

CDA6530: Performance Models of Computers and Networks

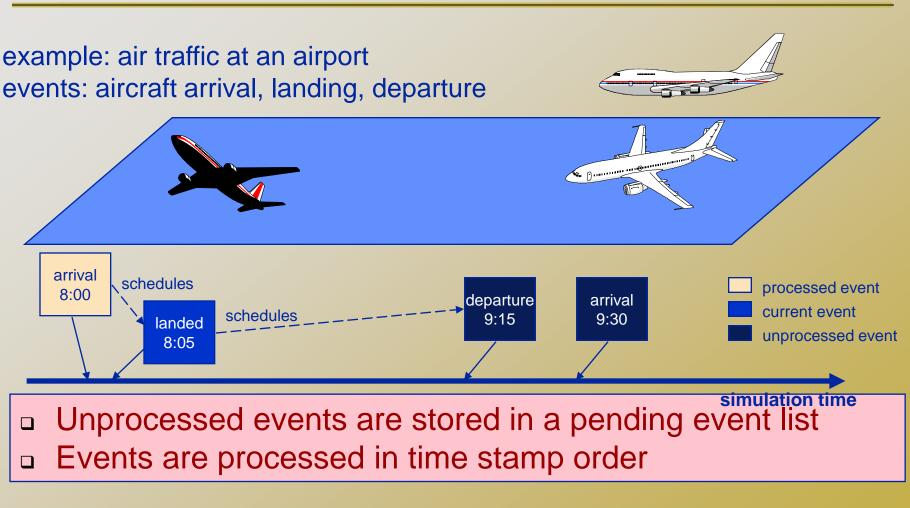
Chapter 8: Statistical Simulation ----Discrete Event Simulation (DES)

SCHOOL OF ELECTRICAL ENGINEERING & COMPUTER SCIENCE

Time Concept

- physical time: time in the physical system
 Noon, Oct. 14, 2008 to noon Nov. 1, 2008
- simulation time: representation of physical time within the simulation
 - floating point values in interval [0.0, 17.0]
 - Example: 1.5 represents one and half hour after physical system begins simulation
- wallclock time: time during the execution of the simulation, usually output from a hardware clock
 8:00 to 10:23 AM on Oct. 14, 2008

Discrete Event Simulation Computation



From: http://www.cc.gatech.edu/classes/AY2004/cs4230_fall/lectures/02-DES.ppt

Stands For Opportunity

UCF

SCHOOL OF ELECTRICAL ENGINEERING & COMPUTER SCIENCE

DES: No Time Loop

- Discrete event simulation has no time loop
 - There are events that are scheduled.
 - At each run step, the next scheduled event with the *lowest* time schedule gets processed.
 - The current time is then *that* time, the time when that event is supposed to occur.
- Accurate simulation compared to discretetime simulation
- Key: We have to keep the list of scheduled events sorted (in order)

Variables

Time variable t

- Simulation time
- Add time unit, can represent physical time
- Counter variables
 - Keep a count of times certain events have occurred by time t

System state (SS) variables We focus on queuing systems in introducing DES

Interlude: Simulating non-homogeneous Poisson process for first T time

- Nonhomogeneous Poisson process:
 - Arrival rate is a variable $\lambda(t)$
 - Bounded: $\lambda(t) < \lambda$ for all t T
- Thinning Method:
 - 1. **t=0, l=0**
 - 2. Generate a random number U
 - 3. $t=t-ln(U)/\lambda$. If t>T, stop.
 - 4. Generate a random number U
 - 5. If $U \le \lambda(t)/\lambda$, set I=I+1, S(I)=t
 - 6. Go to step 2
- Final I is the no. of events in time T
- \Box S(1), ..., S(I) are the event times
- Remove step 4 and condition in step 5 for homogeneous Poisson

Subroutine for Generating T_s

- Nonhomogeneous Poisson arrival
 - T_s: the time of the first arrival after time s.
 - 1. Let t =s
 - 2. Generate U
 - 3. Let t=t-ln(U)/ λ
 - 4. Generate U
 - 5. If U $\leq \lambda(t)/\lambda$, set T_s=t and stop
 - 6. Go to step 2

Subroutine for Generating T_s

- Homogeneous Poisson arrival
 - \Box T_s: the time of the first arrival after time s.
 - 1. Let t =s
 - 2. Generate U
 - 3. Let t=t-ln(U)/ λ
 - 4. Set T_s=t and stop

Variables:

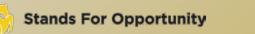
- Time: t
- Counters:
 - □ N_A: no. of arrivals by time t
 - N_D: no. of departures by time t
- System state: n no. of customers in system at t
- eventNum: counter of # of events happened so far

Events:

- Arrival, departure (cause state change)
- Event list: $EL = t_A, t_D$
 - □ t_A: the time of the next arrival after time t
 - □ T_D: departure time of the customer presently being served

Output:

- A(i): arrival time of customer i
- D(i): departure time of customer I
- SystemState, SystemStateTime vector:
 - SystemStateTime(i): i-th event happening time
 - SystemState(i): the system state, # of customers in system, right after the i-th event.



Initialize:

Set t=N_A=N_D=0
 Set SS n=0
 Generate T₀, and set t_A=T₀, t_D=∞
 Service time is denoted as r.v. Y

 t_D=Y + T₀

\square If (t_A \leq t_D) (Arrival happens next) \Box t=t_A (we move along to time t_A) \square N_A = N_A+1 (one more arrival) \square n= n + 1 (one more customer in system) \Box Generate T_t, reset t_A = T_t (time of next arrival) □ If (n=1) generate Y and reset t_D=t+Y (system had been empty before without t_D determined so we need to generate the service time of the new customer)

Collect output data:

- \square A(N_A)=t (customer N_A arrived at time t)
- o eventNum = eventNum + 1;
- SystemState(eventNum) = n;
- SystemStateTime(eventNum) = t;

If (t_D<t_A) (Departure happens next) t = t_D n = n-1 (one customer leaves) N_D = N_D+1 (departure number increases 1) If (n=0) t_D=∞; (empty system, no next departure time) else, generate Y and t_D=t+Y (why?)

Collect output data: D(N_D)=t eventNum = eventNum + 1; SystemState(eventNum) = n; SystemStateTime(eventNum) = t;

Summary

- Analyzing physical system description
- Represent system states
- What events?
- Define variables, outputs

Manage event list
Deal with each top event one by one

