^2$
- Provide bounds when only mean and variance known
 - The bounds may be more conservative than derived bounds if we know the distribution

Inequality Examples

- □ If α =2E[X], then P(X $\geq \alpha$) \leq 0.5
- A pool of articles from a publisher. Assume we know that the articles are on average 1000 characters long with a standard deviation of 200 characters.
- Q: what is the prob. a given article is between 600 and 1400 characters?
- □ Model: r.v. X: μ =1000, σ =200, k=400 in Chebyshev's
- □ $P(Q) = 1 P(|X \mu| \ge k)$ $\ge 1 - (\sigma/k)^2 = 0.75$
- If we know X follows normal distr.:
 - The bound will be tigher
 - 75% chance of an article being between 760 and 1240 characters long

Strong Law of Large Number

- i.i.d. (independent and identically-distributed)
- \square X_i: i.i.d. random variables, $E[X_i] = \mu$

With probability 1,
$$(X_1+X_2+\cdots+X_n)/n \rightarrow \mu$$
, as $n\rightarrow \infty$

Foundation for using large number of simulations to obtain average results

Central Limit Theorem

 \square X_i: i.i.d. random variables, $E[X_i] = \mu Var(X_i) = \sigma^2$

$$\square Y = \frac{X_1 + X_2 + \dots + X_n - n\mu}{\sigma\sqrt{n}}$$

- □ Then, $Y \sim N(0,1)$ as $n \rightarrow \infty$
 - □ The reason for why normal distribution is everywhere
 - \Box Sample mean \bar{X} is also normal distributed
- Sample mean

$$\bar{X} = \sum_{i=1}^{n} X_i / n$$

$$E[\bar{X}] = \mu$$

$$Var(\bar{X}) = \sigma^2/n$$

What does this mean?

- Let X_i , $i=1,2,\cdots$, 10 be i.i.d., X_i is uniform distr. (0,1). Calculate $P(\sum_{i=1}^{10} X_i > 7)$
- \Box E[X_i]=0.5, Var(X_i)=1/12

$$P(\sum_{i=1}^{10} X_i > 7) = P(\frac{\sum_{i=1}^{10} X_i - 5}{\sqrt{10(1/12)}} > \frac{7 - 5}{\sqrt{10(1/12)}})$$

$$\approx 1 - \Phi(2.2) = 0.0139$$

 $\Phi(x)$: prob. standard normal distr. P(X < x)

Conditional Probability

- Suppose r.v. X and Y have joint pmf p(x,y)
 - p(1,1)=0.5, p(1,2)=0.1, p(2,1)=0.1, p(2,2)=0.3
 - Q: Calculate the pmf of X given that Y=1
- $p_{Y}(1)=p(1,1)+p(2,1)=0.6$
- X sample space {1,2}
- $p_{X|Y}(1|1) = P(X=1|Y=1) = P(X=1, Y=1)/P(Y=1)$ $= p(1,1)/p_{Y}(1) = 5/6$
- □ Similarly, $p_{X|Y}(2,1) = 1/6$

Expectation by Conditioning

- □ r.v. X and Y. then E[X|Y] is also a r.v.
- Formula: E[X]=E[E[X|Y]]
 - □ Make it clearer, $E_X[X] = E_Y[E_X[X|Y]]$
 - It corresponds to the "law of total probability"
 - $\Box E_{X}[X] = \sum E_{X}[X|Y=y] \cdot P(Y=y)$
 - Used in the same situation where you use the law of total probability

□ r.v. X and N, independent

$$\square Y = X_1 + X_2 + \cdots + X_N$$

Q: compute E[Y]?

- A company's network has a design problem on its routing algorithm for its core router. For a given packet, it forwards correctly with prob. 1/3 where the packet takes 2 seconds to reach the target; forwards it to a wrong path with prob. 1/3, where the packet comes back after 3 seconds; forwards it to another wrong with prob. 1/3, where the packet comes back after 5 seconds.
- Q: What is the expected time delay for the packet reach the target?
 - Memoryless
 - Expectation by condition

- Suppose a spam filter gives each incoming email an overall score. A higher score means the email is more likely to be spam. By running the filter on training set of email (known normal + known spam), we know that 80% of normal emails have scores of 1.5 ± 0.4; 68% of spam emails have scores of 4 ± 1. Assume the score of normal or spam email follows normal distr.
- Q1: If we want spam detection rate of 95%, what threshold should we configure the filter?
- Q2: What is the false positive rate under this configuration?

- A ball is drawn from an bottle containing three white and two black balls. After each ball is drawn, it is then placed back. This goes on indefinitely.
 - Q: What is the probability that among the first four drawn balls, exactly two are white?

$$P(X = k) \equiv f(k; n, p) = \binom{n}{k} p^{k} (1 - p)^{n-k}$$

- a A type of battery has a lifetime with μ =40 hours and σ =20 hours. A battery is used until it fails, at which point it is replaced by a new one.
 - Q: If we have 25 batteries, what's the probability that over 1100 hours of use can be achieved?
 - Approximate by central limit theorem

- If the prob. of a person suffer bad reaction from the injection of a given serum is 0.1%, determine the probability that out of 2000 individuals (a). exactly 3 (b). More than 2 individuals suffer a bad reaction? (c). If we inject one person per minute, what is the average time between two bad reaction injections?
 - Poisson distribution (for rare event in a large number of independent event series)
 - Can use Binomial, but too much computation
 - Geometric

- A group of n camping people work on assembling their individual tent individually. The time for a person finishes is modeled by r.v. X.
 - Q1: what is the PDF for the time when the first tent is ready?
 - Q2: what is the PDF for the time when all tents are ready?
 - □ Suppose X_i are i.i.d., i=1, 2, ···, n
 - Q: compute PDF of r.v. Y and Z where
 - $\square Y = \max(X_1, X_2, \dots, X_n)$
 - \square Z= min(X₁, X₂, ..., X_n)
 - Y, Z can be used for modeling many phenomenon

 A coin having probability p of coming up heads is flipped until two of the most recent three flips are heads. Let N denote the number of heads. Find E[N].

$$P(N=n) = P(Y_2 \ge 3, \dots, Y_{n-1} \ge 3, Y_n \le 2)$$