UCF

Stands For Opportunity

CDA6530: Performance Models of Computers and Networks
Review of Transform Theory

- Why using transform?
- Make analysis easier
- Two transforms for probability
- Non-negative integer r.v.
- Z-transform (or called probability generating function (pgf))
- Non-negative, real valued r.v.
- Laplace transform (LT)

Z-transform

- Definition:
- $G_{x}(Z)$ is Z-transform for r.v. X

$$
G_{X}(z) \equiv E\left[z^{X}\right]=\sum_{k=0}^{\infty} p_{k} z^{k}
$$

- Example:
$\square X$ is geometric r.v., $p_{k}=(1-p) p^{k}$

$$
G_{X}(z)=\sum_{k=0}^{\infty}(1-p) p^{k} z^{k}=\frac{1-p}{1-p z}
$$

For $\mathrm{pz}<1$

- Poisson distr., $\mathrm{p}_{\mathrm{k}}=\lambda^{k} \mathrm{e}^{-\lambda} / \mathrm{k}$!

$$
\begin{aligned}
G_{X}(z) & =\sum_{k=0}^{\infty} \frac{\lambda^{k} e^{-\lambda}}{k!} z^{k} \\
& =e^{-\lambda} \sum_{k=0}^{\infty}(\lambda z)^{k} / k! \\
& =e^{-\lambda(1-z)}
\end{aligned}
$$

Benefit

$$
\frac{d G_{X}(z)}{d z}=\sum_{k=1}^{\infty} k p_{k} z^{k-1}
$$

- Thus

$$
\begin{aligned}
& E[X]=\left.\sum_{k=1}^{\infty} k p_{k} z^{k-1}\right|_{z=1}=\left.\frac{d G_{X}(z)}{d z}\right|_{z=1} \\
&\left.\frac{d^{2} G_{X}(z)}{d z^{2}}\right|_{z=1}=E\left[X^{2}\right]-E[X]
\end{aligned}
$$

- Convolution: X, Y independent with pdfs $\mathrm{G}_{\mathrm{X}}(\mathrm{z})$ and $\mathrm{G}_{\mathrm{Y}}(\mathrm{z})$, Let $\mathrm{U}=\mathrm{X}+\mathrm{Y}$

$$
G_{U}(z)=G_{X}(z) G_{Y}(z)
$$

Solution of M/M/1 Using Transform

$$
\begin{aligned}
(\lambda+\mu) \pi_{i} & =\lambda \pi_{i-1}+\mu \pi_{i+1}, \quad i=1, \ldots \\
\lambda \pi_{0} & =\mu \pi_{1}
\end{aligned}
$$

- Multiplying by z^{i}, using $\rho=\lambda / \mu$, and summing over i

$$
(1+\rho) \sum_{i=0}^{\infty} \pi_{i} z^{i}=\rho z \sum_{i=0}^{\infty} \pi_{i} z^{i}+z^{-1} \sum_{i=1}^{\infty} \pi_{i} z^{i}+\pi_{0}
$$

$$
(1+\rho) G_{N}(z)=\rho z G_{N}(z)+z^{-1}\left(G_{N}(z)-\pi_{0}\right)+\pi_{0}
$$

$$
\left(\rho z^{2}-(1+\rho) z+1\right) G_{N}(z)=(1-z) \pi_{0}
$$

$$
\begin{aligned}
\rho z^{2}-(1+\rho) z+1=(1-z)(1-\rho z) \Rightarrow G_{N}(z) & =\frac{\pi_{0}}{1-\rho z} \\
& =\frac{1-\rho}{1-\rho z}
\end{aligned}
$$

$$
\begin{aligned}
E[N] & =\left.\frac{d G_{N}(z)}{d z}\right|_{z=1} \\
& =\left.\frac{1-\rho}{(1-\rho z)^{2}} \rho\right|_{z=1} \\
& =\frac{\rho}{1-\rho}=\frac{1}{\mu-\lambda}
\end{aligned}
$$

Laplace Transform

- R.v. X has pdf $\mathrm{f}_{\mathrm{x}}(\mathrm{x})$
$\square X$ is non-negative, real value - The LT of X is:

$$
F_{X}^{*}(s) \equiv E\left[e^{-s X}\right]=\int_{0}^{\infty} f_{X}(x) e^{-s x} d x
$$

Example

- X: exp. Distr. $\mathrm{f}_{\mathrm{X}}(\mathrm{x})=\lambda \mathrm{e}^{-\lambda x}$

$$
F_{X}^{*}(s)=\int_{0}^{\infty} \lambda e^{-x(\lambda+s)} d x=\frac{\lambda}{\lambda+s}
$$

- Moments:

$$
\begin{aligned}
E[X] & =-\left.\frac{d}{d s} F_{X}^{*}(s)\right|_{s=0} \\
E\left[X^{i}\right] & =\left.(-1)^{i} \frac{d^{(i)}}{d s} F_{X}^{*}(s)\right|_{s=0}
\end{aligned}
$$

Convolution

a $X_{1}, X_{2}, \cdots, X_{n}$ are independent rvs with $F_{X_{1}}^{*}(s), F_{X_{2}}^{*}(s), \cdots, F_{X_{n}}^{*}(s)$

- If $\mathrm{Y}=\mathrm{X}_{1}+\mathrm{X}_{2}+\cdots+\mathrm{X}_{\mathrm{n}}$

$$
F_{Y}^{*}(s)=F_{X_{1}}^{*}(s) \cdot F_{X_{2}}^{*}(s) \cdots F_{X_{n}}^{*}(s)
$$

- If Y is n-th Erlang,

$$
F_{Y}^{*}(s)=\left(\frac{\lambda}{\lambda+s}\right)^{n}
$$

Z-transform and LT

- $\mathrm{X}_{1}, \mathrm{X}_{2}, \cdots, \mathrm{X}_{\mathrm{N}}$ are i.i.d. r.v with LT $F_{X}^{*}(s)$
$\square N$ is r.v. with $p g f G_{N}(z)$
- $Y=X_{1}+X_{2}+\cdots+X_{N}$

$$
F_{Y}^{*}(s)=G_{N}\left(F_{X}^{*}(s)\right)
$$

If X_{i} is discrete r.v. with $G_{X}(Z)$, then

$$
G_{Y}(z)=G_{N}\left(G_{X}(z)\right)
$$

