
Chapter 8

Analysis of Peer-to-Peer Botnet Attacks and
Defenses

Ping Wang, Lei Wu, Baber Aslam and Cliff C. Zou

Abstract A “botnet” is a network of computers that are compromised and con-
trolled by an attacker (botmaster). Botnets are one of the most serious threats
to today’s Internet. Most current botnets have centralized command and control
(C&C) architecture. However, peer-to-peer (P2P) structured botnets have gradually
emerged as a new advanced form of botnets. Due to the distributive nature of P2P
networks, P2P botnets are more resilient to defense countermeasures. In this chapter,
first we systematically study P2P botnets along multiple dimensions: bot candidate
selection, network construction, C&C communication mechanisms/protocols, and
mitigation approaches. Then we provide mathematical analysis of two P2P botnet
elimination approaches – index poisoning defense and Sybil defense, and one P2P
botnet monitoring technique – passive monitoring based on infiltrated honeypots
or captured bots. Simulation experiments show that our mathematical analysis is
accurate.

Ping Wang
Symantec Corporation, Lake Mary, Florida 32746, USA e-mail: jenpwang@gmail.com

Lei Wu
Department of Computer Science, North Carolina State University, Raleigh, NC 27695, USA e-
mail: lwu4@ncsu.edu

Baber Aslam
National University of Sciences & Technology, Islamabad, Pakistan e-mail: baber-mcs@nust.
edu.pk

Cliff C. Zou
Department of Electrical Engineering & Computer Science, University of Central Florida, Orlando,
Fl 32816, USA e-mail: czou@cs.ucf.edu

239

240 Ping Wang, Lei Wu, Baber Aslam and Cliff C. Zou

8.1 Introduction

8.1.1 Botnets

A “botnet” is a network of compromised computers (bots) running malicious soft-
ware, usually installed via all kinds of attacking techniques such as Trojan horses,
worms and viruses. These zombie computers are remotely controlled by an attacker
(botmaster). Botnets with a large number of computers have enormous cumulative
bandwidth and computing capability. They are exploited by botmasters for initiat-
ing various malicious activities, such as email spam, distributed denial-of-service
attacks, password cracking and key logging. Botnets have become one of the most
significant threats to the Internet.

Today, centralized botnets are still widely used. In a centralized botnet, bots are
connected to several servers (called command and control servers) to obtain com-
mands. This architecture is easy to construct and efficient in distributing a botmas-
ter’s commands; however, it has a weak link - the command and control (C&C)
servers. Shutting down those servers would cause all bots in a botnet to lose contact
with their botmaster. In addition, defenders can easily monitor the botnet by creating
a decoy to join a specified C&C channel.

In the last few years, peer-to-peer (P2P) botnets, such as Trojan.Peacomm bot-
net, Storm botnet and its newly improved version Waledac botnet, have emerged as
attackers gradually realize the limitation of traditional centralized botnets. “Peer-to-
peer botnets” are defined as botnets that rely on peer-to-peer communication mecha-
nisms to facilitate the command and control by their botmasters. There are different
ways for a P2P botnet to utilize P2P communication for its command and control.
For example, a P2P botnet could use a P2P network (either an existing P2P net-
work, or a unique P2P network formed by its bot members) to directly disseminate
its botmaster’s commands to all bot members, or it could use a P2P network to dis-
seminate the IP addresses of C&C servers to bot members (like what Storm botnet
[53] does, which utilizes an existing P2P protocol to form a hierarchical multi-tier
command and control architecture). Due to the fundamental distributive nature of
P2P networks, P2P botnets are robust against removal of bots and C&C servers, and
have shown great advantages over traditional centralized botnets. As the next gener-
ation of botnets, they are more robust and difficult for security community to defend
against.

8 Analysis of Peer-to-Peer Botnet Attacks and Defenses 241

Researchers have started to pay attention to P2P botnet threat in recent years.
Trojan.Peacomm botnet, Stormnet and Waledac botnet have been dissected in de-
tails in literature [18, 19, 27, 41, 43, 54]. Andriesse et al. [5] reverse engineered P2P
botnet Zeus. However, in order to effectively fight against this new form of botnets,
it is not enough to simply enumerate and analyze every individual P2P botnet we
have encountered in the wild. Instead, we need to study P2P botnets in a more sys-
tematic way. Therefore in this book chapter we try to explore the nature of various
kinds of P2P botnets, analyzing their similarities and differences, and discussing
their weaknesses and possible defenses.

8.1.2 Botnet Countermeasures

From our understanding, botnet countermeasures can be classified into three cate-
gories: detection, monitoring, and mitigation.

Detection refers to detecting and identifying a botnet in a network. It includes
identifying bot members by various ways, such as signature-based malware detec-
tion, network flow monitoring, honeypot infiltration, etc; it also includes discovering
C&C channels, such as locating the Internet Relay Chat (IRC) servers of an IRC-
based botnet.

Monitoring refers to infiltrating a discovered botnet and monitoring its activities.
It can help people better understand a botmaster’s motivation, a botnet’s behavior
and design, etc. There are two types of monitoring: active – actively contact bot
members to explore their behaviors, and passive – set up traps and wait for bots to
contact, such as dark address space monitoring.

Mitigation refers to eliminating a discovered botnet, by either curing all/most
bots in a botnet or disabling its botmaster’s capability in command and control.
Upon botnet detection and monitoring, mitigation is the ultimate goal for botnet
defense. Because most botnets are large and contain bots located in areas that are
beyond our control, in most cases curing all/most bots in a detected botnet is not
feasible. Therefore, botnet mitigation usually means isolating bots by disrupting a
botnet’s C&C channels. This idea can be easily applied to centralized botnets, be-
cause in a centralized botnet, the C&C traffic will go through one or a few clearly-
defined central servers. As long as we are able to identify the centralized servers
of a botnet and stop botnet-related network activities to/from these servers, we can
stop the communication between a botmaster and his/her bots, resulting in disabling

242 Ping Wang, Lei Wu, Baber Aslam and Cliff C. Zou

the botnet. On the other hand, as a P2P botnet utilizes a P2P network to pass im-
portant messages across the entire botnet, it is generally much harder to disrupt the
information distribution.

There are many research works focusing on botnet detection and monitoring (dis-
cussed in Section 8.4), but few research works studying botnet mitigation. For P2P
botnets, researchers have presented two mitigation techniques – index poisoning
defense and Sybil defense [24, 27]. The original ideas behind these two techniques
were first introduced to “sabotage”1 legitimate P2P networks, and now defenders
leverage the same ideas to fight against P2P botnets. Empirical studies on index
poisoning defense and Sybil defense have been presented in [24, 27], which have
shown that they can successfully disrupt the communication of P2P botnets.

In our preliminary study [65], we presented the systematic study of P2P bot-
nets, and provided the mathematical analysis of index poisoning and Sybil defense,
but without much discussion and with no simulation evaluation. In this chapter, we
study index poisoning defense and Sybil defense techniques further by providing
new simulation study and detailed discussions. In addition, we present our new in-
vestigation on passive monitoring technique, providing both the analytical study of
the capability of a monitoring node in a P2P botnet, and the simulation evaluation.
To the best of our knowledge, we are the first to provide mathematical analysis on
the performance of index poisoning defense, Sybil defense and passive monitoring,
not only for P2P botnets, but also for their corresponding attacks targeting general
P2P systems. We also confirm the accuracy of our analysis with simulation exper-
iments. We hope to shed light on P2P botnets, and help researchers and security
professionals be well prepared and develop effective defenses against them.

8.1.3 Contributions

The major contributions of this chapter are summarized as follows.

• We systematically study P2P botnets along multiple dimensions: infection vec-
tors, bot candidate selection, bootstrap procedure, network structure, C&C mech-
anisms and communication protocols.

1 Index poisoning was introduced by media companies to prevent illegal distribution of copy-
righted content in P2P networks [36], while Sybil attack was to subvert a reputation system in P2P
networks [17].

8 Analysis of Peer-to-Peer Botnet Attacks and Defenses 243

• We mathematically analyze the performance of two popular P2P botnet mitiga-
tion techniques: index poisoning defense and Sybil defense.

• We also carefully study passive monitoring of P2P botnets: based on the mathe-
matical analysis of the capability of a monitoring node in a P2P botnet, we are
able to provide a lower bound for the number of bots that an infiltrated node can
monitor.

• We develop a Kademlia-based P2P botnet simulator. All the analytical results
presented in this chapter have been shown to be accurate by simulation-based
experiments using this simulator.

• From attackers’ perspective, we propose a novel and realistic technique that
might be deployed by them to counterattack the index poisoning defense. This
method guarantees that command related indices published in a P2P botnet can
be generated by and only by botmasters, not by ordinary bots.

• We obtain one counter-intuitive finding: if the index poisoning defense is valid
(when a botnet adopts existing P2P protocols and relies on indices to dissemi-
nate commands), P2P botnets are equally easy (or hard) to defend compared to
traditional centralized botnets.

• The mathematical analysis presented in this chapter is also suitable for modeling
index poisoning attack and Sybil attack in legitimate P2P networks, and hence,
contribute to the security research for legitimate P2P systems as well.

8.1.4 Chapter Organization

The remainder of the chapter is organized as follows. In Section 8.2, we study the
life cycle of P2P botnets, which is composed of three stages. Upon our understand-
ing of P2P botnets, a number of countermeasures are presented in Section 8.3, and
special attentions are given to two mitigation techniques – index poisoning defense
(Section 8.3.2) and Sybil defense (Section 8.3.3), and one passive monitoring tech-
nique (Section 8.3.4). We review the related work in Section 8.4 and conclude in
Section 8.5.

244 Ping Wang, Lei Wu, Baber Aslam and Cliff C. Zou

8.2 A Systematic Study on P2P Botnets

The life cycle of botnets is composed of three stages. Stage one - recruiting mem-
bers, a botmaster needs to compromise many computers in the Internet, so that
he/she can control them remotely. Stage two - forming the botnet, bots need to find a
way to connect to each other and form a botnet. Stage three - standing by for instruc-
tions, after the botnet is built up, all bots are ready to receive communication from
their botmaster for further instructions, such as launching an attack or performing
an update. In this section, we will discuss each stage in detail.

8.2.1 Stage One: Recruiting Bot Members

P2P networks are gaining popularity in distributed applications, such as file-sharing,
web caching, network storage [9]. In these content-trading P2P networks, without
a centralized authority it is not easy to guarantee that the contents exchanged are
not malicious. For this reason, these networks become the ideal venue for malicious
software to spread. It is straightforward for attackers to target vulnerable hosts in
existing P2P networks as bot candidates and build their zombie army. Many P2P
malware have been reported, such as Gnuman [1], VBS.Gnutella [1] and SdDrop
[4]. They can be used to compromise a host and make it become a bot.

However, in this way, the scale of a botnet will be limited by the size of an
existing P2P network, and the network will be the only propagation media. On the
contrary, P2P botnets we have witnessed in recent years [19, 27, 57] do not confine
themselves to existing P2P networks. They have shown that it is more flexible and
practical if bot members are recruited from the entire Internet through all possible
spread mediums like emails, instant messages and file exchanging.

8.2.2 Stage Two: Forming the Botnet

Upon infection, the next important thing is to let newly compromised computers
join the botnet network and connect to other bots. Otherwise, they are just isolated
individual computers without much use for botmasters.

Now for the convenience of further discussion, we first introduce three terms:
“parasite”, “leeching” and “bot-only” P2P botnets. Each of them represents a class

8 Analysis of Peer-to-Peer Botnet Attacks and Defenses 245

Table 8.1: Comparison among three types of P2P botnets

Features Parasite Leeching Bot-only
Infection vectors P2P malware Any kind of malware Any kind of malware
Bot candidates Vulnerable hosts Vulnerable hosts Vulnerable hosts

P2P networks in the Internet in the Internet
Bootstrap procedure None Required Optional
Members in the network Legitimate peers & bots Legitimate peers & bots Only bots
Communication protocols Existing P2P protocols Existing P2P protocols Self-designed or existing

P2P protocols
C&C styles Pull or push Pull or push Pull or push

of P2P botnets. In a parasite P2P botnet, all bots are selected from vulnerable hosts
within an existing P2P network. The botnet uses this available P2P network for
command and control. A leeching P2P botnet refers to one whose members join an
existing P2P network and depend on this P2P network for C&C communication, but
the bots could be vulnerable hosts that were either inside or outside of the existing
P2P network. For example, the early version of Storm botnet [27] belongs to this
class of botnet. A bot-only P2P botnet builds its own P2P network, in which all the
members are bots, such as Stormnet [27] and Nugache [57].

If all bots are selected from an existing P2P network, it is not necessary to per-
form any further action to form the botnet, because bots can find and communicate
with each other by simply using current P2P protocol. In other words, for a parasite
P2P botnet, up to this point, the botnet construction is done and the botnet is ready
to be operated by its botmaster.

However, if a random host on the Internet is compromised, it has to know how to
find and join the botnet, which is the case for leeching botnets and bot-only botnets.
As we know current P2P file-sharing networks provide the following two general
ways for new peers to join a network:

1. An initial peer list is hard-coded in each P2P client. When a new peer is up, it will
try to contact peers in that initial list to update its neighboring peer information.

2. There is a shared web cache, such as Gnutella web cache [15], stored at some
place on the Internet, and the location of the cache is put in the client code. Thus
a new peer can refresh its neighboring peer list by going to the web cache and
fetching the latest updates.

This initial procedure of finding and joining a P2P network is usually called
“bootstrap” procedure. It can be directly adopted for P2P botnet construction. Either
a predetermined list of peers or the locations of predetermined web caches need to

246 Ping Wang, Lei Wu, Baber Aslam and Cliff C. Zou

be hard-coded in the bot code. Then a newly infected host knows which peer to
contact or at least where to find candidates of neighboring peers it will contact later.

For instance, Trojan.Peacomm [19] is a piece of malware to create a P2P botnet
which uses the Overnet P2P protocol for controlling the bots. A list of Overnet
nodes that are likely to be online is hard-coded into the bot’s installation binary.
When a victim is compromised and runs a Trojan.Peacomm, it will try to contact
peers in this predefined list to bootstrap onto the Overnet network. Another P2P
botnet, Stormnet [27], uses a similar bootstrap mechanism: the information about
other peers with which a new bot member communicates after the installation phase,
is encoded in a configuration file that is also stored on the victim machine by Storm
worm binary.

8.2.3 Stage Three: Standing by for Instructions

Once a botnet is built up, all bots in the botnet are standing by for instructions from
their botmaster to perform illicit activities or updates. Therefore C&C mechanism
is very important and is the major part of a botnet design. It directly determines the
communication topology of a botnet, and hence affects the robustness of a botnet
against network/computer failures, or security monitoring and mitigation.

The C&C mechanisms can be categorized as either pull or push mechanism. Pull
mechanism, i.e., “command publishing/subscribing”, refers to the manner that bots
retrieve commands actively from a place where botmasters publish commands. On
the contrary, push mechanism, i.e., “command forwarding”, means bots passively
wait for commands to reach them and then forward received commands to others.

For centralized botnets, pull mechanism is commonly used. Take HTTP-based
botnets as an example, a botmaster publishes commands on a web page, and bots
periodically visit this web page via HTTP to check for any command updates. In
the following, we will discuss how pull and push C&C mechanisms can be applied
in P2P botnets.

8.2.3.1 Leveraging Existing P2P Protocols

As we discussed above, both parasite and leeching P2P botnets depend on existing
P2P networks. Thus it is natural to leverage the existing P2P protocols used by the

8 Analysis of Peer-to-Peer Botnet Attacks and Defenses 247

host P2P networks for C&C communication. Besides, these protocols have been
tested in P2P file-sharing applications for a long time, so they tend to be less error-
prone than newly designed ones, and have nice properties to improve performance of
P2P systems and mitigate network problems, such as link failure or churn (“churn”
refers to network dynamics caused by nodes’ joining and leaving activities). The
following discussion is based on parasite and leeching P2P botnets, but bot-only
botnet can adopt these protocols as well.

In P2P file-sharing systems, file index, which is used by peers to locate the de-
sired content, may be centralized (e.g., Napster), distributed over a fraction of the
file-sharing nodes (e.g., Gnutella), or distributed over all or a large fraction of the
nodes (e.g., Overnet). A peer can send out query message for the file it is searching
for, and the message will be passed around according to the routing algorithm im-
plemented in the system. The search will terminate when query hits are returned or
the query message expires.

Botmasters can easily adopt the above procedure to disseminate commands in
pull-style. They can insert records associated with some predefined file titles or
hash values into the index, but rather than putting the content location information,
botnet commands are attached. In order to get commands issued by botmasters,
bots periodically initiate queries for those files or hashes, and nodes who preserve
the corresponding records will return query hits with commands encoded. In other
words, bots subscribe the content (i.e., commands) published by their botmaster.

The early version of Storm botnet [27] is a good example to show how a P2P bot-
net could leverage an existing P2P network or implement an existing P2P protocol
for the pull-style command and control, although it uses the Overnet P2P network
to pass the locations of its C&C servers instead of botmaster’s commands. In Storm
botnet, every day there are 32 keys queried by bots to retrieve important informa-
tion. These 32 keys are calculated by a built-in algorithm, which takes the current
date and a random number from [0-31] as input. Therefore, when issuing a com-
mand, the botmaster needs to publish it under 32 different keys. Trojan.Peacomm
botnet [19] employs the similar design.

Compared to pull mechanism, implementation of push mechanism on existing
P2P protocols is more complicated. There are two major design issues:

• Which peers should a bot forward a command to?
• How to forward commands: using in-band (normal P2P traffic) or out-of-band

messages (non-P2P traffic)?

248 Ping Wang, Lei Wu, Baber Aslam and Cliff C. Zou

To address the first issue, the simplest way is to let a bot use its current known
neighboring peers as targets. But the problem of this approach is that command
distribution may be slow or sometimes disrupted, because 1) some bots have a small
number of neighbors, or 2) some peers in a bot’s neighbor list are not bot members
in the case of parasite or leeching P2P botnets. One solution to this problem is
that letting bots claim they have predefined popular files available, and forwarding
commands to peers appearing in the search results for those files. Thus the chance of
commands hitting an actual bot is increased. These predefined popular files behave
as the watchwords for the botnet, but could give defenders a clue to identify bots.

For the second issue, whether using in-band or out-of-band message to forward
a command depends on what the peers in the target list are. If a bot targets its neigh-
boring peers, in-band message is a good choice. A bot could encode a command in
a query message, which can only be interpreted by bots, send it to all its neighbors,
and rely on them to continue passing on the command in the botnet. This scheme is
easy to implement and hard for defenders to detect, because there is no difference
between command forwarding traffic and normal P2P traffic. On the other hand, if
the target list is generated in other ways, like using peers in returned search results
discussed above, bots have to contact those peers using out-of-band message. Obvi-
ously out-of-band traffic are easier to detect, and hence, can disclose the identities
of bots who initiate such traffic.

The discussion above mainly focused on unstructured P2P networks, where
query messages are flooded to the network. In structured P2P networks (e.g., Over-
net), a query message is routed to the nodes whose node IDs are closer to the queried
key, which means queries for the same key are always forwarded by the same set
of nodes. Therefore, to let more bots receive a command, the command should be
associated with different keys, such that it can be sent to different parts of the net-
work.

8.2.3.2 Design a New P2P Communication Protocol

It is convenient to adopt existing P2P protocols for P2P botnet C&C communication,
however, the inherited drawbacks of existing P2P protocols may limit botnet design
and performance. A botnet can be more flexible if it uses a new protocol designed
by its botmaster.

The advanced hybrid P2P botnet [63] and the super botnet [61] are two newly de-
signed P2P botnets, whose C&C communication are not dependent on existing P2P

8 Analysis of Peer-to-Peer Botnet Attacks and Defenses 249

protocols. Both of them implement push and pull C&C mechanisms. In a hybrid P2P
botnet, when a bot receives a command, it forwards the command to all the peers in
its peer list (push), and those who cannot accept connections from others periodi-
cally contact other bots in their peer lists and try to retrieve new commands (pull). A
super botnet is composed of a number of small centralized botnets. Commands are
pushed from one small botnet to another, and within a small centralized botnet, bots
pull the commands from their C&C servers. Furthermore, the hybrid P2P botnet is
able to effectively avoid bootstrap procedure (required by most of the existing P2P
protocols) by 1) passing a peer list from one bot to a host that is infected by this bot,
and 2) exchanging peer lists when two bots communicate.

The drawback of designing a new protocol for P2P botnet communication is that
the new protocol has never been tested before. When a botnet using this protocol is
deployed, the network may not be as stable and robust as expected due to complex
network conditions and defenses.

8.2.4 Discussion

Several features can be extracted to represent a P2P botnet during its life cycle: in-
fection vectors, bot candidates, bootstrap procedure, members in the network, com-
munication protocols and C&C styles. Parasite, leeching and bot-only P2P botnets
share common features but differ in others, which is summarized in Table 8.1. It
is shown that parasite P2P botnets are less flexible but require no bootstrap proce-
dure. This is an advantage of the parasite botnets over the other two classes. Botnets
are most vulnerable during bootstrap stage and the propagation could be stopped
if bootstrap information is compromised by defenders. Leeching and bot-only P2P
botnets are similar, but the former ones are more stealthy. This is because leeching
botnets resides in existing P2P networks, resulting in bot members being mixed with
legitimate nodes and hard to be detected.

8.3 Countermeasures

As discussed in Section 8.1.2, we believe P2P botnet defense study should be com-
posed with three areas of research: detection, monitoring, and mitigation. Botnet de-
tection has been widely studied by other researchers such as in [10, 28], and hence,

250 Ping Wang, Lei Wu, Baber Aslam and Cliff C. Zou

we will not discuss it in this book chapter. Instead, we will exploit and analyze
possible solutions for P2P botnet monitoring and mitigation.

In research on P2P file-sharing networks, people have long noticed that most P2P
protocols are susceptible to index poisoning attack [36] and Sybil attack [17]. Since
existing P2P botnets, such as Trojan.Peacomm and Stormnet, directly utilize exist-
ing P2P protocols, security defenders could rely on the same principle to conduct
index poisoning defense and Sybil defense. In [16, 19, 27], researchers have pointed
out that index poisoning defense and Sybil defense can be used to fight against P2P
botnets. However, none of them have presented detailed analysis of the performance
of these two mitigation approaches, nor have they discussed in detail how attackers
might evade these defenses. In this section, we explain how and why these two mit-
igation approaches work, how attackers can evade them, and give analytical studies
to evaluate their performance. Meanwhile, for P2P botnet monitoring, we study and
analyze the effectiveness of using a captured bot or an infiltrated honeypot to moni-
tor the members of a P2P botnet.

Before we introduce our analysis of mitigation and monitoring approaches, we
will first provide basic background introduction on the Kademlia P2P protocol,
which is the protocol used by the famous Trojan.Peacomm and Stormnet P2P bot-
nets considered in our study.

Notations used in this section are summarized and explained in Table 8.2.

8.3.1 Background on Kademlia P2P Protocol

Kademlia is a distributed hash table (DHT) protocol designed for P2P networks
[39]. Since it is the protocol implemented in Overnet, a P2P network used by Tro-
jan.Peacomm and Stormnet, this kind of network is our focus in the following sec-
tions. Because of page limit, we cannot provide detailed introduction. For more
information about Kademlia and Kad, please refer to [39, 51, 58].

In a Kademlia-based network, each node has a unique node ID, which is repre-
sented by an m-bit binary number. Every node has a routing table containing m lists;
each list corresponds to one specific bit of the node ID. Such a list is usually referred
as a k-bucket, where k is the maximum number of nodes in each list.

Nodes stored in node A’s ith k-bucket (i = 0,1, ...,m− 1) are the nodes whose
node ID must have the first i bits in common with node A’s ID, but have a different

8 Analysis of Peer-to-Peer Botnet Attacks and Defenses 251

Fig. 8.1 Routing table of a
node whose ID has m bits
and starts with 1011 (For
illustration purpose, we only
use 4-bit prefix to represent
each node). The table contains
m lists; each list holds at most
k nodes and is called “k-
bucket”. In the 0th k-bucket,
the first bit of each node’s ID
differs from 1011; in the 1st
k-bucket, each node’s ID has
the same first bit as 1011, but
different second bit. In the
2nd k-bucket, nodes share the
first two bits with 1011, but
have a different third bit. The
rest of the k-buckets follow
the same manner.

(a) Centralized Botnet (b) Index-based P2P Botnet

Fig. 8.2: Similarity of logical C&C structures between traditional centralized botnets
and index-based P2P botnets

(i+1)-th bit from node A’s ID. Fig. 8.1 is an example of a routing table on a node
whose ID starts with 1011.

In the distributed hash table preserved in Kademlia-based network, each entry is
a <key, value> pair, in which the key is also an m-bit binary number, and the value
part stores the corresponding file or node information. Each <key, value> pair is
stored on nodes whose node IDs are the closest ones to the key in the network, and
the distance is computed as the exclusive or (XOR) of the key and the node ID. The
distance between two nodes is computed in the same way.

Kademlia uses iterative routing mechanism. When node A searches for a key, it
first finds α nodes that are the closest ones to the key in its routing table, and then
initiates lookup queries to these α nodes. Each one of these nodes will send back a

252 Ping Wang, Lei Wu, Baber Aslam and Cliff C. Zou

Table 8.2: PARAMETERS USED IN ANALYSIS

Symbol Meaning

Kademlia

m The number of bits used to represent a node ID or a key.
k The maximum number of nodes in a bucket in a routing table.
∆b The number of bits improved per step for a lookup.
c The number of bits two binary numbers (node ID or key)

share in common in their prefixes.

Botnet

N The number of nodes in a P2P network.
Nbot The number of bots in a P2P network.
Ntz The number of bots in the target zone.
Nindex The number of nodes poisoned in the target zone.
NSybil The number of Sybil nodes added to the target zone.
Nquery The number of bots sending out queries for commands.
ltz The length of a search path in the target zone.
Psuccess The probability of a bot getting a real command.

response with either the corresponding value part if the <key, value> pair is stored
on it, or a certain number of nodes that are the closest ones to the key in its own
routing tables if it does not have the pair node A is looking for. A lookup query
stops when there is a query hit or when it expires.

Besides Kademlia, Kad is another popular DHT protocol for P2P networks [2].
It has been deployed by eMule [3] file-sharing application. However, Kad is based
on Kademlia with a slightly different routing table structure and parameter settings,
such as the number of bits of a node ID (it is 160 in Kademlia, but 128 in Kad).
These differences do not affect our study on Kademlia-based P2P network in the
following, so our analysis applies to both Kademlia and Kad networks. In the later
discussion, we do not differentiate Kademlia from Kad, unless it is explicitly men-
tioned otherwise.

8.3.2 Index Poisoning Defense

8.3.2.1 Defense Idea

Originally, media companies introduced index poisoning attack to prevent illegal
distribution of copyrighted content in P2P networks. The main idea is to insert mas-
sive number of bogus records into the index system. If a peer receives a bogus

8 Analysis of Peer-to-Peer Botnet Attacks and Defenses 253

record, it could end up not being able to locate the file (nonexistent location), or
downloading the wrong file [36].

As we discussed in Section 8.2.3, P2P botnets that implement C&C mechanism
of command publishing/subscribing make use of the indices in P2P networks to dis-
tribute commands. We refer such botnets as “index-based” P2P botnets. If defenders
are able to figure out the index keys of the botnet command related index records,
they can try to “poison” the index system by announcing false information under
the same keys. If the false information overwhelms the real command content, bots
that query and retrieve commands will likely end up obtaining false commands. In
this way, the C&C channels of the botnet are disrupted.

We believe there are three reasons that index-based P2P botnets are vulnerable
to index poisoning defense.

First, a security defect of P2P protocol itself is the root cause. In most P2P net-
works, there is no central authority to manage the file index system, such that any
node, no matter benign or malicious, is able to insert records into the index system.
There is no way to authenticate the publishing node and content of the records.

Second, with the help of honeypot and reverse engineering techniques, defenders
are able to analyze bot behaviors and bot code, and figure out the bot command
related index keys.

Third, in some sense, the C&C architecture of this type of P2P botnets is similar
to that of the traditional centralized botnets because of the limited number of index
keys for command distribution. As shown in Fig. 8.2, in centralized botnets, com-
mands are published at central sites, where bots are going to fetch the commands;
on the other hand, in index-based P2P botnets, commands cmd are inserted in the
index system by botmasters under special index keys, such as k2, k3 and ki, which
are known by bots and queried for retrieving commands.

From the aspect of C&C architecture, index-based P2P botnets logically rely
on central points (predefined index keys), while traditional botnets physically rely
on central points (predefined C&C servers) for communication. From the aspect
of defense, for a traditional C&C botnet, defenders shut down C&C channels by
physically removing the C&C servers or blocking access to the servers; while for
a P2P botnet, defenders overwhelm real command related records by many bogus
records under the same keys (the basic idea of index poisoning technique) to disrupt
C&C communication. Therefore, we can draw a conclusion that P2P botnets are not
absolutely harder to defend than traditional centralized botnets. If index poisoning

254 Ping Wang, Lei Wu, Baber Aslam and Cliff C. Zou

defense is valid for a P2P botnet, the P2P botnet is equally easy (or hard) to defend
compared with a traditional centralized botnet.

8.3.2.2 Attackers’ Possible Counterattack

Although index poisoning defense is effective, it is still possible for attackers to
evade it, if they can eliminate the causes discussed in Section 8.3.2.1.

Overbot [50], a new botnet protocol designed by Starnberger et al., addressed the
second and the third issues. In Overbot, each bot generates its own index key for
retrieving command and that key dynamically changes at a certain rate. In addition
the communication between bots and sensors (nodes used by a botmaster to publish
commands) is encrypted. Thus, it is very difficult for defenders to crack or predict
the index key. Even though defenders are able to do it for one single bot, it is not
helpful, because different bots have different index keys. However, for the same
reason, sensors have to publish a <key, command> pair for each bot they know
periodically, which dramatically increases the sensors’ workloads and makes them
more susceptible to be detected. In other words, the advantages of Overbot come
with the cost of introducing scalability and detectability issues.

Now we present a novel and realistic method that attackers might use to deal with
index poisoning defense – an authentication enforcement for command generation
and index manipulation. It addresses the first cause of index-based P2P botnets being
vulnerable to index poisoning (Section 8.3.2.1). In this approach, only botmasters
can insert records to the command index preserved on bots. Bots can only query to
fetch commands.

To realize the authentication, a botmaster generates a pair of public/private keys
< K+,K− >, and hard-codes the public key K+ into the bot code. Later, when
the botmaster wants to issue a command m under key k, he/she can insert a record
< k,m,K−(H(m))> instead of < k,m> into the index on a bot, saying bot A, where
H(m) is the hash value of m (i.e., the command is signed by the botmaster). Bot A

can decide if the record is created by its botmaster or not by using the public key
K+ to verify the signature. If the signature is authentic, bot A stores this record in
the index and waits for others to query, otherwise it discards the fake one. In this
way, the index on a bot will not be polluted.

In addition, this authentication mechanism can prevent the spread of false com-
mands. Even if defenders manage to store entries with forged commands in the
index on controlled peers (e.g., honeypots infected by a captured bot binary), bots

8 Analysis of Peer-to-Peer Botnet Attacks and Defenses 255

can verify the authenticity of received commands using the public key and disregard
the false ones.

Most existing P2P protocols have not implemented this kind of authentication
mechanism. Thus in order to deploy it, attackers need to modify the existing P2P
protocols, which implies that this counterattack technique can only be applied to
bot-only P2P botnets because the botnets cannot join existing P2P file-sharing net-
works anymore.

8.3.2.3 Analytical Study

In this section, we give an analytical study on performance of index poisoning de-
fense against index-based P2P botnets. Our target is a P2P botnet that implements
Kademlia-based DHT protocol for C&C communication. Similar study can be con-
ducted on P2P botnets utilizing other protocols.

Fig. 8.3 A search path for
a key, where node A is the
initiator and node D is the
destination. On this path node
B4 could be a node targeted
by defenders to interrupt the
search.

As introduced in Section 8.3.1, in a Kademlia-based DHT, each entry is a <key,
value> pair, and each pair is stored on at least one node whose node ID is closest
to the key in the network. If defenders want to pollute a P2P botnet’s index records
under key K, they need to contact nodes (poisoned nodes) whose IDs are close to
K, and store pairs like <K, false value> on them. In this way, when a bot queries
for key K to retrieve commands, those poisoned nodes will have a good chance to
appear on the search path and return false query value, and hence, prevent bots from
reaching nodes who possess the real commands. As illustrated in Fig. 8.3, a bot node
A initiates a lookup for index key K, the search path is supposed to go through node
B1, B2, B3, B4 and B5, until it reaches node D who has the pair <K, command>. If a
pair <K, false command> has been added in the index on node B4, when the lookup

256 Ping Wang, Lei Wu, Baber Aslam and Cliff C. Zou

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Percentage of poisoned nodes within target zone

P
su

cc
es

s

∆b=3.25

∆b=6.98

(a) Index poisoning with
different ∆b

N = Nbot = 980000,
c = 4

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

of poisoned nodes within target zone

P
su

cc
es

s

c=10

c=9

(b) Index poisoning with
different c

N = Nbot = 980000,
∆b = 3.25

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

of sybil nodes

P
su

cc
es

s

T c=4 N
bot

=980000

R c=4 N
bot

=980000

T c= 8 N
bot

=980000

T c=8 N
bot

=3072000

R c=8 N
bot

=3072000

(c) Sybil attack
(T-targeted Sybil nodes,
R-random Sybil nodes)

c = 4, ∆b = 3.25

Fig. 8.4: Performance of index poisoning defense and Sybil defense techniques il-
lustrated by numerical results

message reaches node B4, the node would return the false command and terminate
the search.

We assume that node IDs are uniformly distributed over the entire Kademlia ID
space, which is supported by the study in [51]. Suppose defenders choose Nindex

nodes whose IDs have at least the first c bits in common with K to inject and poison
their index records. We call the zone around K the “target zone” and all poisoned
nodes are in the target zone. Only when a lookup path enters the target zone, it is
possible that a poisoned node will be chosen, return a search result and terminate
the search. Let x be the probability of choosing a poisoned node in one lookup step,
then 1− x is the probability of not choosing one. Therefore the probability of a bot
obtaining the real command is

Psuccess = (1− x)ltz (8.1)

where ltz is the length of a search path within the target zone.

8 Analysis of Peer-to-Peer Botnet Attacks and Defenses 257

When a peer initiates a lookup for a key, in general, the expected number of steps
required to perform a lookup is given as follows [58]:

l =
log2 N

∆b
(8.2)

where N is the size of the network. We assume all nodes in the P2P network are bots,
so Nbot = N in this case. ∆b is the number of bits improved per step, which depends
on the structure of the routing table. Thus within the target zone, ltz = log2Ntz/∆b.
Since node IDs are uniformly distributed, the number of nodes in the target zone is
Ntz = N/2c, and x = Nindex/Ntz. The complete formula to calculate Psuccess is

Psuccess = (1− 2c×Nindex

N
)(log2 N−c)/∆b (8.3)

According to Equation (8.3), the performance of index poisoning technique de-
pends on four parameters. We have provided numerical results in Fig. 8.4 to show
their impacts on Psuccess by changing the parameters.

Fig. 8.4(a) illustrates that a botnet would be more robust to index poisoning de-
fense, if for each lookup more bits can be improved, i.e., the average length of search
path is shorter. When the search path is short, poisoned nodes have less chance to
be chosen along the path2.

It is shown in Fig. 8.4(b) that in order to achieve better performance, defenders
could choose a larger c, i.e. choosing nodes that are closer to the command related
key to poison. However it is not always a good idea to choose a large c, because we
want to have at least one step along the lookup path in the target zone, otherwise
bots can directly get commands without going through any node in the target zone.
In other words, ltz ≥ 1, i.e., c ≤ log2 N−∆b. In our case, N = 980000, ∆b = 3.25,
so c ≤ 16.7, and for the setup c = 9 and c = 10 used in Fig. 8.4(b), ltz is 3.35 and
3.05 respectively.

The size of the network would also affect the performance of index poisoning
defense. However, it does not matter that much, since given a fixed percentage of
poisoned nodes in the target zone, it can barely change ltz due to the log2 operator
(log2980000 = 19.90 and log2(12000×28) = 22.29)3.

2 The value of ∆b was estimated in [58]. 3.25 is the worst case, while 6.98 is the best case.
3 An estimate was given in [58] that the Kad network has around 980,000 concurrent peers. Authors
of [51] claimed that the population of peers in Kad network is between 12,000×28 and 20,000×28.

258 Ping Wang, Lei Wu, Baber Aslam and Cliff C. Zou

100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

of poisoned nodes

P
su

cc
es

s

Analytical
N

query
 = 3000

N
query

 = 5000

N
query

 = 7000

100 200 300 400 500 600
0.4

0.5

0.6

0.7

0.8

0.9

1

of poisoned nodes

P
su

cc
es

s

Analytical
N

query
 = 3000

N
query

 = 5000

N
query

 = 7000

100 200 300 400 500 600
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

of poisoned nodes

P
su

cc
es

s

Analytical
N

query
 = 3000

N
query

 = 5000

N
query

 = 7000

(a) Nbot=N=10000, m=16 (b) Nbot=N=20000, m=16 (c) Nbot=N=10000, m=160

Fig. 8.5: Comparison between analytical and simulation results of Psuccess for index
poisoning defense. The simulated P2P botnet is Kademlia-based with a D(1,1,8)
routing table structure, and c = 3.

8.3.2.4 Simulation Evaluation

To evaluate the accuracy of our analysis, we develop a P2P botnet simulator based
on OverSim [8], an open source P2P simulator. The P2P botnet we simulate employs
Kademlia protocol for the C&C communication.

In [58], Stutzbach et al. defined a system D(b,r,k), which uses b-bit symbols with
r-bit resolution and k-buckets, to represent the routing table structure of a Kademlia-
based DHT protocol. According to this definition, the routing table structure imple-
mented in our simulator can be denoted as D(1,1,8) (i.e., b = 1, r = 1, k = 8),
which is consistent with the basic Kademlia design. Correspondingly, the average
bits improved per lookup step in our simulated system is ∆b = 4.414. To reduce the
computation time, we set m to be 16 instead of 160 which is the default setting in
Kademlia protocol. Experiments on comparing the performance of index poisoning
defense with different values of m (Fig. 8.5(a)(c)) show that the value of m does not
matter.

We consider two different sizes of such botnets with N=10000, and N=20000,
respectively. The parameters we change are Nquery, the number of bots who queries
for commands and Nindex, the number of bots whose indices have been poisoned.
The node IDs of these Nindex poisoned nodes share at least the first c = 3 bits with
a given command related key. In each simulation run, every bot in the set of Nquery

query bots looks for the command once; and we calculate Psuccess based on how
many of them actually obtain the real command. To derive the average value of
Psuccess, we conducted at least 20 simulation runs for each botnet configuration.

4 Please refer to the paper [58] for the detailed formulas to compute ∆b given the routing table
structure D(b,r,k).

8 Analysis of Peer-to-Peer Botnet Attacks and Defenses 259

100 200 300 400 500 600

0.4

0.5

0.6

0.7

0.8

0.9

1

of sybil nodes

P
su

cc
es

s

Analytical
N

query
 = 3000

N
query

 = 5000

N
query

 = 7000

(a) Nbot=10000

100 200 300 400 500 600
0.5

0.6

0.7

0.8

0.9

1

of sybil nodes

P
su

cc
es

s

Analytical
N

query
 = 3000

N
query

 = 5000

N
query

 = 7000

(b) Nbot=20000

Fig. 8.6: Comparison between analytical and simulation results of Psuccess for Sybil
defense. The simulated P2P botnet is Kademlia-based with a D(1,1,8) routing table
structure, and c = 3.

Fig. 8.5 shows the experiment results comparing to the analytical result obtained
from our analysis. According to Equation (8.3), Psuccess does not depend on Nquery.
Therefore, only one curve is plotted as the analytical result (the solid blue line in
the figure). As we can see, the analytical result matches with simulation results of
Psuccess with around 10% of errors. Fig. 8.5(c) plots the results from another sim-
ulation with the same settings as Fig. 8.5(a), except that m = 160. According to
our analysis, Equation (8.3), Psuccess does not depend on the value of m. Fig. 8.5(c)
confirms this conclusion.

8.3.3 Sybil Defense

8.3.3.1 Defense Idea

In a normal P2P file-sharing network, “Sybil attack” is referred as the forging of
multiple identities by attackers to subvert the reputation system [17]. The reason of
P2P networks being vulnerable to Sybil attack is that peers can join the network
without authentication or validation of their identities. It is an inherent vulnerability
for most P2P networks and protocols [52, 64].

For the same reason, an index-based P2P botnet that implements a traditional P2P
protocol will also be susceptible to Sybil-based defense as well. With the knowledge
of index keys used for command distribution, defenders can add Sybil nodes (such
as honeypots) into the botnet to re-route or monitor the command related traffic.

260 Ping Wang, Lei Wu, Baber Aslam and Cliff C. Zou

How to set up Sybil nodes depends on the actual P2P system implementation. In
an unstructured P2P network, in order to capture more botnet traffic, defenders will
set up Sybils to be peers with more important roles, e.g. setting up Sybil nodes as
ultrapeers in Gnutella because only ultrapeers are allowed to forward messages. In
a structured P2P network, such as Kad, the node IDs of Sybil nodes should not be
chosen randomly, but be close to a known command related index key, as discussed
in [16, 27]. In this way, command query traffic for the key will go through Sybil
nodes with a high probability according to the Kad’s routing algorithm. We call
such defense “targeted” Sybil defense.

For defenders, the cost for Sybil defense is usually higher than index poisoning
defense. This is because either a physical or a virtual machine is needed to set up
a Sybil node; in other words, more Sybil nodes require more computer resources,
while publishing different records to poison index system can be done by a single
node.

8.3.3.2 Attackers’ Possible Counterattack

Similarly, approaches used for protecting today’s P2P networks from Sybil attack
may also work for botmasters to prevent defenders from infiltrating their P2P botnets
using Sybil nodes. Here we briefly introduce possible counterattack methods.

In Kademlia-based P2P networks, a node ID can be constructed by hashing the
node’s IP address as what Chord does [55], rather than being randomly generated by
a joining node itself like what Kad does [51]. If the network uses a node’s IP address
to generate the node ID, Sybil nodes will not be able to choose any IDs they want.
When a botmaster applies this scheme in his/her P2P botnet, defenders cannot target
a specific key to set up their Sybil nodes. In this case, Sybil nodes are just randomly
added into the botnet, which is referred as “random” Sybil defense. This kind of
Sybil defense is much less effective than targeted Sybil defense as explained in the
next section.

Furthermore, caching technique [39], which was meant to solve “hot spots” prob-
lem, can also be utilized by a P2P botnet to reduce the effectiveness of Sybil defense.
Because the command related index records will be stored not only on bots that were
chosen at the beginning by their botmaster (e.g., unstructured network) or accord-
ing to the protocol (e.g., structured network), but also on bots that may not be easily
identified. Thus even targeted Sybil defense cannot cover all the bots that possess
the command information.

8 Analysis of Peer-to-Peer Botnet Attacks and Defenses 261

8.3.3.3 Analytical Study

Now we analyze Sybil defense on the same type of P2P botnets as in Section 8.3.2.3,
Kademlia-based P2P botnets. The notations have the same meaning unless explicitly
mentioned otherwise.

If node IDs can be chosen randomly, defenders can create special NSybil Sybil
nodes, whose node IDs share at least the first c bits with an index key K, and add
them into the botnet. Once a Sybil node is on the path of a command lookup, it can
re-route the message or return a false command and terminate the search, and hence,
prevent the query bot from obtaining the real command.

As we can see, Sybil defense shares the same defense principle with index poi-
soning defense. They both try to manipulate the command lookup path, as shown
in Fig. 8.3. Sybil defense achieves this manipulation by adding new special nodes
(controlled by defenders) to the network, i.e., node B4 in Fig. 8.3 is a Sybil node
added by defenders, while index poisoning defense achieves this by poisoning the
nodes (bots probably) already in the network.

Following the same analysis procedure as what we used in Section 8.3.2.3, the
probability of a bot successfully getting the real command Psuccess can be calculated
using Equation (8.1), except that x becomes the probability of choosing a Sybil at
each step along the search path within the target zone, which is NSybil/(NSybil +Ntz).
So

Psuccess = (1−
NSybil

NSybil +Ntz
)ltz (8.4)

where ltz = log2(NSybil +Ntz)/∆b, and Ntz = Nbot/2c.
Differing from what used in the index poisoning defense analysis, the size of the

network used in Sybil defense analysis is not the number of the bots, but the total
number of bots and Sybil nodes, i.e., N = Nbot +Nsybil , since Sybil nodes added by
defenders are not real bots.

When a verification mechanism for node ID is applied in the botnet (Section
8.3.3.2) such that defenders can only conduct random Sybil defense, the whole net-
work becomes the target zone, i.e., Ntz = Nbot . Simply substituting Ntz in Equation
(8.4) by Nbot , we can get the following formula to compute Psuccess in this “random”
Sybil defense.

Psuccess = (1−
NSybil

NSybil +Nbot
)log2(NSybil+Nbot)/∆b (8.5)

262 Ping Wang, Lei Wu, Baber Aslam and Cliff C. Zou

0 0.5 1 1.5 2 2.5 3

x 10
4

40

50

60

70

80

90

100

110

Size of the Network

o

f
n

o
d

es
 h

av
in

g
 M

 in
 t

h
ei

r
ro

u
ti

n
g

 t
ab

le
s

m=16, analytical
m=16, sim
m=160, analytical
m=160, sim

(a) Without churn

0 0.5 1 1.5 2 2.5 3

x 10
4

40

50

60

70

80

90

100

110

Size of the Network

o

f
n

o
d

es
 h

av
in

g
 M

 in
 t

h
ei

r
ro

u
ti

n
g

 t
ab

le
s

m=16, analytical
m=16, sim

(b) With churn

Fig. 8.7: Comparison between analytical and simulation results of Nrouting. The sim-
ulated P2P botnet is Kademlia-based with a D(1,1,8) routing table structure.

It is shown in Fig. 8.4(c) that under the same circumstance targeted Sybil defense
greatly outperforms the random one. This is because in the former case, Sybil nodes
with specially chosen IDs have more chances to appear along a search path than
those in the latter case. With limited resources that defenders may use to launch
Sybil defense, if the Sybil nodes are closer to the key K (i.e., larger c), the defense
performance would be better. Furthermore, Sybil defense is more effective if the
network is smaller.

8.3.3.4 Simulation Evaluation

We use simulation experiments as well to verify our analysis. The network settings
and parameter configurations are the same as those used in Section 8.3.2.4.

We assume NSybil Sybil nodes, whose node IDs share at least the first 3 bits (c=3)
with a given key, are added by defenders during the construction of the botnet. When
the botnet is built up, the whole network has N =Nbot +NSybil nodes, and Nquery bots
will start querying for commands. Again, we use 20 simulation runs to obtain the av-
erage simulation results. The simulation results along with the numerical results are
plotted in Fig. 8.6, which shows that our analysis is consistent with the simulations.

8 Analysis of Peer-to-Peer Botnet Attacks and Defenses 263

8.3.4 P2P Botnet Passive Monitoring

Botnet monitoring is an important component in the overall botnet defense. A good
monitoring could collect valuable information about the botnet under observation,
such as the size of the botnet, the unique features of the botnet network traffic, and
the identities of bots, etc.

Monitoring systems can be classified as either active or passive. Active monitor-
ing usually starts with one or a couple of known bots within the network. By actively
contacting these bots, defenders could get to know the identities and information of
more bots, and make contacts with those newly discovered bots in the next round.
The monitoring is done actively and iteratively until no more unknown bots can
be discovered. Passive monitoring is carried out by Sybil nodes put by defenders
in the botnet. Unlike active monitoring, these nodes do not actively contact other
nodes in the network; they only perform the routine tasks like other normal nodes,
such as forwarding traffic and responding to queries. Nodes that have contacted the
monitoring nodes are recorded for further analysis. Passive monitoring has the ad-
vantage of being stealthy, and hence, harder for botmasters to detect and remove
those monitoring nodes from their botnets.

In this section, we provide mathematical analysis of the effectiveness of passive
monitoring. In other words, we would like to figure out how many bots in a P2P
botnet a passive monitoring node can monitor after a certain time period. In this
section we address this problem in a Kademlia-based P2P botnet as well.

8.3.4.1 Analytical Study

Suppose defenders have set up one passive monitoring node in a P2P botnet. We
want to estimate the number of bots that have this monitoring node in their routing
tables, denoted as Nrouting. According to Kademlia protocol, a node would contact
nodes in its routing table from time to time because of query or routing table refresh
activities. Therefore, Nrouting is the lower bound for the number of bots that can be
observed by a passive monitoring node.

In a Kademlia-based P2P botnet with N nodes, we denote each node as Bi, where
i = 1,2, ...,N, and the time of node Bi joining the network is denoted as ti, where
we assume ti < t j, if i < j, and ti 6= t j, if i 6= j, i.e, no two nodes join the network
at the same time. Moreover, when node Bi joins the network, the current size of the

264 Ping Wang, Lei Wu, Baber Aslam and Cliff C. Zou

network is denoted as Ni. Because of the way we index the nodes, we can easily
know that Ni = i.

To compute the number of nodes who have a specific node Bi in their routing
tables, we need to consider two types of nodes: the nodes joining the network before
Bi, referred as Nodesbe f ore, and the nodes joining the network after Bi, referred as
Nodesa f ter.

When node Bi joins the network, there are already Ni−1 = i− 1 nodes in the
network. We can classify these Ni−1 nodes into m groups. The c-th group (c =

0,1,2, · · · ,m− 1) contains the nodes whose IDs share the first c bits with node
Bi’s ID but differ at the (c+1)-th bit. Because node IDs are uniformly distributed,
the number of nodes in the c-th group is Nshare(c) = Ni−1/2c+1. If a node in the
c-th group whose c-th bucket is not full (i.e., Nshare(c) ≤ k), it will add node Bi

in this bucket, otherwise it will not contain node Bi in its routing table. As c in-
creases, the size of c-th group monotonously decreases. When 0 ≤ c < c0 where
c0 = dlogNi−1/k−1e (c0 is obtained by letting Nshare(c) = k), Nshare(c) > k, and
hence, we do not need to consider nodes in these groups. Therefore the number
of Nodesbe f ore who would add node Bi into their routing tables can be calculated as
follows:

Nbe f ore(i) =
m−1

∑
c=c0

Ni−1

2c+1 , (8.6)

where c0 = dlogNi−1/k−1e, which is obtained by letting Nshare = k.
After node Bi has joined the network, for the nodes joining in later on, they

may add node Bi into their routing tables as well. Let’s consider a node B j, i < j,
the probability of these two nodes’ IDs sharing the first c bits but differing at the
(c+1)-th bit is

Pshare(c) =
2m−(c+1)− N j

2c+1

2m−N j
=

1
2c+1 ,c = 0,1, ...,m−1. (8.7)

Suppose node Bi and node B j share the first c bits but differ at the (c+1)-th bit in
their IDs, there are Nshare(c) = N j−1/2c+1 candidates for node B j to pick and add to
its c-th k-bucket, and node Bi is in this candidate set. We can consider two possible
scenarios. When Nshare(c)> k, node B j randomly picks k nodes from the candidate
set to put in its routing table; when Nshare(c) ≤ k, all the nodes in the candidate set
will be chosen. Therefore, the probability of node B j adding node Bi into its routing
table is

8 Analysis of Peer-to-Peer Botnet Attacks and Defenses 265

Padd(c) =

k

Nj−1
2c+1

,
N j−1
2c+1 > k

1, N j−1
2c+1 ≤ k

(8.8)

Let c1 = dlogN j−1/k−1e, i.e., N j−1/2c1+1 = k, we can rewrite Equation (8.8) and
get Equation (8.9).

Padd(c) =

k

Nj−1
2c+1

, c < c1

1, c≥ c1

(8.9)

Therefore, the number of Nodesa f ter that would have node Bi in its routing table
can be calculated as follows:

Na f ter(i) =
m−1

∑
c=0

Pshare(c)×Padd(c) (8.10)

For a specific node Bi, the total number of nodes having it in their routing tables
is

Nrouting(i) = Nbe f ore(i)+Na f ter(i) (8.11)

and the average number of nodes that have a monitoring node in their routing tables
is

Nrouting =
1
N

N

∑
i=1

Nrouting(i) (8.12)

8.3.4.2 Simulation Evaluation

Still we simulate the same Kademlia-based P2P botnet as the one in Section 8.3.2.4
and Section 8.3.3.4. We carry out two types of experiments: P2P botnets without
churn and botnets with churn, where churn refers to the network dynamics caused
by nodes’ joining and leaving activities.

For P2P botnets without churn, we consider once a botnet is constructed, the bot-
net is stable, i.e., no nodes will leave the network and no more nodes will join the
network as well. Nrouting, the average number of nodes which have a given moni-

266 Ping Wang, Lei Wu, Baber Aslam and Cliff C. Zou

toring node in their routing tables for different scales of networks is shown in Fig.
8.7(a). We can see that our analysis precisely estimates Nrouting.

However, in the real world, the churn does exist in P2P botnets. To make our
experiment more realistic, we introduce the churn events in our simulations. In our
simulated P2P network, node joining and node leaving events will happen, and we
assume the time interval between two churn events tchurn follows a truncated normal
distribution (i.e., tchurn ∼ N(µ,σ2) and tchurn > 0). In order not to favor any one
of the node’s joining and node’s leaving, when a churn event happens, we set the
probability of it being a node’s joining Pin and of it being a node’s leaving Pout to be
the same, i.e., they are both 50%.

Fig. 8.7(b) shows our simulation results when considering churn. In our experi-
ments, all simulations run for the same amount of time (30,000 unit time) and tchurn

follows the same distribution (µ = 15 and σ = µ/3). As a result, in each simula-
tion, there are around 2000 node joining/leaving events. If the size of the network is
small, only a small fraction of original bot nodes (e.g., the first N nodes) still exist
in the network when the simulation ends. But in a relatively large network, a large
fraction of original nodes still exist in the network. For example, when N=200, there
are around 4%-5% of the first 200 nodes still in the network at the end of the simu-
lation; while when N=30,000, 96% of the original 30,000 nodes remain in the net-
work. From another perspective, we can view this phenomenon as the illustration of
monitoring performance under different churn intensities. Since in our experiments,
we cover the sizes of network ranging from 200 to 30,000, we have considered the
monitoring performance under different churn intensities. As what is shown in Fig.
8.7(b), our analysis can still well evaluate Nrouting even with churn.

8.3.5 Others Countermeasures

In the following, we present several general ideas to defend against P2P botnets.

8.3.5.1 Detection

Being able to detect bot infection can stop a new-born botnet in its infant stage.
Signature-based malware detection is effective and still widely used. But anti-
signature techniques, such as polymorphic technique [31], make it possible for mal-

8 Analysis of Peer-to-Peer Botnet Attacks and Defenses 267

ware to evade such detection systems. Therefore, instead of doing static analysis,
defenders start considering dynamic information for detection. For example, the
system proposed by Gu et al. [21] is based on dynamic pattern matching.

Anomaly detection is another direction, since bots usually exhibit different be-
haviors from legitimate P2P users, such as sending queries periodically, always
querying for the same content, or repeatedly querying but never downloading.

In addition, distributed detection is another approach, such as the self-defense
infrastructure presented in [69], and two approaches against ultra-fast topological
worms in [67].

8.3.5.2 Monitoring

Monitoring botnets help people better understand their motivations, working pat-
terns, evolution of designs, etc. There are two effective ways to conduct P2P botnet
monitoring.

For parasite and leeching P2P botnets, we can choose legitimate nodes in the host
P2P networks as sensors for botnet monitoring. Usually sensors are peers that play
important roles in the network communication, such as ultrapeers in Gnutella net-
works, such that more information can be collected. In DHT-based P2P networks,
the search path of a specific key is relatively fixed, even if the search starts at dif-
ferent nodes. So the sensor selection depends on the monitoring targets and routing
algorithm implemented in the system.

Honeypot techniques [49] are widely used for botnet monitoring. The way to set
up honeypots in a P2P botnet is similar to choosing sensors. The difference is that
honeypots are hosts added to the network on purpose by defenders, while sensors
are chosen from the nodes who are already in the network.

8.3.5.3 Mitigation

The ultimate purpose of studying botnets is to shut them down. We can either 1)
remove discovered bots, or 2) shut down C&C channels of botnets.

A botnet that relies on bootstrapping for construction is vulnerable during its
early stage. Isolating or shutting down bootstrap servers or the bots in the initial
list that are hard-coded in bot code can effectively prevent a new-born botnet from
growing into a real threat.

268 Ping Wang, Lei Wu, Baber Aslam and Cliff C. Zou

P2P botnets can also be shut down or partially disabled by removing bot mem-
bers. There are two modes of bot removal: random and targeted. The former means
disinfecting the host whenever it is identified as a bot. The latter means removing
critical bots, such as the ones that are important for C&C communication, when
we have the knowledge of the topology or C&C architecture of a P2P botnet. Two
metrics to evaluate the effectiveness of targeted removal were proposed in [63].

Shutting down detected bots is slow in disabling a botnet and sometimes im-
possible to do (e.g., you have no control of infected machines abroad). So a more
effective and feasible way is to interrupt botnet C&C communication such that bots
cannot receive orders from their botmaster. This approach has been carried out well
for centralized botnets through shutting down the central C&C sites, but is believed
to be more difficult to do for P2P botnets.

However, we find that this general understanding of “P2P botnet is much more

robust against defense” is misleading. In fact, index-based P2P botnets are as vulner-
able as centralized botnets, if the counter defense methods we presented in Section
8.3.2.2 and 8.3.3.2 are not implemented. Index poisoning defense (Section 8.3.2)
and Sybil defense (Section 8.3.3) can be quite effective to fight against such bot-
nets.

8.3.6 Discussion

It is worthy to point out that the search process we discussed in Section 8.3.2.3 and
Section 8.3.3.3 can be performed in two different manners – iterative and recur-
sive. Let us use the scenario presented in Fig. 8.3 to explain the difference between
these two search modes: the iterative search route would be A→ B1→ A→ B2→
A→ B3 → A→ B4 → A→ B5 → A→ D, while the recursive search route would
be A→ B1 → B2 → B3 → B4 → B5 → D→ B5 → B4 → B3 → B2 → B1 → A. A
P2P protocol could use either one of them. For instance, Kademlia employs the
iterative search algorithm, and the Nugache P2P botnet has implemented the re-
cursive routing. Although the routes are different, our analysis applies to both of
the search algorithms. This is because, in our analysis, what we care about is the
number of distinct nodes that a search message would go through besides node A

and node D within a target zone; this number depends on the length of the path
A→ B1 → B2 → B3 → B4 → B5 → D, and in both search cases this length is the
same.

8 Analysis of Peer-to-Peer Botnet Attacks and Defenses 269

In addition, as we mentioned before, the ideas of index poisoning and Sybil were
first introduced in legitimate P2P networks, and passive monitoring can also be de-
ployed in current P2P file sharing networks. When P2P botnets use the same P2P
protocols, these techniques can be leveraged to fight against these botnets as well.
Therefore, our analysis of these three techniques is applicable to not only P2P bot-
nets, but also to legitimate P2P systems. Moreover, in our analysis, we mainly talked
about P2P botnets utilizing Kademlia for command and control; however, index poi-
soning defense and Sybil defense techniques are also valid for P2P botnets that rely
on P2P networks for other communication, such as Storm botnet, which utilizes a
P2P network to help bots join its hierarchical multi-tier command and control net-
work. Therefore, our analysis is valid for general P2P botnets, no matter whether
they use P2P networks for command dissemination, or for other communications.

8.4 Related Work

P2P botnets, as a new form of botnet, have appeared in the last few years and ob-
tained people’s attention. In [19] Grizzard et al., conducted a case study on Tro-
jan.Peacomm botnet. Later on, Holz et al., adapted tracking technique used to mit-
igate IRC-based botnets and extended it to analyze Storm worm botnets [27]. Tro-
jan.Peacomm botnet and Stormnet are two typical P2P botnets. Although bots in
these two botnets are infected by two different malware, Trojan.Peacomm and Storm
worm respectively, both of their C&C mechanisms are based on Kademlia [39]. And
a botnet protocol which is also based on Kademlia was proposed by Starnberger et
al. [50]. Moreover, to be well prepared for the future, there are some other botnets
whose architecture is similar to P2P architecture, such as an advanced hybrid P2P
botnet [63], super botnet [61] and the Loosely Coupled P2P botnet (lcbot) [11].
Ping et al. [62] studied P2P botnets along multiple dimensions including botnet
construction, command and control mechanisms, performance measurements, and
mitigation approaches. Rossow et al. [45] used formal graph model to capture the
intrinsic properties and fundamental vulnerabilities of P2P botnets; however, this
work does not provide mathematical modeling of the mitigation techniques against
P2P botnets. Han et al. [25] presented a matrix model for P2P botnets and provided
formulas of five performance metrics including connection degree, connection de-
gree ratio, connection ratio, exposure ratio and average hop count. Singh et al. [48]

270 Ping Wang, Lei Wu, Baber Aslam and Cliff C. Zou

Built a distributed intrusion detection framework that can be used to detect P2P
Botnet by machine learning approach.

There have been some systematic studies on general botnets. Barfor and Yeg-
neswaran [7] studied and compared four widely-used IRC-based botnets from seven
aspects: botnet control mechanisms, host control mechanisms, propagation mecha-
nisms, exploits, delivery mechanisms, obfuscation and deception mechanisms. Con-
sidering aspects such as attacking behavior, C&C model, rally mechanism, commu-
nication protocol, evasion technique and other observable activities, Trend Micro
[40] proposed a taxonomy of botnet threads. In [13] Dagon et al., also presented a
taxonomy for botnets but from a different perspective. Their taxonomy focuses on
the botnet structure and utility. And in 2008, a botnet research survey [70] done by
Zhu et al., classified research work on botnets into three categories: bot anatomy,
wide-area measurement study and botnet modeling and future botnet prediction.
Bailey et al. presented another survey, which provided an overview of current bot-
nets, discussed how different types of networks can affect the effectiveness of botnet
detection mechanism, and talked about various detection techniques that have been
proposed [6]. What differs our work from theirs is that we focused on newly ap-
peared P2P botnets, and tried to understand P2P botnets along four dimensions:
P2P botnet construction, C&C mechanisms, measurements and defenses.

Modeling P2P botnet propagation is one dimension we did not discuss in this
chapter. Król [34] presented theoretical study of malware propagation in various
complex networks. In the research work [46], Ruitenbeek and Sanders presented a
stochastic model of the creation of a P2P botnet. In [14], Dagon et al., proposed
a diurnal propagation model for computer online/offline behaviors and showed that
regional bias in infection will affect the overall growth of the botnet. [44] formulated
an analytical model that emulates the mechanics of a decentralized Gnutella type of
peer network and studied the spread of malware on such networks. Both [68] and
[59] presented an analytical propagation model of P2P worms, but the former targets
topological scan based P2P worms, while the latter targets passive scan based P2P
worms.

Many researchers have investigated on detection and mitigation of traditional
centralized C&C botnets. Wurzinger et al. presented an approach to automatically
generate models for botnet detection [66]. Their models are generated based on the
fact that every bot responds to the botmaster in a specific way. Researchers try to
distinguish bot behavior from human behavior, in order to detect botnets. For exam-
ple, in [38], malicious channels created by bots are differentiated from normal traffic

8 Analysis of Peer-to-Peer Botnet Attacks and Defenses 271

generated by human beings; and in [22], hypothesis testing is used to separate bot-
net C&C dialogs from human-human conversations. Pattern recognition approaches
and clustering algorithms are widely used for botnet detection. Chang and Daniels
proposed a node behavior profiling approach to capture the node behavior clusters in
a network for botnet C&C communication detection [10]. And a Bayesian approach
for detecting bots based on the similarity of their DNS traffic to that of known bots
is presented in [60]. In addition, Gu et al., proposed three botnet detection systems:
BotMiner [20] – a botnet detection framework by performing cross cluster correla-
tion on captured communication and malicious traffic, BotSniffer [23] – a system
that can identify botnet C&C channels in a local area network based on the observa-
tion that bots within the same botnet will demonstrate spatial-temporal correlation
and similarity and BotHunter [21] – a bot detection system using IDS-Driven Dialog
Correlation according to defined bot infection dialog model.

Furthermore, botnet infiltration and monitoring is also an very active topic in bot-
net research community. In [29], Kang et al., presented a passive P2P monitor, which
can enumerate the infected hosts regardless whether or not they are behind a firewall
or NAT, and conducted an empirical study on Storm botnet. Li et al. [35], moni-
tored botnets probing activities and addressed the problems like botnet’s scanning
strategies and attack target selection policies. In [30], Kanich et al., pointed out a
number of challenges that arise in using crawling to measure the size, topology, and
dynamism of distributed botnets. People infiltrate specific botnets, such as MegaD
botnet [12], Torpig bot [56] and [41], in order to understand their architectures, com-
munication protocols, behaviors, etc. In addition, botnet infiltration and monitoring
can be very helpful for fighting against malicious activities. In [32, 33, 42], the data
collected through infiltrating and monitoring botnets are used for spam detection
and analysis.

Some researchers have studied theoretical models of complex network in terms of
network robustness against general network failure or malicious attacks. Schneider
et al. [47] presented mathematical analysis of complex networks and introduced a
new measure for robustness. They have demonstrated that electricity grid and Inter-
net can significantly improve their robustness against malicious attacks with small
changes in the network structure. Hayes et al. [26] presented a new algorithm to
improve self-healing in peer-to-peer networks against node insertion or deletion at-
tacks. Louzada et al. [37] presented a new rewiring method to modify a network
topology improving its robustness, based on the evolution of the network largest
component during a sequence of targeted. attacks.

272 Ping Wang, Lei Wu, Baber Aslam and Cliff C. Zou

8.5 Conclusion

P2P botnets, as a new advanced form of botnets, have attracted attentions from both
botmasters and security defenders. In this chapter, we first presented a systemat-
ical study on P2P botnets. We discussed in detail each stage in the life cycle of
P2P botnets, and classified P2P botnets into three categories: parasite, leeching and
bot-only P2P botnets. Then among possible directions for P2P botnet defense, we
focused on two mitigation techniques against P2P botnets – index poisoning de-
fense and Sybil defense, and one monitoring technique – passive monitoring, and
analyzed their effectiveness in terms of several factors, such as the size of a botnet,
the settings of the communication protocol, the range of the defense deployment.
Simulation-based experiments have shown that our analysis is accurate. This work
provides guidance for security professionals on how to carry out these three defense
techniques to achieve better performance. In the mean time, we discussed how at-
tackers might react to avoid or reduce the effectiveness of index poisoning defense
and Sybil defense techniques, which help people get prepared for the future in case
such methods are deployed by attackers. Furthermore, based on our study, we ob-
tained a counterintuitive finding: because of the similar information dissemination
structure, P2P botnets that rely on index for command or other critical information
dissemination may be as easy (or as hard) to be shut down as the centralized botnets.

References

[1] Http://www.symantec.com/security response/index.jsp
[2] Http://en.wikipedia.org/wiki/Kad network
[3] emule. Http://www.emule-project.net/
[4] SdDrop. Http://www.viruslist.com/en/viruses/encyclopedia?virusid=24282
[5] Andriesse, D., Rossow, C., Stone-Gross, B., Plohmann, D., Bos, H.: Highly

resilient peer-to-peer botnets are here: An analysis of Gameover Zeus . In:
Proc. of 8th International Conference on Malicious and Unwanted Software:
”The Americas” (MALWARE) (2013)

[6] Bailey, M., Cooke, E., Jahanian, F., Xu, Y., Karir, M.: A Survey of Botnet
Technology and Defenses. In: Proc. of the 2009 Cybersecurity Applications
& Technology Conference for Homeland Security (2009)

8 Analysis of Peer-to-Peer Botnet Attacks and Defenses 273

[7] Barford, P., Yegneswaran, V.: An Inside Look at Botnets. In Series: Advances
in Information Security (2006)

[8] Baumgart, I., Heep, B., Krause, S.: OverSim: A Flexible Overlay Network
Simulation Framework. In: Proc. of the 10th IEEE Global Internet Symposium
(GI ’07) in conjunction with IEEE INFOCOM ’07, Anchorage, AK (2007)

[9] Bhaduri, K., Das, K., Kargupta, H.: Peer-to-peer data mining, privacy issues,
and games 4476, 1–10 (2007)

[10] Chang, S., Daniels, T.E.: P2P botnet detection using behavior clustering &
statistical tests. In: Proc. of the 2nd ACM workshop on Security and artificial
intelligence (AISec ’09), Chicago (2009)

[11] Chang, S., Zhang, L., Guan, Y., Daniels, T.E.: A Framework for P2P Botnets.
In: Proc. of the 2009 International Conference on Communications and Mobile
Computing (CMC ’09), Kunming, Yunnan, China (2009)

[12] Chox, C.Y., Caballeroyx, J., Grierx, C., Paxsonzx, V., Song, D.: Insights from
the Inside: A View of Botnet Management from Infiltration. In: Proc. of the
3rd USENIX Workshop on Large-Scale Exploits and Emergent Threats, San
Jose, CA (2010)

[13] Dagon, D., Gu, G., Lee, C., Lee, W.: A Taxonomy of Botnet Structures. In:
Proc. of the 23rd Annual Computer Security Applications Conference (AC-
SAC’07) (2007)

[14] Dagon, D., Zou, C.C., Lee, W.: Modeling Botnet Propagation Using Time
Zones. In: Proc. of the 13th Annual Network and Distributed System Security
Symposium (NDSS’06) (2006)

[15] Damfling, H.: Gnutella web caching system.
http://www.gnucleus.org/gwebcache/specs.html

[16] Davis, C.R., Fernandez, J.M., Neville, S., McHugh, J.: Sybil Attacks as a mit-
igation strategy against the Storm botnet. In: Proc. of the 3rd International
Conference on Malicious and Unwanted Software (Malware’08) (2008)

[17] Douceur, J.R.: The Sybil Attack. In: Proc. of the 1st International Workshop
on Peer-to-Peer Systems (2002)

[18] Enright, B., Voelker, G., Savage, S., Kanich, C., Levchenko, K.: Storm: When
Researchers Collide. In: USENIX ;login: 33(4) (2008)

[19] Grizzard, J.B., Sharma, V., Nunnery, C., Kang, B.B., Dagon, D.: Peer-to-Peer
Botnets: Overview and Case Study. In: Proc. of the 1st USENIX Workshop on
Hot Topics in Understanding Botnets (HotBots ’07), Cambridge, MA (2007)

274 Ping Wang, Lei Wu, Baber Aslam and Cliff C. Zou

[20] Gu, G., Perdisci, R., Zhang, J., Lee, W.: BotMiner: Clustering Analysis of
Network Traffic for Protocol- and Structure-Independent Botnet Detection. In:
Proc. of the 17th USENIX Security Symposium (Security’08) (2008)

[21] Gu, G., Porras, P., Yegneswaran, V., Fong, M., Lee, W.: BotHunter: Detecting
Malware Infection Through IDS-Driven Dialog Correlation. In: Proc. of the
16th USENIX Security Symposium (Security’07) (2007)

[22] Gu, G., Yegneswaran, V., Porras, P., Stoll, J., Lee, W.: Active Botnet Probing
to Identify Obscure Command and Control Channels. In: Proc. of the Annual
Computer Security Applications Conference (ACSAC’09), Honolulu, Hawaii
(2009)

[23] Gu, G., Zhang, J., Lee, W.: BotSniffer: Detecting Botnet Command and Con-
trol Channels in Network Traffic. In: Proc. of the 15th Annual Network and
Distributed System Security Symposium (NDSS’08) (2008)

[24] Ha, D.T., Yan, G., Eidenbenz, S., Ngo, H.Q.: On the Effectiveness of Struc-
tural Detection and Defense Against P2P-based Botnets. In: Proc. of the 39th
Annual IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN ’09), Estoril, Lisbon, Portugal (2009)

[25] Han, Q., Yu, W., Zhang, Y., Zhao, Z.: Modeling and evaluating of typical ad-
vanced peer-to-peer botnet. Performance Evaluation 72(0), 1 – 15 (2014).
DOI http://dx.doi.org/10.1016/j.peva.2013.11.001

[26] Hayes, T.P., Saia, J., Trehan, A.: The forgiving graph: a distributed data struc-
ture for low stretch under adversarial attack. Distrib Comput 25, 261 – 278
(2012)

[27] Holz, T., Steiner, M., Dahl, F., Biersack, E.W., Freiling, F.: Measurements
and Mitigation of Peer-to-Peer-based Botnets: A Case Study on Storm Worm.
In: Proc. of the 1st Usenix Workshop on Large-scale Exploits and Emergent
Threats (LEET), San Francisco, CA, USA (2008)

[28] Jelasity, M., Bilicki, V.: Towards automated detection of peer-to-peer botnets:
On the limits of local approaches. In: Proc. of the 2nd USENIX Workshop on
Large-Scale Exploits and Emergent Threats (LEET’09), Boston, MA (2009)

[29] Kang, B.B., Chan-Tin, E., Lee, C.P., Tyra, J., Kang, H.J., Nunnery, C., Wadler,
Z., Sinclair, G., Hopper, N., Dagon, D., Kim, Y.: Towards Complete Node Enu-
meration in a Peer-to-Peer Botnet. In: Proc. of the 2009 ACM Symposium on
Information, Computer and Communications Security (ASIACCS), Sydney,
Australia (2009)

8 Analysis of Peer-to-Peer Botnet Attacks and Defenses 275

[30] Kanich, C., Levchenko, K., Enright, B., Voelker, G.M., Savage, S.: The
Heisenbot Uncertainty Problem: Challenges in Separating Bots from Chaff.
In: Proc. of the USENIX Workshop on Large-Scale Exploits and Emergent
Threats, San Franciso, CA (2008)

[31] Kolesnikov, O., Dagon, D., Lee, W.: Advanced Polymorphic Worms: Evading
IDS by Blending in with Normal Traffic. Tech. rep., Georgia Tech (2004-2005)

[32] Kreibich, C., Kanich, C., Levchenko, K., Enright, B., Voelker, G.M., Paxson,
V., Savage, S.: On the Spam Campaign Trail. In: Proc. of the USENIX Work-
shop on Large-Scale Exploits and Emergent Threats, San Franciso, CA (2008)

[33] Kreibich, C., Kanich, C., Levchenko, K., Enright, B., Voelker, G.M., Paxson,
V., Savage, S.: Spamcraft: An Inside Look at Spam Campaign Orchestration.
In: Proc. of the USENIX Workshop on Large-Scale Exploits and Emergent
Threats, Boston, MA (2009)

[34] Król, D.: Propagation phenomenon in complex networks: Theory and practice.
New Generation Computing 32(3-4), 187–192 (2014)

[35] Li, Z., Goyal, A., Chen, Y., Paxson, V.: Automating Analysis of Large-Scale
Botnet Probing Events. In: Proc. of ACM Symposium on Information, Com-
puter and Communications Security (2009)

[36] Liang, J., Naoumov, N., Ross, K.W.: The Index Poisoning Attack in P2P File
Sharing Systems. In: Proc. of the Infocom, Barcelona (2006)

[37] Louzada, V.H.P., Daolio, F., Herrmann, H.J., Tomassini, M.: Smart rewiring
for network robustness. IMA Journal of Computer Networks 1, 150C159
(2013)

[38] Lu, W., Tavallaee, M., Ghorbani, A.A.: Automatic discovery of botnet com-
munities on large-scale communication networks. In: Proc. of the 2009 ACM
Symposium on Information, Computer and Communications Security (ASI-
ACCS), Sydney, Australia (2009)

[39] Maymounkov, P., Mazieres, D.: Kademlia: A peer-to-peer information system
based on the xor metric. In: Proc. of the 1st International Workshop on Peer-
to-Peer Systems, pp. 53–65 (2002)

[40] Micro, T.: Taxonomy of Botnet Threats (2006)
[41] Nunnery, C., Sinclair, G., Kang, B.B.: Tumbling Down the Rabbit Hole: Ex-

ploring the Idiosyncrasies of Botmaster Systems in a Multi-Tier Botnet Infras-
tructure. In: Proc. of the 3rd USENIX Workshop on Large-Scale Exploits and
Emergent Threats, San Jose, CA (2010)

276 Ping Wang, Lei Wu, Baber Aslam and Cliff C. Zou

[42] Pitsillidis, A., Levchenko, K., Kreibich, C., Kanich, C., Voelker, G.M., Paxson,
V., Weaver, N., Savage, S.: Botnet Judo: Fighting Spam with Itself. In: Proc.
of the Network and Diestributed System Security Symposium (NDSS), San
Diego, CA (2010)

[43] Porras, P., Saidi, H., Yegneswaran, V.: A Multi-perspective Analysis of the
Storm (Peacomm) Worm. Tech. rep., SRI (2007)

[44] Ramachandran, K., Sikdar, B.: Modeling malware propagation in Gnutella
type peer-to-peer networks. In: Proc. of the 20th International Parallel and Dis-
tributed Processing Symposium (IPDPS ’06), Rhodes Island, Greece (2006)

[45] Rossow, C., Andriesse, D., Werner, T., Stone-Gross, B., Plohmann, D., Diet-
rich, C.J., Bos, H.: SoK: P2PWNEDł Modeling and Evaluating the Resilience
of Peer-to-Peer Botnets. In: Proc. of 2013 IEEE Symposium on Security and
Privacy (2013)

[46] Ruitenbeek, E.V., Sanders, W.H.: Modeling Peer-to-Peer Botnets. In: Proc.
of the 5th International Conference on Quantitative Evaluation of Systems
(QEST ’08), St Malo, France (2008)

[47] Schneider, C.M., Moreira, A.A., Andrade, J.S., Havlin, S., Herrmann, H.J.:
Mitigation of malicious attacks on networks. In: Proc Nat Acad Sci USA 108,
p. 3838C3841 (2011)

[48] Singh, K., Guntuku, S.C., Thakur, A., Hota, C.: Big data analytics framework
for peer-to-peer botnet detection using random forests. Information Sciences
(0) (2014). DOI http://dx.doi.org/10.1016/j.ins.2014.03.066

[49] Spitzner, L.: Honeypots (2003). Http://www.tracking-
hackers.com/papers/honeypots.html

[50] Starnberger, G., Kruegel, C., Kirda, E.: Overbot - A botnet protocol based
on Kademlia. In: Proc. of the 4th International Conference on Security and
Privacy in Communication Networks (SecureComm) (2008)

[51] Steiner, M., En-Najjary, T., Biersack, E.W.: A Global View of KAD. In: Proc.
of the ACM Internet Measurement Conf. (IMC), San Diego, USA (2007)

[52] Steiner, M., En-Najjary, T., Biersack, E.W.: Exploiting KAD: possible uses
and misuses 37(5), 65–70 (2007)

[53] Stewart, J.: Inside the Storm: Protocols and Encryption of the Storm Botnet
(2008).
http://www.blackhat.com/presentations/bh-usa-08/Stewart/BH US 08 Stew-
art Protocols of the Storm.pdf

8 Analysis of Peer-to-Peer Botnet Attacks and Defenses 277

[54] Stock, B., Goel, J., Engelberth, M., Freiling, F.C.: Walowdac - Analysis of
a Peer-to-Peer Botnet. In: Proc. of the European Conference on Computer
Network Defense (EC2ND ’09) (2009)

[55] Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A
Scalable Peer-to-peer Lookup Service for Internet Applications, AC. In: Proc.
of the ACM SIGCOMM, San Deigo, CA (2001)

[56] Stone-Gross, B., Cova, M., Cavallaro, L., Gilbert, B., Szydlowski, M., Kem-
merer, R., Kruegel, C., Vigna, G.: Your Botnet is My Botnet: Analysis of a
Botnet Takeover. In: Proc. of the ACM CCS, Chicago, IL (2010)

[57] Stover, S., Dittrich, D., Hernandez, J., Dietrich, S.: Analysis of the Storm and
Nugache Trojans: P2P is here. USENIX ;login: 32(6), 18–27 (2007)

[58] Stutzbach, D., Rejaie, R.: Improving Lookup Performance over a Widely-
Deployed DHT. In: Proc. of the IEEE INFOCOM, Barcelona, Spain (2006)

[59] Thommes, R., Coates, M.: Epidemiological Modelling of Peer-to-Peer Viruses
and Pollution. In: Proc. of the IEEE Infocom, Barcelona, Spain (2006)

[60] Villamarı́n-Salomón, R., Brustoloni, J.C.: Bayesian bot detection based on
DNS traffic similarity. In: Proc. of the the 24th Annual ACM Symposium
on Applied Computing (SAC ’09), Honolulu, Hawaii (2009)

[61] Vogt, R., Aycock, J., Jacobson, M.: Army of Botnets. In: Proc. of the 2007
Network and Distributed System Security Symposium (NDSS) (2007)

[62] Wang, P., Aslam, B., Zou, C.C.: Peer-to-peer botnets. In: P. Stavroulakis,
M. Stamp (eds.) Handbook of Information and Communication Security.
Springer (2010)

[63] Wang, P., Sparks, S., Zou, C.C.: An Advanced Hybrid Peer-to-Peer Botnet. In:
Proc. of the 1st USENIX Workshop on Hot Topics in Understanding Botnets
(HotBots ’07), Cambridge, MA (2007)

[64] Wang, P., Tyra, J., Chan-Tin, E., Malchow, T., Kune, D.F., Hopper, N., Kim,
Y.: Attacking the Kad Network. In: Proc. of the 4th international conference on
Security and privacy in communication netowrks (SecureComm ’08) (2008)

[65] Wang, P., Wu, L., Aslam, B., Zou, C.C.: A Systematic Study on Peer-to-Peer
Botnets. In: Proc. of International Conference on Computer Communications
and Networks (ICCCN) (2009)

[66] Wurzinger, P., Bilge, L., Holz, T., Goebel, J., Kruegel, C., Kirda, E.: Automat-
ically Generating Models for Botnet Detection. In: Proc. of the 14th Euro-
pean Symposium on Research in Computer Security (ESORICS), Saint Malo,
France (2009)

278 Ping Wang, Lei Wu, Baber Aslam and Cliff C. Zou

[67] Xie, L., Zhu, S.: A Feasibility Study on Defending Against Ultra-Fast Topo-
logical Worms. In: Proc. of The 7th IEEE International Conference on Peer-
to-Peer Computing (P2P’07), Galway, Ireland (2007)

[68] Yu, W., Boyer, P.C., Chellappan, S., Xuan, D.: Peer-to-Peer System-based Ac-
tive Worm Attacks: Modeling and Analysis. In: Proc. of the IEEE International
Conference on Communications (ICC) (2005)

[69] Zhou, L., Zhang, L., McSherry, F., Immorlica, N., Costa, M., Chien, S.: A
First Look at Peer-to-Peer Worms: Threats and Defenses. In: Proc. of the 4th
International Workshop on Peer-To-Peer Systems (IPTPS ’05) (2005)

[70] Zhu, Z., Lu, G., Chen, Y., Fu, Z.J., Roberts, P., Han, K.: Botnet Research Sur-
vey. In: Proc. of the 32nd Annual IEEE International Computer Software and
Applications (COMPSAC ’08) (2008)

