UCF

 Stands For OpportunityCDA6530: Performance Models of Computers and Networks
Chapter 4: Using Matlab for Performance Analysis and Simulation

Objective

- Learn a useful tool for mathematical analysis and simulation
- Interpreted language, easy to learn
- Use it to facilitate our simulation projects
- A good tool to plot simulation/experiment results figures for academic papers
- More powerful than excel
- Could directly create .eps for Latex

Introduction

- MatLab : Matrix Laboratory
a Numerical Computations with matrices
- Every number can be represented as matrix
- Why Matlab?
- User Friendly (GUI)
- Easy to work with
- Powerful tools for complex mathematics
- Matlab has extensive demo and tutorials to learn by yourself
\square Use help command

Matlab Software Access

- all UCF in-campus computers have student-version Matlab installed
- If you have no access to Matlab, you can use Octave, an open-source free software a http://www.gnu.org/software/octave/
- The programming should be almost identical

Matrices in Matlab

- To enter a matrix

$$
\begin{aligned}
& \begin{array}{lll}
2 & 5 & 3 \\
6 & 4 & 1
\end{array} \\
& \text { >> } A=[253 ; 641] \\
& \gg B=[1: 1.5: 6 ; 234 \text { 5] } \\
& \text { >> for } \mathrm{i}=1: 4 \\
& \text { for } \mathrm{j}=1: 3 \\
& C(i, j)=i^{*} j \text {; } \\
& \text { end } \\
& \text { end } \\
& \text { >> } \mathrm{D}=[] ; \mathrm{D}=[\mathrm{D} ; 5] ; \mathrm{D}=[\mathrm{D} ; 6 ; 7] \\
& \text { >> } \mathrm{E}=\operatorname{zeros}(4,5)
\end{aligned}
$$

Basic Mathematical Operations

Remember that every variable can be a matrix!
Addition:
>> $=A+B$
Subtraction:
\gg D $=A-B$
Multiplication:
>> $\mathrm{E}=\mathrm{A}$ * B (Matrix multiplication)
$\gg \mathrm{E}=\mathrm{A} .{ }^{*} \mathrm{~B}$ (Element wise multiplication, A and B same size)
Division:
Left Division and Right Division
$\gg F=A . / B$ (Element wise division)
$\gg F=A / B=A^{*} \operatorname{inv}(B) \quad(A *$ inverse of $B)$
$\gg F=A . \ B$ (Element wise division)
$\gg F=A \backslash B=\operatorname{inv}(A)^{*} B \quad$ (inverse of $A * B$)

Generating basic matrices

Matrix with ZEROS:

>> A = zeros(m, n)

Matrix with ONES:

>> B = ones (m, n)

IDENTITY Matrix:

>> I = eye(m, n)
$\mathrm{m} \rightarrow$ Rows
$n \rightarrow$ Columns
zeros, ones, eye \rightarrow Matlab functions

Obtain Information

- Size(A): return [m n]
- Length(A): length of a vector
\square Length $(A)=\max (\operatorname{size}(A))$
- $B=A(2: 4,3: 5)$
- B is the subset of A from row 2 to row 4, column 3 to column 5
- $A(:, 2)=[]$
- Delete second column

Basic Matrix Functions

- $\operatorname{Inv}(A):$ inverse of A
- Rank(A): rank of matrix A
- A': transpose of A
- $\operatorname{Det}(\mathrm{A})$: determinant
- $V=$ eig(A): eigenvalue vector of A
- [V,D] = eig(A) produces matrices of eigenvalues (D) and eigenvectors (V) of matrix A, so that $A^{*} V=V^{*} D$

Random Number Generators

- Rand(m,n): matrix with each entry ~ $\mathrm{U}(0,1)$
- You can use this for the programming project 1
- Randn(m,n): standard normal distribution
- You cannot use this in programming project 1
- You must use the polar method I introduced!

Basic 2-D Figure Plot

- Plot(X, Y):
- Plots vector Y versus vector X
- Hold: next plot action on the same figure
- Title('title text here')
- Xlabel('...’), ylabel(‘...’)
- Axis([XMIN XMAX YMIN YMAX])
- Legend('...')
- Grid
- Example demo

Elementary Math Function

- Abs(), sign() - $\operatorname{Sign(A)}$ = A./abs(A)
- $\operatorname{Sin}(), \cos (), \operatorname{asin}(), \operatorname{acos}()$
- $\operatorname{Exp}(), \log (), \log 10()$
- Ceil(), floor()
- Sqrt()
- Real(), imag()

Elementary Math Function

- Vector operation:

- Mean(), median()
- Std(), var(): standard deviation and variance
- Sum(), prod(): sum/product of elements
- Sort(): sort in ascending order

Save/Load Data

- Save fname
- Save all workspace data into fname.mat
- Save fname x y z
a Save(fname): when fname is a variable
- Load fname
- Load fname x y
- No error in data
- You can run simulation intermittently - Save/load data between runs

Input/Output for Text Files

- Input data file for further analysis in Matlab
- Run simulation using C
- matlab is slow in doing many loops
- Use Matlab for post-data processing
- Matrix calculation, utilize Matlab math functions
- Simply use Matlab for figure ploting
- Excel has constraint on data vector length (<300?)
- Functions:
- $[A, B \ldots]=$ Textread(fname, format)
- Read formated data
- Use fprintf(), fscanf() similar to C
- Note that variables here can be vectors/matrices
- Show examples here of writing data to text file

Advanced Graph

- Subplot(m, n, p)
a breaks the Figure window into an m-by-n matrix of small axes, selects the p-th axes for the current plot, and returns the axis handle. - Semilogx(), semilogy(), loglog()

3-D plot

व $x=[0: 10] ; y=[0: 10] ; z=x^{\prime *} y$;
a mesh(x,y,z); figure; surf(x,y,z);

M-file

- Script or function

- Scripts are m-files containing MATLAB statements
- Functions are like any other m-file, but they accept arguments
- It is always recommended to name function file the same as the function name

```
function A = changeSign(B)
% change sign for each element
[m,n] = size(B); A = zeros(m,n);
for i=1:m
    for j=1:n
        A(i,j)= -B(i,j);
        end
end
return
```


Online Tutorials

- Matlab itself contains many tutorials
- Other online tutorials:
- Google search "matlab tutorial ppt" to find a lot more

Example on Using Matlab for Markov Chain Steady State Calculation

- Discrete-time Markov Chain transition matrix:

$$
\underline{\underline{P}}=\left[\begin{array}{cccc}
0.512 & 0.384 & 0.008 & 0.096 \\
0.32 & 0.48 & 0.02 & 0.18 \\
0 & 0 & 0.5 & 0.5 \\
0 & 0.4 & 0.1 & 0.5
\end{array}\right]
$$

- $\pi \mathrm{P}=\pi, \quad \pi\left[\begin{array}{llll}1 & 1 & 1 & \ldots\end{array}\right]^{\top}=1$
- $\pi(P-I)=0$, But we cannot use it directly
- Replace first column in (P-I) with [11..1] to be A, then we can solve the linear equation set by $\pi=\left[\begin{array}{llll}1 & 0 & 0 & \ldots\end{array}\right] A^{-1}$
- Another way: $P^{*} P^{*} P^{*} P \ldots .$.

Tutorial on Matlab Simulink

- Graphical programming language
- Drag and draw line to program
- Configure each object for parameters
- Powerful modeling tool
- Differential Equations
- Physiological systems
- Control systems
- Transfer functions
- M-file can call a simulink model
- "sim fname"
- Use current workspace variables
- Simulation results can be saved to workspace variables
- Thus can be process after simulink

Example: Internet Worm Propagation

$$
\frac{d I(t)}{d t}=\frac{\eta}{\Omega} I(t) \cdot[N-I(t)]
$$

- N : vulnerable population
a η : worm host average scan rate
- Ω : scanning IP space size

Example 2: RC Circuit

Fig. 1. The RC Circuit.

$$
\dot{\mathrm{x}}=\frac{1}{\mathrm{RC}}[\mathrm{f}(\mathrm{t})-\mathrm{x}]
$$

Transfer function:

$$
X(s)=\frac{F(s)}{1+R C \cdot s}
$$

Save result to workspace variables

- the save format is "structure with time".
- Suppose the workspace variable is X_t.
- Then:
- X_t.time saves the simulation step times (vector)
- X_t.signals.values saves the simulation results (vector).
a plot(X_t.time, X_t.signals.values);
- Variable step simulation or fixed step simulation:
- "to workspace" use "-1" for sample time (inherited)
- Then X_t.time has variable size
- "to workspace" use "1" for sample time
- Then each time tick has one result value

