
Efficient Off-Chain Transaction to Avoid
Inaccessible Coins in Cryptocurrencies

Hossein Rezaeighaleh
Department of Computer Science

University of Central Florida
Orlando, USA

rezaei@knights.ucf.edu

Cliff C. Zou
Department of Computer Science

University of Central Florida
Orlando, USA

czou@cs.ucf.edu

Abstract— Bitcoin and other altcoin cryptocurrencies
use the Elliptic-Curve cryptography to control the
ownership of coins. A user has one or more private keys to
sign a transaction and send coins to others. The user locks
her private keys with a password and stores them on a piece
of software or a hardware wallet to protect them. A
challenge in cryptocurrencies is losing access to private
keys by its user, resulting in inaccessible coins. These coins
are assigned to addresses which access to their private keys
is impossible. Today, about 20 percent of all possible
bitcoins are inaccessible and lost forever. A promising
solution is the off-chain recovery transaction that
aggregates all available coins to send them to an address
when the private key is not accessible. Unfortunately, this
recovery transaction must be regenerated after all sends
and receives, and it is time-consuming to generate on
hardware wallets. In this paper, we propose a new
mechanism called lean recovery transaction to tackle this
problem. We make a change in wallet key management to
generate the recovery transaction as less frequently as
possible. In our design, the wallet generates a lean recovery
transaction only when needed and provides better
performance, especially for micropayment. We evaluate
the regular recovery transaction on two real hardware
wallets and implement our proposed mechanism on a
hardware wallet. We achieve a %40 percentage of less
processing time for generating payment transactions with
few numbers of inputs. The performance difference
becomes even more significant, with a larger number of
inputs.

Keywords—blockchain, cryptocurrency, off-chain,
Bitcoin.

I. INTRODUCTION

Today, a user can perform various electronic
commerce transactions like paying a bill, booking a hotel
or flight, purchasing online products, and paying taxes
with cryptocurrency. While cryptocurrencies become
more usable for average users, the inaccessible coins
issue arises as a challenging problem in cryptocurrencies.
Since, as a design paradigm, only the user's private key
can send the coins from its associated address, if the user
cannot access her private key, she loses her coins. The
user may forget her password, or in a worst-case, she may
die, and her coins will be lost forever. It happens in the
cryptocurrency ecosystem many times, and as several

reports like [1] shows, about 21 percent of all possible
bitcoins are out of circulation and maybe are lost forever.

Furthermore, in several cases where the owner of the
key dies or pretends to die to steal the coins from others.
These persons control other users' coins, like investors in
the position of an online cryptocurrency exchange
president [2]. Since there is no clear technical solution to
recover the lost coins, the investors lost their money.

There are limited choices for users to avoid
inaccessible coins, such as creating a backup for another
person or using a multi-signature wallet. These solutions
not only are inconvenient but also put the user at risk.
Recently, authors of [3] suggested generating an off-
chain recovery transaction and publishing such a
transaction when the coins are inaccessible. The wallet
must frequently regenerate this transaction because any
change in inputs by a sending transaction invalidates the
previously generated recovery transaction. Also, any
receiving transaction conveys new coins that should be
added to the recovery transaction.

This paper investigates this off-chain recovery
transaction and evaluates its performance in real
conditions with actual hardware wallets as a secure option
for cryptocurrency users. We demonstrate that generating
such a recovery transaction consumes a significant
amount of time on hardware wallets or other resource-
constraint wallets. Hence, it is not a practical solution in
real life. We propose a new key management schema to
separate frequent micropayments from other transactions
and keep the recovery transaction updated with
regenerating as less frequently as possible to resolve this
performance challenge. Our proposed schema prevents
inaccessible coins in most cases and provides better
performance compared to the previous method. This
paper offers the following research contributions:

Evaluating off-chain recovery transaction in real
hardware wallets
Proposing a new key management schema to
minimize the frequency of regenerating lean recovery
transactions
Implementation of proposed lean recovery transaction
on a hardware wallet as a proof-of-concept

1903

2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom)

DOI 10.1109/TrustCom50675.2020.00260
/20/$31.00 ©2020 IEEE978-1-6654-0392-4

Authorized licensed use limited to: University of Central Florida. Downloaded on August 31,2021 at 17:00:36 UTC from IEEE Xplore. Restrictions apply.

II. RELATED WORKS

There are a few solutions to protect the wallets from
being inaccessible but do not thoroughly meet the
requirements. We review them here before starting.

A. Wallet Backup
Existing cryptocurrency wallets usually use the paper

backup. The wallet generates a mnemonic word list to
convert the master seed from digital form to physical
form as a backup [4]. The user may either save these
words in a computer file or writes them down on a piece
of paper. In our previous paper [5] we suggest a new
mechanism to back up a wallet on another wallet directly
with the elliptic-curve Diffie-Hellman key agreement.

The backup mechanism is not a suitable solution for
the inaccessible coins challenge. If the user uses a
password for the backup on the paper or another wallet,
the coins are inaccessible when she forgets the password
or dies. On the other hand, if she gives the backup and
password to another person, this person has equal access
and can use the coins anytime without the primary user
acknowledge.

B. Multi-Signature Wallet
Multi-Signature Wallet is another solution [6] where

multiple private keys with a threshold (e.g., two of three)
are used to sign a transaction; if one key (or more key) is
lost, other keys can recover the coins. Some literature like
[7] and [8] advise the users to use multi-signature;
however, it has significant drawbacks. Multi-signature
requires multiple wallets to sign a transaction, which
would cause complexity in the signing procedure. It may
be good enough for corporate use-cases. However, it is
more than challenging for average individuals.

C. Recovery Transaction
Authors of [3] explain a mechanism to recover

inaccessible wallets using an off-chain transaction. Each
time that the wallet sends or receives a coin, the wallet
creates a recovery transaction to gather all available coins
in Unspent Transaction Outputs (UTXO) and saves it on
a file. When the user forgets her wallet password or the
password became inaccessible because of any reason like
death, the wallet retirement mechanism activates with a
policy like no login for more than six months. The wallet
publishes the last recovery transaction and transfers all
coins to a reserved address. Since the recovery
transaction is signed in-advance, there is no need for
private keys.

On the other hand, all received coins in the last six
months, aka the retirement period, are lost because these
new coins are not included in the recovery transaction.
The user can set the retirement period. It is not a timer on
the wallet; it is a value embedded into the recovery
transaction itself. If the wallet or other entity publishes
the recovery transaction on the blockchain, it will not be
effective until the pre-defined time. This mechanism
works for UTXO-based cryptocurrencies like bitcoin, and
the lock time in bitcoin transactions supports this feature.

The recovery transaction that authors of [3] explain is
designed for old-fashion software wallets like Satoshi
Client [9] that runs on a powerful enough personal
computer. However, regenerating a recovery transaction
has a significant performance problem in modern wallets
like mobile wallets that use Trusted Execution
Environment [10] [11] and hardware wallets running on
a microcontroller secure element with limited resources.
This paper proposes a practical off-chain recovery
transaction that avoids inaccessible coins in hardware
wallets with a minimum performance penalty. We call it
the lean recovery transaction.

III. TECHNICAL BACKGROUND

A. Bitcoin Transaction
There are two transaction models in blockchains.

Bitcoin uses the Unspent Transaction Output (UTXO)
model, and Ethereum uses the Account model. In the
UTXO model, a transaction has inputs and outputs. Each
input indicates one previous transaction output and its
amount. The new transaction spends all amounts of the
previous transactions' outputs and moves them into its
outputs. The next transaction does the same.

If an output of a transaction is used as an input on
another transaction, it is called "spent output". If no
transaction uses an output of a transaction, it is called
"unspent output". The blockchain nodes only accept a
transaction that all of its inputs are unspent; otherwise, it
is a double-spending that is not permitted in the
blockchain. Hence, this model is called the Unspent
Transaction Output model. It is similar to cash circulation
in the real world, where the coins move from one person
to another. On the other hand, there is another model
called Account-based. In this model used in Ethereum,
each account has a balance, and each transaction indicates
fund transfer from one account to another, similar to the
real world's bank accounts.

Bitcoin transactions may have several inputs and
outputs; however, they usually follow regular formats.
For example, a payment transaction usually has one input
and two outputs. The input is a UTXO that the payer has
enough coins on it. One of the outputs includes the
payee's address, and another output conveys the payer
change address to receive the remaining coins of the input
after deduction of payee output. On average, 60 percent
of all bitcoin transactions are in this format, with one
input and two outputs [12].

B. Hierarchical Deterministic Wallet
In the blockchain, a sender signs a transaction with

her private key and inserts the receiver's public key into
the transaction output. It decreases privacy since
everyone who has access to the blockchain network can
track a particular user's activities. To avoid tracking, the
user can generate a random key for each transaction.
Therefore, a potential hacker or investigator cannot link
different transactions to gather information about a user.
It is already a best practice in bitcoin and many
cryptocurrencies [7]. However, it causes another

1904

Authorized licensed use limited to: University of Central Florida. Downloaded on August 31,2021 at 17:00:36 UTC from IEEE Xplore. Restrictions apply.

challenge since the user should manage many keys. The
solution is a deterministic pseudorandom algorithm for
key generation. The cryptocurrency community
developed a multi-level deterministic algorithm called
Hierarchical Deterministic Wallet [13]. HD wallet has a
key tree, and each node is derived from its parent. The
tree's root is called 'master private key' and derived from
a random value called 'master seed'. Therefore, with a
given master seed, the wallet builds the entire key tree.
Consequently, the user only needs to keep the master seed
safe and enjoys a brand-new key for each transaction.

BIP-32 is a Bitcoin Improvement Proposal that
defines the Hierarchical Deterministic (HD) Wallet [13].
It explains different algorithms to derive a node from its
parent in the key tree. This document's core is the master
key generation, and two Child Key Derivation (CKD)
functions. The master key generation function generates
the master key using the HMAC-SHA512 on a 128-bit to
a 512-bit random value called the master seed. On the
other hand, BIP-44 defines a comprehensive path for all
cryptocurrencies' key trees on a wallet using only one
master seed [14]. A path in BIP-44 format has the
following levels in BIP-32:

path = m/purpose /coin /account /change/address_index

In this path, m is the master seed, and the purpose is
44 for BIP-44, coin is a predefined value for registered
coins, for example, 0 for bitcoin. An account is a group
of funds that helps the user manage her money, such as
creating a separate key set for a spending account and a
savings account. Change element is 0 for external address
and 1 for internal address. The external address is a
regular address published to others to receive funds. In
contrast, an internal address is "change address" for
receiving remaining funds from the spending transaction
and never published to others. address_index is a
sequential number that starts from 0 to generate multiple
unique addresses.

C. Hardware Wallet
The hardware wallet is a dedicated cryptographic

device to generate and store the secret keys and sign the
transactions. Since a hardware wallet is not a general-
purpose computer, a hacker cannot easily install a
malware program. Furthermore, some secure hardware
wallets have a secure element. It is a tamper-resistant
module to protect the secrets from electrical and physical
attacks such as side-channel attacks and power-analysis.

Hardware wallets usually have a screen and a few
buttons to interact with the user directly; otherwise, they
are vulnerable to Man-In-The-Middle attack [15]. Figure
1 depicts the general components of hardware wallets.
They usually have a main control unit (MCU) that
connects all components and communicates with the host
application via USB, Bluetooth, or NFC.

Figure 1. General hardware wallet components

Since a hardware wallet does not have internet access,
it uses an app on the host like a personal computer or a
smartphone to connect to the blockchain network.
However, critical tasks like storing the keys and signing
a transaction will be done on the hardware wallet. The
overall procedure of signing a transaction on a hardware
wallet is as follows.

Transaction Signing Process on a Hardware Wallet:

1. Host App: Gather information from blockchain nodes
and prepare inputs and outputs.

2. Hardware Wallet: Receive data and display the
receiving addresses, amount, and fee of the
transaction on the embedded screen and get the user
confirmation by pressing an embedded button.

3. Hardware Wallet: Derive required keys, sign the
transaction for each input, and return the result to the
host app.

4. Host App: Publish the signed transaction to the
blockchain nodes.

While the network connection is good, and the host
has enough resources, the time-consuming steps are step
2 and step 3 that run on the hardware wallet. A transaction
with more input UTXOs takes more time on the hardware
wallet for key derivation and digital signature.

IV. EXPERIMENT

This section conducts some experiments to evaluate
the recovery transaction suggested in [3] with real
hardware wallets. We illustrate that the recovery
transaction is a heavy-loaded transaction to generate. We
show that creating a brand-new recovery transaction for
all sendings and receivings has a significant performance
penalty, making it impractical in resource-constraint
cryptocurrency wallets like hardware wallets.

In contrast to payment transactions, recovery
transaction has several inputs and only one output. It
aggregates entire available UTXOs to transfer all coins to
the reserved address. Multiple inputs make the recovery
transaction larger than a typical payment transaction. A
recovery transaction needs several key derivations to
calculate required private keys for all UTXOs and several
ECC signings to generate outputs. Even though a
recovery transaction is not very different from a payment
transaction for traditional software wallets like Satoshi
Client [9] that runs on a computer, it has a significant

1905

Authorized licensed use limited to: University of Central Florida. Downloaded on August 31,2021 at 17:00:36 UTC from IEEE Xplore. Restrictions apply.

performance penalty on a resource-constraint device
Hardware Wallets.

Since bitcoin is the gold standard in UTXO-based
cryptocurrencies and many other coins copy the entire or
parts of its codebase, we choose bitcoin to do our
measurement. We also choose the Segregated Witness
protocol, aka SegWit, to perform our tests. It is a new
version of the bitcoin protocol [16] with better
performance for multiple inputs. To employ SegWit
protocol, we use the following path for key derivation:

path = m/49 /1 /0 /change/address_index

The number 49 refers to BIP-49 [17] that defines the
derivation scheme for SegWit addresses. Next, number 1
is the defined constant for bitcoin testnet. To compare
recovery transactions with typical payment transactions,
we use the typical payment transaction format with one
input and two outputs. The recovery transaction has one
to ten inputs for available UTXOs and one output for the
reserved address. It may have more than ten inputs in real
life, but we assume this number just for demonstration.
We use WireShark to monitor USB packets and measure
the timing [18]. Our tests were executed on a MacBook
Pro with Intel Core i7 2.2 GHz processor and 16 GB
memory, and we use the same USB port for all tests.

Figure 2. Performance of generating recovery transaction on a Trezor
One hardware wallet

To evaluate generating a recovery transaction on
hardware wallets, we only measure step 2 and step 3 of
the Transaction Signing Process on the Hardware Wallet
because step 1 and step 4 are executed on the host
application and network. Figure 2 and Figure 3
demonstrate the results for two hardware wallets [19]
[20]. Increasing the number of input UTXOs takes more
time on the wallet to generate a recovery transaction. In
comparison, Ledger Nano S has lower performance
because it uses a secure element [21]. In the worst-case
scenario, generating a recovery transaction on a secure
hardware wallet like Ledger Nano S takes around 40
seconds, with only ten input UTXOs.

Authors of [3] discussed that the wallet must create a
recovery transaction after all sending transactions
because one or more input UTXOs is spent. Spending
invalidates the previous recovery transaction because at
least one of its input UTXOs is not available. In other

words, the wallet has to generate a brand-new recovery
transaction after even a micropayment transaction like
buying a coffee, purchasing a ticket, or paying a bill.

Figure 3. Performance of generating recovery transaction on a Ledger
Nano S hardware wallet

V. PROPOSED LEAN RECOVERY TRANSACTION

As we explained, inaccessible coins are a big
challenge in cryptocurrencies. The recovery transaction
proposed in [3] to generate two transactions for each
payment and save one of them off-chain for disaster
recovery has a significant performance penalty in reality.

In this section, we propose a more efficient solution
called lean recovery transaction. In this solution, the
wallet generates the recovery transaction less frequently
and only when needed. To do that, we make a change in
wallet key management and divide the key tree into two
sections. One section is assigned to a spending account,
and the other section includes other accounts. The path is
as follows when the account is 0 for spending account and
non-zero for non-spending accounts.

path=m/purpose /coin /account(0|n) /change/addr_index

Figure 4 illustrates a sample key tree. The wallet uses
only the spending section for all spendings
(micropayments). It creates the off-chain recovery
transaction only for the non-spending section, which
means all addresses except under the spending account.
We call it the lean recovery transaction because it does
not include the massive part of a recovery transaction,
including many but small amounts of UTXOs.

Only sending and receiving for addresses out of the
spending account requires regenerating a recovery
transaction, like buying new bitcoins or getting paid for
salary with cryptocurrency. So, micropayments do not
change the existing lean recovery transaction inputs, and
only large payments need a new one.

In another scenario, for receiving transactions, a new
received UTXO must be added to the recovery
transaction to avoid potential inaccessibility of it. To
prevent from regenerating a recovery transaction for all
receives even small transactions, we define a threshold
that can be changed by the user. If the sum of receiving
coins reaches the threshold, the wallet generates a new
recovery transaction to add the new UTXOs.

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10

se
co

nd
s

Number of input UTXOs

Trezor One

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8 9 10

se
co

nd
s

Number of input UTXOs

Ledger Nano S

1906

Authorized licensed use limited to: University of Central Florida. Downloaded on August 31,2021 at 17:00:36 UTC from IEEE Xplore. Restrictions apply.

Figure 4. Sample key tree to illustrate the coverages of Recovery Transaction and our proposed Lean Recovery Transaction

The spending account does not receive any coins from
outside. So, we define a new transfer function, where the
user transfers coins from other accounts to the spending
account or, in other words, from the non-spending section
to the spending section. After creating a transfer
transaction, the wallet generates a new recovery
transaction because its inputs have been changed.

Our proposed schema has the following advantages in
comparison to the recovery transaction proposed in [3]:

Generating a lean recovery transaction takes
considerably less time on the wallet because it has
fewer input UTXOs, crucial to hardware wallets.

The wallet generates the lean recovery transaction
less frequently because spending from the spending
account does not change the input UTXOs of the
existing lean recovery transaction and does not
invalidate it.

Everyday payment transactions for micropayments
are faster in our proposed mechanism because they
do not need to generate a recovery transaction.

The wallet adds new receiving UTXOs into a lean
recovery transaction only when their total funds
reaches a defined threshold, and it makes generating
recovery transactions less frequent.

To help a reader understanding our proposed lean
recovery transaction mechanism, we use an example to
illustrate and compare the recovery transaction in [3] and
our proposed method. Assume that a user has a bitcoin
wallet with a $7000 value that conveys three UTXOs with
$500, $2500, and $4000 equivalent bitcoin.

Figure 5. Example of comparing lean recovery transaction with
recovery transaction

Suppose the user makes three regular payments today
to buy a $5 soda, pay an electricity bill for $70, and
purchase a $35 T-Shirt from an online store. She uses her
wallet to make these payments by bitcoin. Figure 5
illustrates sample bitcoin transactions that the wallet
generates. We ignore purchase taxes and fees, bitcoin
exchange fees, and bitcoin network fees to simplify the
example. We assume the bitcoin price is $10,000, and we
use milli-bitcoin (mBTC) in our sample.

We assume that before beginning, the wallet has
generated a valid recovery transaction. In the first
scenario, the wallet uses the recovery transaction
described in [3], including all three UTXOs with 50, 250,
and 400 mBTC. In the second scenario, the wallet uses
our proposed lean recovery transaction, including only

1907

Authorized licensed use limited to: University of Central Florida. Downloaded on August 31,2021 at 17:00:36 UTC from IEEE Xplore. Restrictions apply.

two UTXOs with 250 and 400 mBTC, and assigns one
UTXO with 50 mBTC to the spending account.

This example demonstrates that each payment in the
first scenario includes generating a payment transaction
and a recovery transaction. In contrast, it includes
generating only a payment transaction without any
recovery transaction in the second scenario.

In our test setup described in Section IV, Trezor One
[19] hardware wallet takes 2.2 seconds for a payment
transaction and 3.2 seconds for a recovery transaction with
three UTXOs. Ledger Nano S takes 9.7 seconds and 15.8
seconds, respectively. The payment process takes 5.4
seconds for Trezor One and 25.5 seconds for Ledger Nano
S in scenario one. In comparison, it uses 2.2 seconds for
Trezor One and 9.7 seconds for Ledger Nano S in scenario
two when using the lean recovery transaction. Therefore,
the lean recovery transaction has a significant advantage,
at least 40 percent of less processing time for generating
payment transactions with three input UTXOs. The
performance difference becomes even more meaningful
with a larger number of UTXOs in the wallet.

VI. PROOF-OF-CONCEPT

To evaluate the lean recovery transaction model, we
implement a hardware wallet from scratch that supports
fundamental functionalities of hierarchical deterministic
wallets, according to BIP-32 [13] and BIP-44 [14]. We use
a secure element for key operations such as key generation
and digital signature.

We choose a device that has essential parts of a secure
hardware wallet. It has a secure element for cryptography
operations and key storage, a screen to display sensitive
information to the user, and a button to get confirmation
from the user. Figure 6 demonstrates a picture of our test
device. This device is in credit card size and has NFC and
contact interfaces to communicate.

Since the secure element is a resource-constraint device
with limited memory and processing ability, our code
must use the minimum memory amount. We use the
sharing memory technique and allocate the entire memory
to only two arrays. We pass these arrays with the
maintained indexes to the functions that require arrays,
minimizing the heap consumption.

Furthermore, we do not use a very nested function and
any recursive call, minimizing stack memory usage. We
use the Java Card framework [22] to program the secure
element. It is a limited version of Java Virtual Machine
with fewer features to run on microcontrollers and secure
elements. We compile the code with the Java
Development Kit, convert it to a Card Application (CAP),
and load it into the secure element.

One of our implementation challenges is the public key
derivation. A public key calculates by multiplying the
private key and the Generator point (G) [23] in ECC.

Figure 6. Test device with secure element, screen, and button to create
a hardware wallet

Unfortunately, our secure element (and many others)
does not support EEC multiplication, and its software
implementation has no acceptable performance due to the
limited resources of the secure element. However, Java
Card API and our secure element support Elliptic-Curve
Diffie-Hellman (ECDH) key agreement. In ECDH, each
party calculates a secret by multiplying its private key and
the other party public key. An ECC public key is an EC
point. Therefore, the ECDH function mathematically is
multiplying a scaler and an EC point. We use the ECDH
function with the private key as the scaler and the
Generator point (G) as the EC point. Thus, the result of
ECDH will be the public key.

VII. EVALUATION

As discussed, our proposed lean recovery transaction
has several advantages compared to the recovery
transaction explained in [3] because it generates lighter
recovery transactions with less input UTXOs. It reduces
the number of generating recovery transactions by
assigning a section in the key tree to spending and defining
a threshold for adding receiving funds to the recovery
transaction. In this section, we measure our proposed lean
recovery transaction's performance on our implemented
proof-of-concept wallet with a secure element.

We test our implementation with two payment
scenarios. In the first scenario, the wallet uses the recovery
transaction proposed in [3] and generates a recovery
transaction just after the payment transaction. In the
second scenario, the wallet uses the lean recovery
transaction mechanism, and it does not generate a
recovery transaction for payment transactions. Figure 7
illustrates our tests' results in both scenarios for various
recovery transaction sizes with one to ten input UTXOs.

Since the lean recovery transaction schema does not
require regenerating a recovery transaction after each
micropayment, the payment transaction performance does
not change in Figure 7. On the other hand, the regular
recovery transaction makes double the payment
transaction time on the wallet, and more input UTXOs
increase its generating time.

Screen
(E-Paper)

Buttons

Programmable
Secure Element

Logo for NFC Antenna

Hidden MCU

MCU

1908

Authorized licensed use limited to: University of Central Florida. Downloaded on August 31,2021 at 17:00:36 UTC from IEEE Xplore. Restrictions apply.

Figure 7. Comparison of micropayment transactions in recovery
transaction proposed in [3] and our proposed lean recovery transaction
schemas

Our tests have been executed on a MacBook Pro with
Intel Core i7 2.2 GHz processor and 16 GB memory, and
we use the same USB port for all tests, which is similar to
our tests in Section IV.

VIII.CONCLUSION

This paper proposed a new mechanism called lean
recovery transaction to avoid inaccessible coins and
achieve optimum performance to generate off-chain
recovery transactions. We examined the previous
recovery transaction on real hardware wallets to show its
significant performance penalty. We proposed separating
spending account from other accounts in the wallet key
management and define a threshold for adding new
received UTXOs into the recovery transaction.

ACKNOWLEDGMENT

The National Science Foundation supported this work
under grant DGE-1915780 and DGE-1723587.

References
[1] B. Brown, "21% of Bitcoin Hasn’t Moved for Five Years,

Stroking Monumental Supply Shock," 24 July 2019. [Online].
Available: https://www.ccn.com/21-of-bitcoin-hasnt-moved-
for-five-years-stroking-monumental-supply-shock/.

[2] N. De, "Troubled Canadian crypto exchange QuadrigaCX owes
its customers $190 million and cannot access most of the funds,
according to a court filing obtained by CoinDesk," 1 Feb 2019.
[Online]. Available: https://www.coindesk.com/quadriga-
creditor-protection-filing.

[3] P. Rakdej, N. Janpitak, M. Warasart and W. Lilakiatsakun,
"Coin Recovery from Inaccessible Cryptocurrency Wallet Using
Unspent Transaction Output," in 2019 4th International
Conference on Information Technology (InCIT), Bangkok,
Thailand, 2019.

[4] M. Palatinus, P. Rusnak, A. Voisine and S. Bowe, "Mnemonic
code for generating deterministic keys," 2013. [Online].
Available: https://en.bitcoin.it/wiki/BIP_0039.

[5] H. Rezaeighaleh and C. Zou, "New Secure Approach to Backup
Cryptocurrency Wallets," in The IEEE 2019 Global
Communications Conference (GLOBECOM-2019), Hawaii, US,
2019.

[6] "Multisignature," [Online]. Available:
https://en.bitcoin.it/wiki/Multisignature.

[7] A. Narayanan, J. Bonneau, E. Felten, A. Miller and S. Goldfeder,
Bitcoin and Cryptocurrency Technologies: A Comprehensive
Introduction, Princeton, New Jersey, USA: Princeton University
Press, 2016.

[8] S. Meiklejohn, "Top Ten Obstacles along Distributed Ledgers
Path to Adoption," IEEE Security & Privacy, vol. 16, no. 4, pp.
13 - 19, 2018.

[9] "Original Bitcoin client," [Online]. Available:
https://en.bitcoin.it/wiki/Original_Bitcoin_client.

[10] M. Gentilal, P. Martins and a. L. Sousa, "TrustZone-backed
bitcoin wallet," in Proceedings of the Fourth Workshop on
Cryptography and Security in Computing Systems, 2017.

[11] W. Dai, J. Deng, Q. Wang, C. Cui, D. Zou and a. H. Jin,
"SBLWT: A secure blockchain lightweight wallet based on
Trustzone," IEEE Access, vol. 6, pp. 40638-40648, 2018.

[12] transactionfee.info, "One-Input and two-Output Transactions,"
transactionfee.info, 2019. [Online]. Available:
https://transactionfee.info/charts/transactions-1in-
2out/?avg=1&start=2019-01-01&end=2019-12-31.

[13] P. Wuille, "Hierarchical Deterministic Wallets," 2012. [Online].
Available: https://en.bitcoin.it/wiki/BIP_0032.

[14] M. Palatinus and P. Rusnak, "Multi-Account Hierarchy for
Deterministic Wallets," 2014. [Online]. Available:
https://en.bitcoin.it/wiki/BIP_0044.

[15] H. Rezaeighaleh, R. Laurens and C. C. Zou, "Secure Smart Card
Signing with Time-based Digital Signature," in 2018
International Conference on Computing, Networking and
Communications (ICNC), Maui, HI, USA, 2018.

[16] "Segregated Witness," [Online]. Available:
https://en.bitcoin.it/wiki/Segregated_Witness.

[17] D. Weigl, "Derivation scheme for P2WPKH-nested-in-P2SH
based accounts," 2016. [Online]. Available:
https://github.com/bitcoin/bips/blob/master/bip-
0049.mediawiki.

[18] G. Harris, "USB capture setup," 2019. [Online]. Available:
https://wiki.wireshark.org/CaptureSetup/USB.

[19] "Trezor One," Trezor, [Online]. Available:
https://shop.trezor.io/product/trezor-one-white.

[20] "Ledger Nano S," Ledger, [Online]. Available:
https://shop.ledger.com/products/ledger-nano-s.

[21] "Frequently asked questions - Ledger Support," [Online].
Available: https://support.ledger.com/hc/en-
us/articles/360015216913-Frequently-asked-questions.

[22] Oracle, "Java Card 3 Platform Runtime Environment
Specification, Classic Edition Version 3.0.5," 2015.

[23] Certicom Research, "SEC 2: Recommended Elliptic Curve
Domain Parameters," 2000.

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10

se
co

nd
s

Number of input UTXOs of recovery transaction

Payment combined by Recovery TX

Payment combined by Lean Rcovery TX

1909

Authorized licensed use limited to: University of Central Florida. Downloaded on August 31,2021 at 17:00:36 UTC from IEEE Xplore. Restrictions apply.

