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Abstract— As many people rely on email communications for
business and everyday life, Internet email worms constitute one
of the major security threats for our society. Unlike scanning
worms such as Code Red or Slammer, email worms spread over
a logical network defined by email address relationship, making
traditional epidemic models invalid for modeling the propagation
of email worms. In addition, we show that the topological
epidemic models presented in [1], [2], [3], [4] largely overestimate
epidemic spreading speed in topological networks due to their
implicit homogeneous mixing assumption. For this reason, we rely
on simulations to study email worm propagation in this paper.
We present an email worm simulation model that accounts for
the behaviors of email users, including email checking time and
the probability of opening an email attachment. Our observations
of email lists suggest that an Internet email network follows a
heavy-tailed distribution in terms of node degrees, and we model
it as a power law network. To study the topological impact,
we compare email worm propagation on power law topology
with worm propagation on two other topologies: small world
topology and random graph topology. The impact of the power
law topology on the spread of email worms is mixed: email worms
spread more quickly than on a small world topology or a random
graph topology, but immunization defense is more effective on a
power law topology.

Index Terms— Network security, email worm, worm modeling,
epidemic model, simulation

I. INTRODUCTION

Computer viruses and worms have been studied for a long
time both by research and application communities. Cohen’s
work [5] formed the theoretical basis for this field. In the
early 1980s, viruses spread mainly through the exchange of
floppy disks. At that time, only a small number of computer
viruses existed, and virus infection was usually restricted to
a local area. As computer networks and the Internet became
more popular from the late 1980s, viruses and worms quickly
evolved the ability to spread through the Internet by various
means such as file downloading, email, exploiting security
holes in software, etc.

Currently, email worms constitute one of the major Internet
security problems. For example, Melissa in 1999, Love Letter
in 2000, and W32/Sircam in 2001 spread widely throughout
the Internet and caused tremendous damage [6]. There is,
however, no formal definition of email worm in the research
area—a computer program can be called an email worm as

long as it can replicate and propagate by sending copies of
itself through email messages.

Although spreading malicious codes through email is an old
technique, it is still effective and is widely used by current
attackers. Sending malicious codes through email has some
advantages that are attractive to attackers:

• Sending malicious codes through email does not require
any security holes in computer operating systems or
software, making it easy for attackers to program and
release their malicious codes.

• Almost everyone who uses computers uses email service.
• A large number of users have little knowledge of email

worms and trust most email they receive, especially email
from their friends [7].

In order to understand how worms propagate through email,
we focus exclusively on those that propagate solely through
email, such as Melissa (if we overlook its slow spreading
through file exchange). Email worm, as discussed in this paper,
is defined as a piece of malicious code that spreads through
email by including a copy of itself in the email attachment—
an email user will be infected if he or she opens the worm
email attachment. If the email user opens the attachment, the
worm program will infect the user’s computer and send itself
as an attachment to all email addresses that can be found in the
user’s computer. There are a few email worms that attack email
agents’ vulnerabilities, and thus they can infect computers by
simply being read by users (with no attachments). These email
worms can be considered as special ones that vulnerable email
users have 100 percent probability of being infected with,
while nonvulnerable email users have no probability of being
infected.

The contributions of this research work are summarized in
the following:

• We show in Section V that the topological epidemic
models for modeling epidemic spreading in topological
networks presented in [1], [2], [3], [4] largely overes-
timate epidemic spreading speed due to their implicit
homogeneous mixing assumption. These mean-field dif-
ferential equation models have been used and referred
to by many papers since 2001 without questioning their
accuracy.
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• We present an email worm simulation model that ac-
counts for the behaviors of email users, including email
checking frequency and the probability of opening an
email attachment.

• Our observation shows that the size of email groups
follows a heavy-tailed distribution. Since email groups
greatly affect the email network topology, we believe the
Internet email network is also heavy-tailed distributed and
we model it as a power law network.

• We carry out extensive simulation studies of email worm
propagation. From these experiments we derive a bet-
ter understanding of the dynamics of an email worm
spreading—how the degrees of initially infected nodes
affect worm propagation, how topological properties such
as the power law exponent affect worm behavior, how
the distributions of email checking time affect worm
infection, etc.

• We gain insight into the differences among power law,
small world, and random graph topologies by comparing
email worm propagation patterns. The impact of power
law topology on the spread of email worms is mixed:
email worms spread more quickly than on a small world
topology or a random graph topology, but immunization
defense is more effective on a power law topology.

• We derive by simulations the selective percolation curves
and thresholds for power law, small world, and random
graph topologies, respectively. The selective percolation
curves can explain why selective immunization defense
against epidemic spreading is quite effective for a power
law topology, but not so good for the other two topolo-
gies.

The rest of the paper is organized as follows: Section II
introduces related work. An email worm simulation model
is presented in Section III. In Section IV we discuss email
network topology and model it as a power law topology. In
Section V we show why previous differential equation models
are not accurate for email worm modeling, the primary reason
why we rely on simulations to study email worms in this
paper. We present extensive simulation studies of email worm
propagation without considering immunization in Section VI.
In Section VII, we study immunization defense against email
worms and the corresponding percolation problem. Finally,
Section VIII concludes this paper with some discussions.

II. RELATED WORK

Kephart, White, and Chess published a series of papers from
1991 to 1993 on viral infection based on epidemiology models
[8], [9], [10]. [8], [9] were based on a birth-death model in
which viruses were spread via activities primarily confined to
local interactions. The authors further improved their model
by adding a “kill signal” process, and they also considered the
special model of viral spread in organizations [10]. To model
local interaction and topological impact on virus spreading,
they only considered the simplest random graph topology
in their modeling, making their models unsuitable for email
worm modeling studied here. After the famous Code Red
incident in July 2001 [6], many researchers studied how to

model Internet-scale worm propagation, such as [11], [12],
[13], [14], [15], [16], [17], followed by the first model work by
Staniford et al. [18]. However, they focus mainly on modeling
variants of random scanning worms. As explained in Section
V, models presented for scanning worms are not suitable
for modeling the propagation of email worms, due to the
topological email network.

To derive the epidemic threshold of Susceptible-Infectious-
Susceptible (SIS) models on topological networks, Wang et al.
[19] first presented general formulas based on the eigenvalues
of the adjacency matrix of a topological graph. Later, Ganesh
et al. [20] formalized this approach and further derived the life-
time approximation of an epidemic on topological networks.
In this paper, we are interested in modeling the propagation
dynamics of one worm incident where infected hosts are not
likely to become susceptible again, so the SIS models are not
appropriate. In addition, [20], [19] only studied the final stable
state of epidemic propagation, while we study the propagation
transient dynamics as an email worm spreads out.

To model the epidemic spreading on topological networks,
Pastor-Satorras and Vespignani [4] presented a differential
equation for an SIS model by differentiating the infection
dynamics of nodes with different degrees. but the authors
only studied the epidemic threshold in the stable state. Later,
Moreno et al. [2], [3] and Boguna et al. [1] provided
Susceptible-Infectious-Recovered (SIR) differential equation
models to study the dynamics of epidemic spreading on topo-
logical networks. We show in Section V that such differential
equation models greatly overestimate the epidemic spreading
speed due to their implicit homogeneous mixing assumption.

In 2000 Wang et al. [21] studied a simple virus propagation
model based on a clustered topology and a tree-like hierarchic
topology. In their model, copies of the virus would activate at a
constant rate without accounting for any user interactions. The
lack of a user model, coupled with the simplified topologies,
make it unsuitable for modeling the propagation of email
worms over the Internet. Wong et al. [22] provided the analysis
of two email worms, SoBig and MyDoom, based on the
monitored trace from a campus network. Newman et al.
[23] showed that the email network distribution on a cam-
pus follows exponential or stretched exponential distributions.
However, such a conclusion was derived based on the number
of email addresses in the address books of the campus users.
It did not consider the significant impact of email lists, nor the
fact that most email worms target all email addresses found on
compromised computers, not just users’ email address books.

Some researchers have studied immunization defense
against virus and worm propagation. Immunization means that
a fraction of nodes in a network are immunized; hence, they
cannot be infected. Wang et al. [21] showed that selective
immunization can significantly slow down virus propagation
for tree-like hierarchic topology. From an email worm’s point
of view, the connectivity of a partly immunized email network
is a percolation problem. Newman et al. [24][25] derived
the analytical solution of the percolation threshold of small
world topology, and later for arbitrary topologies: if nodes are
removed uniformly from a network and the fraction of these
nodes is higher than the percolation threshold, the network will
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be broken into pieces. In this paper, since we study selective
immunization by removing the mostly-connected nodes, the
formulas presented in [24], [25] are not suitable. Albert et al.
[26] were the first to explain the vulnerability of power law
networks under attacks: by selectively attacking the mostly-
connected nodes, a power law network tends to be broken
into many isolated fragments. They concluded that the power
law topology was vulnerable under deliberate attack. This
conclusion is consistent with our results derived from selective
immunization defense study, as described in Section VII-B.

III. EMAIL WORM PROPAGATION SIMULATION MODEL

Email worm, as considered in this paper, is defined as a
piece of malicious code that propagates through sending a
worm email to all email addresses it can find on compromised
computers. Some previous email worms, such as Nimda [6],
propagated through several other ways besides email spread-
ing, such as through open network shares or random scanning.
In this paper, we only model their propagation via the email
spreading mechanism.

Because an email worm spreads on a logical network
defined by email address relationship, it’s difficult to math-
ematically analyze email worm propagation. In Section V,
we show that the differential equation models presented by
others cannot accurately model an epidemic spreading in a
topological graph. Therefore, in this paper we will rely on
simulation modeling rather than mathematical analysis in order
to focus on realistic scenarios of email worm propagation.

Strictly speaking, an email logical network is a directed
graph: each vertex in the graph represents an email user, while
a directed edge from node A to node B means that user B’s
email address is in user A’s computer. On the other hand, since
user A has user B’s address, user A probably has already sent
some email to user B before an email worm spreads out. Thus,
user B’s computer has a great chance of containing the email
address of user A as well. For this reason, most edges in
the email logical network can be treated as undirected edges.
Therefore, in this paper we model the Internet email network
as an undirected graph.

We represent the topology of the logical Internet email
network by an undirected graph G =< V,E >, ∀v ∈ V ,
v denotes an email user, and ∀e = (u, v) ∈ E, u, v ∈ V ,
represents two users, u and v, who have the email address
of each other in their computers. |V | is the total number of
email users. Degree of a node is defined as the number of
edges connected to the node.

Let us first describe the email worm propagation scenario
captured by our model: first, users check their email from
time to time. When a user checks his email and encounters a
message with a worm attachment, he may discard the message
(if he suspects the email or detects the email worm by using
anti-virus software), or open the worm attachment if he is
unaware of it. When a worm attachment is opened, the email
worm immediately infects the user and sends out a worm
email to all email addresses found on this user’s computer.
The infected user will not send out a worm email again unless
the user receives another copy of the worm email and opens
the attachment again.

From the above description, we see that email worms,
unlike scanning worms, depend on email users’ interaction to
propagate. There are primarily two human behaviors affecting
email worm propagation: one is the email checking time of user
i, denoted by Ti, i = 1, 2, · · · , |V |, which is the time interval
between a user’s two consecutive email checking events; the
other is the opening probability of user i, denoted by Ci,
i = 1, 2, · · · , |V |, which is the probability user i opens a
worm attachment. Some email worms exploit email clients’
vulnerabilities such that they can compromise computers with-
out users executing any attachment; these email worms can be
modeled by assigning Ci ≡ 1 for those vulnerable users.

Email checking time Ti of user i (i = 1, 2, · · · , |V |) is
a stochastic variable determined by the user’s habit. Denote
E[Ti] as the expectation of the random variable Ti. The
checking time Ti may follow several different distributions.
For example, it could be a constant value if a user checks email
once every morning or uses email client programs to fetch and
check email at a specified time interval. For another example, it
could follow exponential distribution (that is, checking action
is a Poisson process) if a user checks email at a random time.
In Section VI-H we study how different distributions of email
checking time affect the propagation of an email worm.

The opening probability Ci of user i is determined by: 1) the
user’s security awareness; and 2) the social engineering tricks
deployed by an email worm (for example, MyDoom infected
more users than any email worm before due to its advanced
social engineering techniques [6]). For the propagation of one
email worm, we assume Ci to be constant for user i.

We assume that email users have independent behaviors.
We model Ti and Ci, i = 1, 2, · · · , |V |, as follows:

• The mean value of user i’s email checking time, E[Ti],
is itself a random variable, denoted by T . When a user
checks email, the user checks all new email received since
the last checking time.

• User i opens a worm attachment with probability Ci when
the user checks a worm email. Let C denote the random
variable that generates Ci, i = 1, 2, · · · , |V |.

• Because the number of email users, |V |, is very large, and
their behaviors are independent, it is reasonable to assume
that T and C are independent Gaussian random variables,
that is, T ∼ N(μT, σ2

T), C ∼ N(μC, σ2
C). Considering

that Ci must be between 0 and 1, and E[Ti] must be
bigger than zero, we assign Ci and E[Ti] as:

Ci =
{

max{C, 0} C ≤ 1
1 C > 1 (1)

E[Ti] = max{T, 0} (2)

An email user is called infected once the user opens a
worm email attachment; upon opening a worm attachment,
an infected user immediately sends out a worm email to all
neighbors. Let I(0) denote the number of initially infected
users that send out a worm email to all their neighbors at the
beginning of a worm propagation. Let random variable I(t)
denote the number of infected users at time t during email
worm propagation, I(0) ≤ I(t) ≤ |V |, ∀t > 0.
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TABLE I

MAJOR NOTATIONS USED IN THIS PAPER

Notation Explanation
G =< V, E > Undirected graph representing an email network. v ∈ V denotes a user, |V | is user population.
E[X] The expectation of a random variable X .
k Vertex degree of a node in a graph; the average degree of a graph is denoted by E[k].
N Total number of nodes in an email network, N = |V |.
P (k) Fraction of nodes with degree k in an email network.
Ti Email checking time of user i — the time interval between user i’s two consecutive email checking, i = 1, 2, · · · , |V |.
Ci Opening probability of user i — the probability with which user i opens a worm attachment.
T Gaussian-distributed random variable that generates E[Ti], i = 1, 2, · · · , |V |. T ∼ N(μT, σ2

T).
C Gaussian-distributed random variable that generates Ci, i = 1, 2, · · · , |V |. C ∼ N(μC, σ2

C).
I(0) Number of initially infected users at the beginning of worm propagation.
I(t) Number of infected users at time t, ∀t > 0.
V (t) Number of worm emails in the system at time t, ∀t > 0.
α Power law exponent of a power law topology that has the complementary cumulative degree distribution Fc(k) ∝ k−α.
Nh(∞) Number of users that are not infected when an email worm propagation is over.
D(t) Average degree of nodes that are healthy before time t but are infected at time t, ∀t > 0.
C(p) Connection ratio — the percentage of remaining nodes that are still connected

after removal of the top p percent of most-connected nodes from a network.
L(p) Remaining link ratio — fraction of remained links after removing the top p percent of most-connected nodes.

It takes time for a recipient to receive a worm email sent out
by an infected user. But the email transmission time is usually
much smaller compared to a user’s email checking time. Thus
in our model we ignore the email transmission time. Table. I
is a list of the major notations used in this paper.

IV. HEAVY-TAILED EMAIL NETWORK TOPOLOGY

The topology of an email network plays a critical role
in determining the propagation dynamics of an email worm.
Therefore, before we start to study email worm propagation,
we need to first determine the email topology.

One very important fact of an email network (in terms of
email worm propagation) is that once a computer contains the
address of an email list, from an email worm’s point of view,
this computer has virtually all the addresses associated with
the email list. Therefore, even though a user’s computer may
only contain tens of email addresses, the degree of the user in
the email network might be as large as several thousand if one
of the email addresses is a popular email list. For this reason,
we first study the property of email lists.

Let f(k) be the fraction of nodes with degree k in an email
network graph G. The complementary cumulative distribution
function (ccdf) is denoted by Fc(k) =

∑∞
i=k f(i), that is,

the fraction of nodes with degrees greater than or equal to k.
We have examined more than 800,000 email groups (lists) in
Yahoo! [27], the sizes of which vary from as low as 4 to more
than 100,000. Fig. 1 shows the empirical ccdf of the group
sizes of Yahoo! in the log-log format. From this figure we can
see that the size of Yahoo! groups is heavy-tailed distributed,
that is, the ccdf Fc(k) decays slower than exponentially [28].

Because the sizes of email lists, especially the popular email
lists, are much larger than the number of email addresses
existing in normal computers, we believe the Internet email
network topology is mainly determined by the topology prop-
erty of email lists. The popular Yahoo! email groups are heavy-
tailed distributed, as shown in Fig. 1, which suggests that
the Internet-scale email network is probably also heavy-tailed
distributed.

Fig. 1. Complementary cumulative distr. of Yahoo! group size (in May 2002)

In order to generate a heavy-tailed email network, we need
to find a suitable topology generator. Currently, except for
power law topology generators, there are no other suitable
network generators available to create a heavy-tailed topology.
The degree of a power law topology is heavy-tailed distributed
and has the power law ccdf Fc(k) ∝ k−α, which is linear on a
log-log plot [28]. Therefore, a power law topology generator
is by far the best candidate to generate an email network,
although the degree of a real Internet email network may not
be strictly power law distributed. In this paper we use the
GLP power law generator presented in [28]. We choose the
GLP power law network generator instead of other generators
because it has an adjustable power law exponent α.

There are some other popular topologies, such as random
graph topology [29] and small world topology [30], that
are not suitable for the email network because they do not
provide a heavy-tailed degree distribution. However, in order
to understand how a heavy-tailed email topology affects email
worm propagation, we also study email worm propagation on
both random graph and small world topologies.

In this paper, the random graph network with n vertices
and an average degree E[k] ≥ 2 is constructed as follows.
We start with n vertices and add n edges one by one: edge
i, i = 1, 2, · · · , n, connects vertex i to another randomly-
chosen vertex. Then, we repeatedly connect two randomly-
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chosen vertices with an edge until the total number of edges
reaches E[k] · n/2. If the generated network happens to be
disconnected, we regenerate another network again.

Fig. 2. Illustration of a two-dimensional small world network

We generate the small world network by using the model
presented in [31], depicted in Fig. 2. We deploy the following
two steps to construct a small world network that has an
average degree E[k] > 4. First, we arrange and connect all
vertices so that they form the regular two-dimensional grid
network as shown in Fig. 2. Second, we repeatedly connect
two randomly-chosen vertices with an edge until the total
number of edges reaches E[k] · n/2.

V. WHY DIFFERENTIAL EQUATION MODELS ARE NOT

APPROPRIATE

Many differential equation models have been presented to
model epidemic spreading [1], [3], [4], [18], [17]. In this
section, we will explain why we use the simulation-based
model presented in Section III instead of those differential
equation models.

There are two major classes of epidemic models, defined
by whether infected hosts can become susceptible again after
recovery. If this is true, the models are called SIS models
because hosts can change their status as susceptible-infectious-
susceptible. If infected hosts cannot become susceptible again
once they are cured, the models are called SIR models, hosts
can only have the status transition as susceptible-infectious-
recovered (or SI models if no infected hosts can recover). For
modeling of the propagation of a single email worm incident,
after an email user cleans his or her infected computer, the user
is not likely to open another copy of the same worm email
again. Therefore, we only consider SIR epidemic models in
this paper.

SIR models are the natural extensions of SI models by
adding the recovery process of infected hosts. Our major focus
in this paper is to understand the propagation dynamics of
email worms, thus we do not consider the recovery process
and focus solely on SI models.

A. Epidemic model for homogeneous networks

The most simple and popular differential equation model
is the epidemic model shown below, which has been used by
many papers (for example, [11], [18], [17], [32]) to model
random scanning worms, such as Code Red and Slammer [6].

dI(t)
dt

=
η

Ω
I(t)[N − I(t)] (3)

where N is the total population and I(t) is the number of
infected hosts at time t. η is the worm scan rate, and Ω is the
size of IP space scanned by the worm. All hosts are assumed
to be either vulnerable or infected.

This model relies on the homogeneous assumption that any
infected host has the equal opportunity to infect any vulnerable
host in the system. It means that all hosts in the system can
contact each other directly; hence, the system can be treated
as a completely-connected graph. In other words, there is
no topological issue in the modeling. For scanning worms
such as Code Red or Slammer [6], because they randomly
generate IP addresses to scan and infect, the propagation of
these worms satisfies the homogeneous assumption, and they
can be accurately modeled by (3).

Some variants of random scanning worms cannot be directly
modeled by (3), such as “hit-list” worm, “flash” worm [18],
“local preference” worm (such as Blaster worm and Sasser
worm) and “bandwidth-limited” worm. Through extending the
simple epidemic model (3), these worms can still be accurately
modeled [12], [32], because it is not necessary to consider
topological issues in their modeling.

However, an email worm can only spread hop-by-hop on
an email logical network. We must consider topological issues
in its modeling. Since the homogeneous assumption will not
stand for email worm modeling, we cannot use the above
model (3) or its extensions in this paper.

B. Epidemic model for topological networks

Because the simple epidemic model (3) is not appropriate
for modeling epidemic spreading in topological networks,
some researchers [4][3][2][1] have presented new topological
models by distinguishing the different dynamics of nodes with
different degrees.

Suppose in a topological network, P (k) is the fraction of
nodes that have degree k. The average degree of the network is
E[k] =

∑
k kP (k). We denote ik(t) as the fraction of infected

hosts in the k-degree host set. The infection rate is denoted by
λ, the probability that a susceptible node is infected by one
neighboring infected node within a unit time. The differential
equation model for nodes with degree k is [3]:

dik(t)
dt

= λk[1 − ik(t)]Θ(t) (4)

Θ(t) =
∑

n nP (n)in(t)∑
s sP (s)

=
∑

n nP (n)in(t)
E[k]

The factor Θ(t) is “the probability that any given link
points to an infected host” [4]. Θ(t) is derived based on the
conclusion that the probability a link points to a s-degree node
is proportional to sP (s) [3], [4].

Boguna et al. [1] improved the model (4) by considering
that “since the infected vertex under consideration received
the disease through a particular edge that cannot be used for
transmission anymore, the correct probability must consider
one less edge.” They modified the formula of Θ(t):

dik(t)
dt

= λk[1 − ik(t)]Θ(t) (5)
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Θ(t) =
∑

n(n − 1)P (n)in(t)
E[k]

When a node has more edges, it has a higher probability
of being infected quickly by an epidemic (or an email worm).
Since the above two models differentiate nodes with differ-
ent degrees, they provide a better modeling for topological
epidemic spreading than the homogeneous model (3).

Unfortunately, (4) and (5) still have flaws in modeling
epidemic spreading in topological networks. The important
variable in model (4), Θ(t), does not distinguish whether
infected nodes are connected or clustered together, or scattered
around the topological network. In fact, the calculation of
Θ(t) in (4) has the implicit assumption that infected nodes
are uniformly distributed in the topological network, which
is obviously a wrong assumption for topological epidemic
spreading where infected nodes must be connected with each
other.

Model (5) is better than model (4) since it considers the fact
that one link for an infected node should not be considered in
its infection power—the node itself is infected by a previously
infected node (its parent) on the other end of this link.
However, this consideration is only accurate for a newly
infected node that connects to no other infected ones except
its parent. Thus the accuracy of this model still relies on the
assumption of homogeneous mixing of infected nodes.

C. Discussion of the overestimation in models (4) and (5)

The consequence of the so-called homogeneous mixing as-
sumption is that models (4) and (5) overestimate the propaga-
tion speed of an epidemic in a topological network, especially
at the beginning stage when a small number of nodes are
infected and clustered with each other. As pointed out by
[18], a worm’s propagation speed is largely determined by
its initial spreading speed. Therefore, the overestimation in
models (4) and (5) cannot be ignored and could generate
significant modeling errors.

Fig. 3. Illustration of an epidemic spreading in a topological network

Let us use a simple two-dimensional grid network, shown
in Fig. 3, as an example to illustrate the modeling problem.
Suppose node A is an initially infected node and it infects 3
out of 4 neighboring nodes a moment later (labelled as black
nodes). At this time, the epidemic has 10 links, called effective
infection links, that connect infected nodes with susceptible
ones. The 3 links interconnecting those 4 infected nodes have
no contribution to the epidemic spreading later. On the other
hand, if these 4 infected nodes are scattered in the network

as implicitly assumed by model (4), the epidemic would have
16 effective infection links. Therefore, model (4) overestimates
the epidemic propagation speed by 60 percent for the scenario
shown in Fig. 3.

Model (5) is better: the 3 newly-infected nodes have the
correct effective infection links expressed by the model since
they have not infected others, but model (5) still treats node
A as having (k − 1) = 3 effective infection links. Thus, the
number of effective infection links used by the model would be
12 instead of the true value of 10. Therefore, it overestimates
the epidemic speed by 20 percent.

How much models (4) and (5) overestimate an epidemic
spreading speed is determined by many factors. First, the
overestimation would be smaller if the initially infected nodes
are scattered over the network instead of clustered together.
Second, if the initially infected nodes have larger degrees,
their clustering effect will show up more slowly until most
of their neighboring nodes have been infected; hence, the
overestimation would be smaller.

D. Simulation verification of the overestimation in models (4)
and (5)

To verify our conjecture above, we first generate sev-
eral large-scale topological networks, then use these network
graphs to compute the numerical solutions of models (4)
and (5), and compare with the epidemic spreading simulation
results on these networks.

We first generate a power law network, a small world
network, and a random graph network as described in Section
IV. All three networks have |V | = 100, 000 nodes with an
average degree of E[k] = 8. The power law network has the
exponential power law exponent α = 1.7.

We use the discrete-time method to calculate the numerical
solutions of model (4) and model (5). From time t − 1 to t,
we can derive:

ik(t) = ik(t − 1) + λk[1 − ik(t − 1)]Θ(t − 1) (6)

Then the total number of infected nodes at time t, I(t),
would be:

I(t) =
∑

k

ik(t)P (k)N (7)

Now we describe how we conduct the epidemic spreading
simulation for the scenario described by models (4) and (5). In
every discrete time unit, if a susceptible node is connected with
one infected node, it has the probability λ to be infected within
the time unit (λ is the infection rate). If a susceptible node is
connected with n infected nodes, it has the probability 1−(1−
λ)n to be infected within the time unit. If a node is infected
at the discrete time t, it becomes infectious in the next time
t + 1. With the same parameter setting and different random
number generator seeds, we run the simulation 1,000 times to
derive the average epidemic propagation speed E[I(t)].

In the experiment, I(0) = 2 and λ = 1/200. The two
initially infected nodes in simulations are randomly chosen
from all nodes in the network. Fig. 4 shows the comparison
among the two differential equation models (4) and (5) and
the simulation results on three different topological networks.
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Fig. 4. Numerical solutions of model (4) and model (5) compared with the epidemic simulation results on three different topologies

It clearly shows that models (4) and (5) overestimate the prop-
agation speed of epidemic on all three topological networks.

We are not arguing that models (4) and (5) are wrong. In
fact, they provide a better modeling for epidemic spreading
in topological networks than the general epidemic model (3).
However, they overestimate epidemic spreading speed and the
overestimation is not negligible. This is the primary reason
why we rely on a simulation model to study the propagation
of email worms.

It would be much better if we could provide a new analytical
model and then mutually verify it with our simulation model.
Unfortunately, we cannot present an accurate analytical model;
hence, this paper will rely on a simulation model to study
email worm propagation.

VI. EMAIL WORM SIMULATION STUDIES

A. Description of the discrete-time email worm simulator

Discrete-time simulation has been used in many worm
modeling papers [9], [33], [21], [17]. Thus, we simulate
email worm propagation in discrete time, too. All events
(worm infection, user checking email, etc.) are assumed to
happen right at each discrete time tick. Before the start of
an email worm simulation, user (node) i is assigned with
a clicking probability Ci and average checking time E[Ti],
i = 1, 2, · · · , |V | according to (1) and (2), respectively. Each
of the initially infected nodes in I(0) is randomly chosen from
the entire network. These nodes will send out a worm email
right at the first time tick, t = 1.

At each discrete time tick t, the simulator checks all nodes
(users) in the network to see if any user checks email at this
time tick. If user i checks email at time t, the user checks
all new email received after his or her last email checking.
Each new worm email is opened with probability Ci. Once a
worm email is opened, user i is infected (if the user has not
been infected before) and the worm will send worm email to
all neighbors of the user. These worm emails could be read
by their recipients as soon as the next time tick, t + 1. Then,
a new email checking time Ti is assigned to user i in order
to determine when he or she will check email again. In the
discrete-time simulation, Ti is a positive integer derived by:

Ti = max{	X
, 1} (8)

where X is a random variable. The smallest time unit in a
discrete time simulation is one, thus Ti must be no smaller
than one. In all simulation experiments, X is exponentially
distributed with the mean value E[Ti] derived from (2), if not
otherwise defined. In Section VI-H, we specifically study how
different distributions of X affect email worm propagation.
The simulation ends when all users are infected or when a
specified simulation end time has been reached.

We are interested in E[I(t)]—the average number of in-
fected users in the email network at any time t. We derive
E[I(t)] by averaging the results of I(t) from many simulation
runs that have the same inputs but different random number
generator seeds. For most experiments presented in the fol-
lowing, we perform 100 simulation runs to derive the average
value, E[I(t)].

The underlying power law network has |V | = 100, 000
nodes, an average degree of 8, and a power law exponent of
α = 1.7. Other simulation parameters are: T ∼ N(40, 202),
C ∼ N(0.5, 0.32), and I(0) = 2. If not otherwise specified,
initially infected nodes are randomly chosen from the entire
network in each simulation run, and all simulation experiments
run under the same power law email network, with the same
parameters specified above.

In a discrete time simulation, each discrete time tick can
represent an arbitrary time interval in the real world, such
as 1 minute, 10 minutes, or even 1 hour. Thus, the absolute
time tick value used in a discrete time simulation does not
matter much, such as the mean value E[T ] = 40 used in
our simulations. On the other hand, since all simulated events
are assumed to happen right at discrete time ticks, a discrete
time simulation would be more accurate if a discrete time tick
represents a shorter time interval. From our experiments, we
find it is accurate enough to choose E[T ] = 40. The value of
C depends on how deceptive an email worm is, which varies
from one worm incident to another. Thus, we choose E[C] =
0.5 to simulate the general case of email worm propagation.

For the convenience of readers, we have put the source
codes of our email worm propagation simulator and topology
generators on-line [34].

B. Reinfection vs. nonreinfection

First, we consider two cases under different infection
assumptions: reinfection versus nonreinfection. Reinfection
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Fig. 7. 95% statistical confidence interval of 100 simulation runs
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Fig. 5. Reinfection vs. nonreinfection

means that a user will send out worm email copies whenever
he opens an email worm attachment. Thus, a recipient can
repeatedly receive worm emails from the same infected user.
Nonreinfection means that each infected user sends out worm
copies only once, after which the user will not send out any
worm email, even if he or she opens a worm attachment again.
Some email worms belong to the nonreinfection type, such as
Melissa and Love Letter; others are the reinfection type, such
as W32/Sircam.

Fig. 5 illustrates the behavior of E[I(t)] as a function of
time t for both reinfection and nonreinfection cases on a power
law email network.

C. Variability in worm propagation

An email worm propagation is, in fact, a stochastic process.
Under the same network condition, the same email worm could
spread faster or slower in different runs. To study how variable
an email worm propagation could be, we simulate the email
worm propagation for 100 runs (the reinfection scenario) under
the same simulation settings but with different seeds in the
random number generator.

An intuitive measurement of the worm propagation variabil-
ity is the 95th and 5th percentile curves of I(t) first presented
in [33]. Fig. 6 shows these two curves compared with the
curve of E[I(t)]. Among those 100 simulation runs, in 5
runs the worm propagates faster than the 95th percentile curve

while in another 5 runs the worm propagates slower than the
5th percentile curve. This figure shows that an email worm
spreads with the similar dynamics after around 5 percent of
vulnerable hosts have been infected, but the initial propagation
dynamics could be dramatically different. Therefore, the initial
phase of worm spreading largely determines the overall worm
propagation speed.

Another way to measure the variability of worm propagation
is to use the statistics term “confidence interval” [35]. For
every discrete time t (t = 1, 2, 3, · · · ), E[I(t)] derived from
simulation is the mean value of 100 samples I(t) from these
100 simulation runs. Suppose the estimated standard deviation
of these 100 I(t) samples is σ, then the 95 percent confidence
interval of E[I(t)] is [35] :

(E[I(t) − t
σ√
100

, E[I(t) + t
σ√
100

) (9)

where t = 1.984 is the value of t-distribution with 99 degrees
of freedom for 95 percent confidence interval. Fig. 7 shows
E[I(t)] of the worm propagation in 100 simulation runs,
together with its upper and lower bounds in terms of 95 percent
confidence interval.

D. Impact of user clicking probability

In our email worm model, each user i opens an email
attachment with probability Ci when reading a worm email.
Thus, user i has the probability 1− (1 −Ci)m to be infected
when receiving m worm email—the chance of being infected
increases as a function of the amount of worm email received.
For this reason, more users are infected in the reinfection case
than in the nonreinfection case, as shown in Fig. 5.

Because some users have a very low probabilities of opening
email attachments, in both cases shown in Fig. 5 a certain
number of users will not be infected when the worm propa-
gation is over. Let Nh(∞) denote the number of users that
are not infected when the worm propagation is over. In the
nonreinfection case, user i, who has mi edges (neighbors),
will receive at most mi copies of the worm email—the
probability that user i is not infected is at least (1 − Ci)mi .
For the nonreinfection case, we can derive a lower bound
for E[Nh(∞)] if we know the network degree distribution
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P (k) and assume that Ci is the same for all users, i.e.,
Ci = p,∀i ∈ {1, 2, · · · , |V |}.

Let G(x) denote the probability generating function of the
degrees of the email network:

G(x) =
∞∑
k

P (k)xk (10)

Then we can derive the lower bound for E[Nh(∞)]:

E[Nh(∞)] ≥ |V |
∞∑
k

P (k)(1 − p)k = |V |G(1 − p) (11)

where |V | is the user population. This formula shows that
as email users become cautious in clicking worm email
attachments, a larger number of email users will stay healthy
without being infected by the email worm.

The email worm has successfully spread in all 100 simula-
tion runs. In fact, the email worm has a small chance to die
before it spreads. For example, in the beginning those users
initially infected send out worm copies to their neighbors. If all
their neighbors decide not to open the worm email attachment
for the first round, then no worm email exists in the network
after those neighbors finish checking their email for the first
time. If we assume that all users open worm attachments with
the same probability p, and the number of worm copies sent
out by those initially infected users is m, then the email worm
has the probability (1− p)m to die before it infects any other
users.

A reinfection email worm propagates faster and is the focus
of our study. In the following, we only consider reinfection
email worms, if not otherwise stated.

E. Initially infected nodes with highest degree vs. lowest
degree

In our previous experiment, the degree of the power law
network varies from 3 to 1, 833. Because a worm propagation
speed is largely determined by its initial infection speed (as
shown in Fig. 6), it appears that the degrees of initially infected
nodes are critical to the overall worm propagation speed. We
consider two cases: in the first case the initially infected nodes
have the highest degree, while in the second case the initially
infected nodes have the lowest degree. Both cases have the
same number of initially infected nodes, I(0) = 2. Fig. 8
shows the behavior of E[I(t)] as a function of time t of
these two cases on two power law networks, respectively. Both
power law networks have the same |V | = 100, 000 nodes and
a power law exponent of α = 1.7, but different connection
densities—one has an average degree of 8, while another has
an average degree of 20.

Fig. 8 shows that the identities of the initially infected nodes
are more important in a sparsely connected network than in
a densely connected network. From a worm writer’s point of
view, it’s important to let an email worm spread as widely as
possible before people become aware of the worm. It will help
an email worm to propagate faster by choosing the right initial
launching points, such that those initially infected computers
contain a large number of email addresses.

F. Topology effect: power law, small world, and random graph

In Section IV, we discussed why we believe the email
logical network is a heavy-tailed network. In this section we
examine how topology affects email worm propagation.
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Fig. 9. Effect of topology on email worm propagation

We run our email worm simulation on a power law net-
work, a small world network, and a random graph network,
respectively. All three networks have the same average degree
E[k] = 8 and |V | = 100, 000 nodes. Fig. 9 shows E[I(t)] as
a function of time t of these three topologies, respectively.

Fig. 9 shows that email worm propagation on a small
world network is a little slower than the one on a random
graph network. This is because a small world topology has
a larger clustering coefficient than a random graph topology
[30]. Clustering coefficient measures how clustered together
neighboring nodes are. As illustrated by Fig. 3, if a topology
has a higher clustering coefficient, its infected nodes tend
to have more links interconnecting themselves; thus, such a
topology has fewer effective infection links than a topology
that has a lower clustering coefficient.
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Fig. 10. Average degree of nodes that are being infected at each time tick t

We also observe from Fig. 9 that the worm infection speed
on a power law topology is much faster than on the other
two topologies. One reason is that a power law topology
has the smallest characteristic path length among those three
topologies, while the other two have similar characteristic path
lengths [28], [36]. Characteristic path length is defined as the
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Fig. 8. Effect of different degrees of initially infected nodes

number of edges in the shortest path between two vertices,
averaged over all pairs of vertices [30]. An email worm can
reach and infect a node more quickly by traveling through a
shorter path on a power law network than on a small world
or random graph network.

Another reason is that an email worm exhibits more firing
power on a power law network at the early stage of worm
propagation. On a power law network, the degrees of nodes
varies significantly [26]. Once an email worm infects a highly-
connected node, a large number of worm emails will be sent
out from this infected node.

Let D(t) denote the average degree of nodes that are healthy
before time t, but are infected at time tick t. D(t) tells us what
kind of nodes are being infected at each time t, t = 1, 2, 3, · · · .
We repeat the experiment in Fig. 9(b) and derive D(t) for each
topology by averaging the results of 1, 000 simulation runs. We
plot D(t) of each network as a function of time t, as shown
in Fig. 10. Note that the D(t) of a small world network and
a random graph network are almost the same.

Fig. 10 clearly shows that on a power law network an email
worm tends to first infect some highly-connected nodes—these
nodes will then send out a much larger number of worm email
than other infected nodes. Thus, the infection speed will be
amplified by them at the beginning. Neither a small world nor
a random graph network exhibits such amplification effect,
since all nodes on them have similar degrees.

G. Effect of the power law exponent α

The power law exponent α is an important parameter for
a power law topology. It is the slope of the curve of the
complementary cumulative degree distribution in a log-log
graph [28]—the smaller α is, the more variable the degrees of
nodes in the topology. In our previous simulations, we use α =
1.7 to generate the power law network with |V | = 100, 000
nodes and an average degree of 8. This power law network
has the highest degree of 1,833 and the lowest degree of 3.

The Internet AS level power law topology has a power law
exponent of α = 1.1475 [28]. Using α = 1.1475 for a 100, 000
nodes power law network with an average degree of 8 will
produce a network with the highest degree up to 28, 000 and
the lowest degree of 1. Thus, we think α = 1.1475 is too
small for modeling the Internet email network.

On the other hand, we don’t know the true value of α for
the real Internet email network. In order to see how the power
law exponent α affects email worm propagation, we compare
worm propagation on the following two power law networks:
one has α = 1.7 and the other one has α = 1.1475. Both
networks have |V | = 100, 000 nodes and an average degree
of 8. We denote the network with α = 1.7 as the power law
network Neta, and the network with α = 1.1475 as the power
law network Netb. E[I(t)] is plotted for both networks as
functions of time t in Fig. 11. It shows that an email worm
initially propagates faster on network Netb than on Neta.
Later, however, the worm spreads more quickly on Neta than
on Netb.
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Fig. 11. Effect of power law exponent α on email worm propagation

Netb concentrates a large number of links on a small
number of nodes. Once some of these nodes have been
infected, there will be more copies of the worm email sent
out than in Neta. Those highly-connected nodes behave like
amplifiers in email worm propagation (see the amplification
effect explained in Section VI-F). Thus, initially an email
worm spreads faster on Netb than on Neta.

After having infected most highly-connected nodes, the
email worm enters the second phase as shown in Fig. 10—
mainly trying to infect the nodes that have small degrees. Netb
has more nodes with smaller degrees than Neta—the smallest
degree in Netb is one, while in Neta it is three. Since a node
with fewer links is harder to be infected, during the second
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Fig. 12. Effect of the distribution of email checking time Ti

phase of worm propagation the email worm spreads slower on
Netb than on Neta.

H. Effect of email checking time distribution

In our email worm simulation experiments above, we as-
sume that user i’s email checking time, Ti, is exponentially
distributed with mean E[Ti], i = 1, 2, · · · , |V |. What if the
email checking time, Ti, is drawn from some other distribu-
tions, or is simply a fixed value? For example, some email
agent software used by email users will automatically retrieve
new email from users’ mailboxes at a constant time interval.
In this section, we study the effect of the distribution of email
checking time on the propagation of an email worm.

Fig. 12 shows E[I(t)] under four different distributions of
email checking time Ti: hyperexponential distribution [37],
exponential distribution, 3rd-order Erlang distribution, and
constant value. For comparison reason, we let each distribution
to have the same mean value of 1/λ. The probability density
function of the hyperexponential checking time is chosen as:

fX(x) = fY1(y)/4 + 3fY2(y)/4 (12)

where Y1 and Y2 are exponential random variables with rates
λ/2 and 3λ/2, respectively. Based on the formulas provided
in [37], it is not hard to know that this hyperexponential
distribution has the same mean value of 1/λ.

The other simulation parameters are identical: I(0) = 2,
C ∼ N(0.5, 0.32), T ∼ N(40, 202) (the average email
checking time E[Ti] of different users still follows a normal
distribution), i = 1, 2, · · · , N .

In statistics, coefficient of variation (CV) is a measurement
of dispersion of a probability distribution [37]. It is defined as
the ratio of the standard deviation σ to the mean μ of a random
variable, that is, CV = σ/μ. An exponential distribution has
CV = 1, the hyperexponential distribution (12) has CV =√

5/3, the 3-order Erlang distribution has CV = 1/
√

3, and
a constant value has CV = 0. Fig. 12 shows that an email
worm propagates faster as the email checking time interval,
Ti, becomes more dispersed.

We have proven this conclusion for a simplified worm
propagation model. The detailed proof can be found in our
technical report [38]. Intuitively, this phenomenon is due to
snowball effect: before worm copies in the system with less

dispersed checking time give birth to the next generation—
infecting some new hosts—worm copies in another system
with more dispersed checking time have already given birth
to several generations, although each generation’s population
is relatively small.

VII. IMMUNIZATION AND PERCOLATION FOR EMAIL

WORM DEFENSE

In this section, we consider immunization defense against
email worm attacks. For an email network, immunizing a node
means that the node can’t be infected by the email worm under
study. In this paper we consider a static immunization defense.
By this we mean that before an email worm starts to propagate,
a small number of nodes in the network have already been
immunized. If some email users are well educated and never
open suspicious email attachments, they can be treated as
immunized nodes in the email network.

A. Effect of selective immunization

It’s not possible for us to immunize all email users in the
email network. A realistic approach is to immunize a small
subset of nodes. Thus, we need to know how to choose the
appropriate size and membership of this subset in order to
slow down or constrain the email worm spreading.

Wang et al. [21] explained that selective immunization could
significantly slow down virus propagation for tree-like hierar-
chic topology. We find that for a power law email network,
selecting those most highly-connected nodes to immunize is
also quite effective against email worm propagation.

We simulate worm propagation under two different im-
munization defense methods: in the first case we randomly
choose 5 percent of the nodes to immunize, while in the
second case we choose 5 percent of the most-connected nodes
to immunize. We plot E[I(t)] as a function of time t for
these two immunization methods in Fig. 13 (on a power law
network, a small world network, and a random graph network,
respectively). In order to see the effect of immunization, we
also plot E[I(t)] for the original case where there is no
immunization.

We observe from Fig. 13 that selective immunization is quite
effective for a power law topology, while it has little effect
for a small world topology or a random graph topology. On
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Fig. 13. Effect of selective immunization on email worm propagation

a power law email network, we can significantly slow down
email worm propagation by selecting those most-connected
nodes to immunize.

The results here are consistent with the conclusions in [26].
Albert and colleagues [26] showed that selectively attacking
the most-connected nodes rapidly increases the diameter of
a power law network. Since an email worm depends on
the connectivity of the underlying email network to spread,
immunizing the most-connected nodes has the effect of rapidly
increasing the network diameter. This, in turn, significantly
slows down the worm’s propagation.

B. Selective percolation and email worm prevention

Having observed that selective immunization is quite ef-
fective for a power law email network, then what is the
appropriate size of the subset to immunize, and how many
nodes do we need to immunize in order to prevent an outbreak
of an email worm?

From an email worm’s point of view, the connectivity of a
partially immunized network is a “percolation” problem. New-
man et al. [25] studied the standard percolation by uniformly
removing a fraction of nodes from networks—their approaches
cannot be used here to study the selective immunization
defense.

Because we want to study the effect of selective immuniza-
tion, we introduce a new concept, “selective percolation”. For
example, a selective percolation value of p means to remove
the top p percent of the most-connected nodes from a network.

Suppose the email graph G =< V,E > has |V | nodes and
|E| edges. For a selective percolation value of p, 0 < p < 1, let
C(p) denote the connection ratio, the percentage of how many
remaining nodes are still connected after removing the top p
percent of the most-connected nodes from the network. Let
L(p) denote the remaining link ratio, the fraction of remained
links after removing the top p percent of most-connected nodes
from the network. Then we have:{

C(p) = cp/(|V | − |V |p)
L(p) = (|E| − ep)/|E| 0 < p < 1 (13)

where ep is the number of removed links and cp is the size of
the largest cluster in the remaining network when we remove
the top p percent most-connected nodes.

We generate 100 networks for each type of the three topolo-
gies, power law, small world, and random graph topologies.
Each network has an average degree of 8 and |V | = 100, 000
nodes. For every selective percolation value p chosen from
p = 0.01, 0.02, 0.03, · · · , 1, we calculate C(p) and L(p)
by averaging the simulated results derived by equation (13)
from those generated 100 networks for each type of topology,
respectively. In this way, C(p) and L(p) derived here are
properties of the corresponding topology, not of one single
generated network.

For each of the three topologies, we plot C(p) and L(p) as
functions of the selective percolation value p in Fig. 14.

Fig. 14(a) shows that a power law topology has a selective
percolation threshold (the threshold here is about 0.29). If the
fraction of selectively-immunized users exceeds this threshold,
the email network will be broken into separated fragments and
no worm outbreak will occur.

The selective percolation threshold of a power law topology
is much smaller than that of either a small world topology or
a random graph topology. Although a power law topology is
more vulnerable under deliberate attacks [26], it benefits more
from a selective immunization defense.

Fig. 14(a) shows that when we immunize the top 5 percent
of most-connected nodes in a power law network, although
97.5 percent of remaining nodes are still connected, 55.5
percent of the original network edges have been removed.
Thus, an email worm has fewer and longer paths to reach
and infect nodes in the remaining network. Fig. 14(b)(c) show
that this is not the case for a small world topology or a random
graph topology, a 5 percent selective immunization removes
fewer than 20 percent of the edges.

The selective percolation threshold of the random graph
topology (0.68) is slightly smaller than the threshold in the
small world topology. This is understandable since the random
graph topology has a more variant degree distribution than the
small world topology; hence, a selective immunization will
remove more edges from the random graph topology than from
the small world topology.

VIII. CONCLUSION

In this paper we first show that topological epidemic models
presented in [1], [2], [3], [4] largely overestimate an epidemic
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Fig. 14. Selective percolation on three topologies

spreading speed on a topological network due to their implicit
homogeneous mixing assumption. Then, we present an email
worm simulation model by considering email users’ behaviors,
such as email checking frequency and the probability of
opening an email attachment. Given that email worms spread
over a logical network defined by email address relationship,
our observations of email lists suggest that the degrees in an
email network are heavy-tailed distributed. To understand how
the heavy-tailed topology affects email worm propagation, we
compare email worm spreading on three topologies: power
law, small world, and random graph; then, study how the
topology affects immunization defense. From these studies,
we derive a better understanding of an email worm’s behav-
iors and the differences among power law, small world, and
random graph topologies.

Compared to small world and random graph topologies, the
impact of power law topology on email worm propagation
is mixed: on one hand, an email worm spreads faster on a
power law topology than on a small world or a random graph
topology; on the other hand, it is more effective to carry out
selective immunization on a power law topology than on the
other two topologies. This conclusion shows that we could
achieve an effective defense by focusing our precious defense
resources and effort on the small number of email users who
can send out email to a large number of users.

There is still much work to do on email worm modeling
and defense. First, in this paper we have relied on simulations
to study email worm propagation and showed that previous
topological epidemic models are not accurate. The next step
is to derive a more accurate analytical model by relaxing the
homogeneous mixing assumption.

Second, currently there is still no accurate monitoring work
of Internet-scale email worm propagation, since email worms
do not send out random scanning. Wong and colleagues [22]
only provided limited monitoring results of a campus network.
Additionally, email communication traffic is hard to share due
to the privacy concern. Therefore, it is hard to validate our
simulation model with real email worm incidents. We plan
to conduct more research on email worm monitoring and
collaborate with others to solve this problem.

Third, we have only considered static immunization defense
in this paper—we assume that before the break out of an email
worm, a fraction of users have already been immunized from

the worm, and no more users will become immunized during
the propagation of an email worm. However, the more realistic
scenario is that email users and computers gradually become
immunized as an email worm spreads out, which means we
need to further study dynamic immunization defense against
email worms.

Fourth, although we have considered the impact of email
lists on the topology of Internet email network, instead of
an undirected graph, a directed graph is preferred in order to
more accurately capture one-way email address relationship
(that is, user A has the email address of user B, but user
B does not have the address of user A). In addition, there
are many email lists having constraints on who can submit a
broadcast messages to a mailing list (for example, only the
administrator can)—such email lists need specific modeling.
And finally, we need to further consider how to match the
email logical network with the physical networks of email
servers because a good filter on an email server will protect
many email users in the logical email network.
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