

CDA6530: Performance Models of Computers and Networks

Review of Transform Theory

- Why using transform?
 - Make analysis easier
- Two transforms for probability
 - Non-negative integer r.v.
 - Z-transform (or called probability generating function (pgf))
 - Non-negative, real valued r.v.
 - Laplace transform (LT)

Z-transform

Definition:

 \square $G_X(Z)$ is Z-transform for r.v. X

$$G_X(z) \equiv E[z^X] = \sum_{k=0}^{\infty} p_k z^k$$

Example:

 \square X is geometric r.v., $p_k = (1-p)p^k$

$$G_X(z) = \sum_{k=0}^{\infty} (1-p)p^k z^k = \frac{1-p}{1-pz},$$

For pz<1

□ Poisson distr., $p_k = \lambda^k e^{-\lambda}/k!$

$$G_X(z) = \sum_{k=0}^{\infty} \frac{\lambda^k e^{-\lambda}}{k!} z^k$$

$$= e^{-\lambda} \sum_{k=0}^{\infty} (\lambda z)^k / k!$$

$$= e^{-\lambda(1-z)}$$

Benefit

$$\frac{dG_X(z)}{dz} = \sum_{k=1}^{\infty} k p_k z^{k-1}$$

Thus
$$E[X] = \sum_{k=1}^{\infty} k p_k z^{k-1} \bigg|_{z=1} = \frac{dG_X(z)}{dz} \bigg|_{z=1}$$

$$=\left. \frac{dG_X(z)}{dz} \right|_{z=1}$$

$$\frac{d^2 G_X(z)}{dz^2}\bigg|_{z=1} = E[X^2] - E[X]$$

 Convolution: X, Y independent with pdfs $G_{x}(z)$ and $G_{y}(z)$, Let U=X+Y

$$G_U(z) = G_X(z)G_Y(z)$$

Solution of M/M/1 Using Transform

$$(\lambda + \mu)\pi_i = \lambda \pi_{i-1} + \mu \pi_{i+1}, \quad i = 1, \dots$$

 $\lambda \pi_0 = \mu \pi_1$

■ Multiplying by z^i , using $\rho = \lambda/\mu$, and summing over i

$$(1+\rho)\sum_{i=0}^{\infty} \pi_i z^i = \rho z \sum_{i=0}^{\infty} \pi_i z^i + z^{-1} \sum_{i=1}^{\infty} \pi_i z^i + \pi_0$$

$$(1+\rho)G_N(z) = \rho z G_N(z) + z^{-1}(G_N(z) - \pi_0) + \pi_0$$

$$(\rho z^2 - (1+\rho)z + 1)G_N(z) = (1-z)\pi_0$$

$$\rho z^2 - (1+\rho)z + 1 = (1-z)(1-\rho z) \implies G_N(z) = \frac{\pi_0}{1-\rho z},$$

$$= \frac{1-\rho}{1-\rho z}$$

$$E[N] = \frac{dG_N(z)}{dz}|_{z=1}$$

$$= \frac{1 - \rho}{(1 - \rho z)^2} \rho|_{z=1}$$

$$= \frac{\rho}{1 - \rho} = \frac{1}{\mu - \lambda}$$

Laplace Transform

- \square R.v. X has pdf $f_X(x)$
 - X is non-negative, real value
- The LT of X is:

$$F_X^*(s) \equiv E[e^{-sX}] = \int_0^\infty f_X(x)e^{-sx}dx$$

Example

□ X: exp. Distr. $f_X(x) = \lambda e^{-\lambda x}$

$$F_X^*(s) = \int_0^\infty \lambda e^{-x(\lambda+s)} dx = \frac{\lambda}{\lambda+s}$$

Moments:

$$E[X] = -\frac{d}{ds}F_X^*(s)\Big|_{s=0}$$

$$E[X^{i}] = (-1)^{i} \frac{d^{(i)}}{ds} F_{X}^{*}(s)|_{s=0}$$

Convolution

 $\neg X_1, X_2, \dots, X_n$ are independent rvs with $F_{X_1}^*(s), F_{X_2}^*(s), \dots, F_{X_n}^*(s)$

□ If Y is n-th Erlang, $F_Y^*(s) = (\frac{\lambda}{\lambda + s})^n$

Z-transform and LT

- $\square X_1, X_2, \cdots, X_N$ are i.i.d. r.v with LT $F_X^*(s)$
- \square N is r.v. with pgf $G_N(z)$
- \square Y= X₁+X₂ +···+X_N

$$F_Y^*(s) = G_N(F_X^*(s))$$

 \Box If X_i is discrete r.v. with $G_X(Z)$, then

$$G_Y(z) = G_N(G_X(z))$$