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Abstract

In recent years, fast spreading worms, such as Code Red, Slammer, Blaster and Sasser, have become one of
the major threats to the security of the Internet. In order to defend against future worms, it is important to first
understand how worms propagate and how different scanning strategies affect worm propagation dynamics. In this
paper, we systematically model and analyze worm propagation under various scanning strategies, such as uniform
scan, routing scan, hit-list scan, cooperative scan, local preference scan, sequential scan, divide-and-conquer scan,
target scan, etc. We also provide an analytical model to accurately model Witty worm’s destructive behavior. By
using the same modeling framework, we reveal the underlying similarity and relationship between different worm
scanning strategies. In addition, based on our simulation and analysis of Blaster worm propagation and monitoring,
we provide a guideline for building a better worm monitoring infrastructure.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Computer “worms” are programs that self-propagate across a network exploiting security or policy
flaws in widely used services [30]. In recent years, two major classes of worms, “scan-based worms” and
“email worms”, have attacked us frequently. “Email worms” propagate through emails and compromise
computers when email users execute worm email attachments or simply view worm emails, they require
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Nomenclature

c1, c2 c1 = Ωe/Ω, c2 = Ne/N

C(t) cumulative number of infected hosts observed by a monitoring system at time t
d(t) density of vulnerable hosts in the unscanned IP space for a cooperative scan worm
D(t) number of infected hosts that are destroyed by Witty worm by time t
I(t) number of infected hosts at time t
Ie(t), Io(t) number of infected hosts in the target (other) domain(s) at time t, I(t) = Io(t) + Ie(t)
Ik(t) number of infectious hosts in the k-th “/n” prefix network at time t, k = 1, 2, . . . , K

K number of “/n” prefix networks in the worm scanning space Ω, Ω = K2(32−n)

m number of “/n” prefix networks that contain vulnerable hosts (m ≤ K)
N total number of vulnerable hosts in the Internet before worm infection
Ne, No number of initially vulnerable hosts in the target (other) domain(s), N = Ne + No

Nk number of initially vulnerable hosts in the k-th “/n” prefix network, k = 1, 2, . . . , K

p probability of a local preference scan worm to scan locally
q probability of a worm scanning a specific address in a time interval δ, q = ηδ/Ω

Z(t) number of worm scans observed by a monitoring system in a unit time at time t

Greek letters
β pairwise rate of infection in worm propagation model, β = η/Ω

β′, β′′ pairwise rate of infection in local(remote) scan for a local preference scan worm
δ the small time interval used in infinitesimal analysis
ε time delay in worm propagation (considered in idealized worms)
η a worm’s average scan rate
Ω number of IP addresses contained in a worm’s scanning space
Ωe, Ωo size of worm scanning space in the target (other) domain(s) for a selective attack worm,

Ω = Ωe + Ωo

λ average destruction rate of Witty worm

human interference to propagate and thus propagate relatively slowly [30]. On the other hand, “scan-
based worms” propagate by generating IP addresses to scan and directly compromise any vulnerable
target computer, they need no human activation and, thus could propagate much faster than email worms
[26,30]. For example, Slammer in January 2003 infected more than 90% of vulnerable computers in the
Internet within just 10 min [18]. Recent well-known worms, Code Red [19], Code Red II [19], Slammer
[18], Blaster [8] and Sasser [10], are all scan-based worms. In this paper, we concentrate our study on
scan-based worms.

Attackers have tried many scanning strategies in previous worms. Code Red and Slammer uniformly
scanned the entire IPv4 space [7,18]. Code Red II used a local preference scan: it had a higher probability
to scan an address within the same “/16” or “/8” network than a random address [19]. Blaster sequentially
scanned the Internet and chose its sequential-scan starting point from a local address with probability 0.4
[8].
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Until now, worm attacking techniques are more advanced than defense techniques. Many scanning
strategies have been implemented by previous worms but we have not fully understood them yet. Like
earthquake modeling or tornado modeling, a good Internet worm model gives us deep understanding
of the dynamics of worms, helps us to generate effective early warning and defense mechanisms, and
provides the simulation basis for accurately evaluating the performance of various defense systems. In
this paper, we mathematically model and analyze various scanning strategies that attackers have already
used or may use in their future worms.

From our analysis, we derive the following understandings of worm scanning strategies:

• Cooperation among infected hosts for scanning does not significantly increase a worm’s spreading
speed.

• A computer infected by Witty worm has a crash time that is exponentially distributed; the mean value
of the crash time of an infected computer is proportional to the computer’s hard disk volume and
inversely proportional to its network bandwidth.

• A local preference scan increases a worm’s propagation speed when vulnerable hosts are not uniformly
distributed. The optimal local-scan probability increases when the size of the local-scan network
increases.

• When vulnerable hosts are uniformly distributed, divide-and-conquer scan, sequential scan and uniform
scan are equivalent in terms of a worm’s propagation speed.

• A “flash worm” [26] using uniform scan is an optimal spreading worm converged both from a “hit-list
worm” [26] and from a “routing worm” [34]. A flash worm that makes sure no IP address is scanned
more than once is the fastest spreading worm in terms of worm scanning strategy.

• For a sequential scan worm, such as Blaster [8], using local preference in selecting its starting point
slows down the worm’s propagation speed.

• For a selective attack worm, such as a routing worm [34], when the density of vulnerable hosts in the
target domain is higher than the density in other domains, the worm propagates faster in the target
domain if it only scans the target domain instead of all domains (and vice versa).

We also provide two guidelines in defense against worm attacks:

• It is crucial to prevent attackers from easily identifying the IP addresses of a large number of potentially
vulnerable hosts through a public service (i.e., do not advertise IP addresses if possible), or obtaining
address allocation information to dramatically reduce a worm’s scanning space.

• The address space covered by a monitoring system should be as distributed as possible to accurately
monitor the propagation of a non-uniform scan worm, especially a sequential scan worm, such as
Blaster.

The rest of this paper is organized as follows. Section 2 discusses related work. Section 3 introduces
the propagation model for uniform scan worms, which is the modeling basis for this paper. Then Section
4 models and analyzes worm propagation under various scanning strategies. Section 5 provides the
analytical model for modeling the unique destructive behavior of Witty worm. Through studying the
monitoring of Blaster worm, Section 6 provides a guideline on how to set up a comprehensive Internet
worm monitoring system. In the end, Section 7 concludes this paper.
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2. Related work

The security implications of self-propagating codes were first studied by Cohen in 1987 [5]. The
Morris worm in 1988 [24], the ancestor for contemporary Internet worms, was the first widely spread-
ing self-propagating code. After the Morris worm, there were few studies of computer worms, since
no severe worm incident happened for more than 10 years until the Code Red outbreak in 2001
[7].

From 1991 to 1993, Kephart, White and Chess of IBM performed a series of studies on viral infec-
tion based on epidemiology models [13–15]. Then the Code Red incident in July 2001 [7] stimulated
a number of models and analyses of Internet worm propagation. Staniford et al. [26] used the “sim-
ple epidemic model” [6] to model the spread of Code Red right after the Code Red incident and also
presented several theoretical worms. Zou et al. [33] presented a “two-factor” worm model that con-
sidered both the effect of human counter measures and the effect of the congestion caused by worm
scan traffic. Chen et al. [4] presented a discrete-time version worm model and also studied local pref-
erence scanning. Zou et al. [32] used Kalman filter to early detect an Internet worm based on the
worm’s exponential growth trend at its early stage. Nicol and co-workers [17,21] modeled how vari-
ous “good” worms could help defend against worm attacks. Staniford [25] studied enterprise network
worm quarantine based on epidemic modelling. Weaver et al. [30] presented a taxonomy of computer
worms based on several factors: target discovery, carrier, activation, payloads and attackers. Weaver
et al. studied how to model and simulate worm propagation accurately in a down-scaled networking
environment.

The Slammer worm in January 2003 [18] clearly showed that we must consider the network con-
gestion caused by the propagation of a worm in worm modeling. Wagner et al. [28] presented an
Internet worm simulator considering network bandwidth and latency. Serazzi and Zanero [23] con-
sidered the link bandwidth of Autonomous Systems (ASes) in worm modeling based on simple epi-
demic model. Kesidis et al. [16] used coupled Kermack–McKendrick models to model bandwidth-limited
worms.

As researchers understand more how a worm propagates, they identify various ways to make a worm
propagate faster as well. Staniford et al. [26] presented a “hit-list worm” and a “flash worm”, which build
a list of IP addresses of vulnerable hosts into worm code, and thus shorten their propagation time. Wu et
al. [31] presented a “routable scan” worm that increases its propagation speed by scanning BGP routing
prefixes instead of the entire IPv4 space. Zou et al. [34] presented a “routing worm” that is similar to the
above “routable scan” worm and also presented the “selective attack” idea and potential damage from a
routing worm.

In recent years, researchers are paying more attention on monitoring the Internet for malicious activities.
Moore et al. [20] presented the concept of “network telescope” to monitor Internet abnormal traffic to
unused IP space. Zou et al. [32] used a similar monitoring system for early detection of a worm outbreak.
Berk et al. [2] proposed to collect ICMP “Destination Unreachable” messages generated by routers for
packets to unused IP addresses, which in fact monitors the same traffic as the above “network telescope”.
Through active traffic response, “Honeynet” [11] and “Honeyd” [22] can gather more detailed information
of Internet malicious traffic.

A close work to ours is the simulation studies of various worm scanning strategies conducted by Vogt
[27]. However, his work is entirely based on simulation experiments without mathematical analysis and
modeling.
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3. Modeling basis: uniform scan worm model

First, we briefly describe how a scan-based worm propagates: for a TCP vulnerability, a worm first
sets up a TCP connection with a target host on the vulnerable TCP port, then sends exploiting code to
compromise the target (such as Code Red and Blaster); for a UDP vulnerability, a worm directly sends
exploiting code to a target on the vulnerable UDP port (such as Slammer). Computers behind a NAT
device use one single public IP address for communication with the outside Internet, and hence we treat
them as one single host in our Internet worm modeling.

3.1. Uniform scan worm model

The basis of our Internet worm modeling is the classical epidemic model [6]. The system is assumed
to be a “homogeneous system”, any infectious host has the equal probability to infect any susceptible host
in the system. Once a host is infected by a disease, it is assumed to remain in the infectious state forever.
Denote by I(t) is the number of infectious hosts at time t and N is the total number of susceptible hosts in
the system before an epidemic spreads out. Thus, [N − I(t)] is the number of susceptible hosts at time t.
The epidemic model for a homogeneous system is [6]:

dI(t)

dt
= βI(t)[N − I(t)] (1)

where β is called the pairwise rate of infection in epidemiology studies, it represents “infection intensity”
from infectious hosts I(t) to susceptible hosts [N − I(t)]. At t = 0, I(0) hosts are infectious and the other
[N − I(0)] hosts are all susceptible.

For readers’ convenience, see nomenclature lists all notations used in this paper.
It should be noted that N is the total number of vulnerable hosts in the system before a disease or a

worm spreads out (I(0) of them are initially infected). For Internet worms, we do not consider invulnerable
computers in the modeling. For example, we use N = 360, 000 for Code Red, since it infected around
360, 000 computers on July 19th 2001 [19], even though millions of Windows web servers were on-line
on that day.

A “uniform scan worm” is a worm that uniformly picks IP addresses in its scanning space to scan and
compromise, which can be modeled by (1). However, we need to find a model described by a worm’s
parameters that have concrete physical meanings, not just by an abstract value β. In the following, we
derive the uniform scan worm model based on “infinitesimal analysis” and “mean value analysis”.

Suppose, a uniform scan worm has an average scan rate η, which is the average number of scans an
infected host sends out per unit time. Denote by δ as the length of a small time interval. Thus, during δ

time interval, an infected host sends out an average of ηδ scans. Suppose, the worm uniformly scans the
IP space that has Ω addresses; then every scan has a probability of 1/Ω to hit any one IP address in this
scanning space. Hence, on average an infected host has a probability

q = 1 −
(

1 − 1

Ω

)ηδ

≈ ηδ

Ω
(2)

to hit a specific IP address in the scanning space Ω during a small time interval δ. The approximation in
(2) is accurate, since 1/Ω � 1.
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At time t, there are [N − I(t)] vulnerable hosts in the system. From time t to t + δ, the probability that
two scans sent out by an infected host hit the same vulnerable host is negligible when δ is sufficiently
small. Therefore, an infected host infects on average [N − I(t)]q vulnerable hosts from time t to t + δ.
When δ is sufficiently small, the probability of two infected hosts infecting the same vulnerable host
during the time interval δ is also negligible. Therefore, the number of newly infected hosts during the
time interval δ equals I(t)[N − I(t)]q. Put (2) in and we derive the number of infected hosts at time t + δ:

I(t + δ) = I(t) + I(t)[N − I(t)]
ηδ

Ω
(3)

Note that we do not exclude the possibility that two instances of a worm scan the same target during a
time interval δ. Such a probability is a second-order function of δ, and hence quickly goes to zero as the
time interval δ goes to zero. Therefore, Eq. (3) is accurate when δ is very small (which is the essence of
infinitesimal analysis).

Taking δ → 0, we derive the worm model for uniform scan worms:

dI(t)

dt
= η

Ω
I(t)[N − I(t)] (4)

It is identical to the epidemic model (1) where β corresponds to

β = η

Ω
(5)

Staniford et al. [26] presented a “random constant spread” (RCS) model to model the propagation of a
uniform scan worm:

da(t)

dt
= Ka(t)[1 − a(t)] (6)

where a(t) is the proportion of vulnerable machines that have been infected by time t. Therefore, a(t) =
I(t)/N. This RCS model is, in fact, equivalent to the epidemic model (1) where its parameter K = βN.
Our contribution in this section is to derive a uniform scan worm model (4) that is described directly by
a worm’s propagation parameters η and Ω.

3.2. Modeling assumption and justification

It should be noted that the uniform scan worm model (4) models the propagation of a worm in an
“ideal” network condition. It does not consider the two major factors affecting a worm’s spreading as
mentioned in [33]: human counteraction and network congestion. For more accurate worm modeling, the
human counteraction is a major factor to consider in modeling a slow spreading worm, while the network
congestion is a major factor to consider in modeling a fast spreading worm.

We do not, however, consider human counteraction and network congestion for most of the models in
this paper. A worm’s propagation in an ideal network condition exhibits the worm’s essential propagation
properties. Considering those two factors in modeling will make the modeling much more complex, and
hence make it unclear how different worm scanning mechanisms affect a worm’s propagation. When
reading this paper and interpreting the modeling results, a reader should keep in mind of this modeling
assumption and limitation.
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4. Modeling and analysis of worm scanning strategies

4.1. Uniform scan worm and its variants

In this section, we first model well-known uniform scan worms, “Code Red” [19] and “Slammer” [18],
then model their several possible variants: “hit-list worm”, “routing worm” and “divide-and-conquer”
scan worm.

4.1.1. Uniform scan worms that scan the entire IPv4 space
When a worm has no knowledge of where vulnerable hosts reside in the Internet, the simplest strategy

is to uniformly scan the entire IP address space to find targets, which is what Code Red and Slammer did
[18,26]. For such a worm, the scanning space is the entire IPv4 address space, i.e., Ω = 232. Therefore,
such a worm can be modeled by the uniform scan worm model (4) with Ω = 232.

4.1.2. Hit-list worm
Staniford et al. [26] introduce a “hit-list worm”, which has an IP address list of some vulnerable hosts

in the Internet. A hit-list worm first scans and infects all vulnerable hosts on the hit-list, then randomly
scans the entire Internet to infect others. A hit-list worm can infect all vulnerable hosts on its hit-list
within just several seconds [26]. When a hit-list worm begins to scan the entire Internet after finishing its
hit-list, it propagates just like an ordinary uniform scan worm. If we ignore the first several seconds used
in compromising vulnerable hosts in its hit-list, a hit-list worm can be modelled by (4) with Ω = 232 and
a large number of initially infected hosts I(0), which is equal to the size of the worm’s hit-list.

4.1.3. Routing worm
In our previous paper [34], we have introduced a “routing worm”, which uses BGP routing prefixes to

reduce the worm’s scanning space Ω. Based on BGP routing table, they find that currently about 28.6%
of IPv4 addresses are routable. Thus, if a worm uses BGP prefixes information, which is called a “BGP
routing worm”, the worm reduces its scanning space by more than three times. When a BGP routing
worm uniformly scans the BGP routable space, it can be modeled by the uniform scan worm model (4)
by replacing Ω = 0.286 × 232.

A BGP routing worm has a big BGP prefix payload (more than 100 kB) that could possibly cause
congestion and slow down the propagation of the worm. Thus, we introduce a “/8 routing worm”, which
only scans 116 “/8” prefix networks that contain all BGP routable addresses. In this way, a /8 routing
worm only needs to carry a 116-byte payload and can be modeled by (4) with Ω = 0.453 × 232.

Because of its tiny payload, a /8 routing worm might be used by attackers in their future “bandwidth-
limited worm”, which is a worm that fully uses the link bandwidth of an infected host to send out infection
traffic. For example, Slammer is a bandwidth-limited worm with an average scan rate η = 4000 scans/s
at its early stage [18]. Each UDP infection packet sent out by Slammer is 404 bytes [18]. If attackers
transform Slammer into a /8 routing worm, which is referred to as a “routing Slammer worm”, its UDP
scan packet would be 520 bytes. In this case, the “routing Slammer worm” would have an average
scan rate η = 1, 616, 000/520 = 3108 s (since the average bandwidth of a Slammer infected host is
4000 × 404 = 1, 616, 000 bytes/s). Fig. 1 shows the worm propagation of the original Slammer and the
new “routing Slammer worm” as functions of time (the other parameters are N = 100, 000, I(0) = 10,
the same as [32]).
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Fig. 1. Worm propagation of Slammer and “routing Slammer worm” (N = 100, 000, η = 4000 s, I(0) = 10).

Note that because of limited network bandwidth, the real Slammer only propagated according to the
curve in Fig. 1 at its early stage [18], the worm quickly dropped its spreading speed as the Internet was
congested by worm traffic sent out from a large number of infected hosts.

4.1.4. Comparison of Code Red, a hit-list worm and routing worms
In the following, we use the same parameters for Code Red as what used in [32], i.e., N = 360, 000,

η = 358/min, I(0) = 10. Suppose when attackers change the original Code Red into a BGP routing worm
and also a hit-list worm, the worm’s scan rate does not change, i.e., η = 358 min. The BGP routing worm
has I(0) = 10 as the original Code Red, while the hit-list worm is assumed to have a 10,000 hit-list,
i.e., I(0) = 10, 000. Fig. 2 shows the propagation of the hit-list worm, the BGP routing worm, and the
original Code Red. Compared with a BGP routing worm, a hit-list worm can infect a much larger number
of vulnerable hosts in a short time because of its hit- list, but it has a slower infection speed because of
its larger scanning space Ω.

Fig. 2. Worm propagation of Code Red, BGP routing worm, hit-list worm and hit-list routing worm.
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Since a hit-list worm and a routing worm use two different approaches to increase their propagation
speed, they can be easily combined together to generate a new worm called a “hit-list routing worm”. The
propagation of such a worm is also shown in Fig. 2. This figure shows that a hit-list routing worm has
both advantages of a hit-list worm and a routing worm, it only needs less than 50 min to finish infection
instead of the 500 min used by the original Code Red.

The famous Warhol worm presented in [26] is a hit-list worm that uses “permutation scan” instead
of uniform scan when it scans the entire IPv4 space. Permutation scan provides a form of coordination
among infected hosts [26], and hence the Warhol worm propagates faster than a uniform scan hit-list
worm after a large fraction of the vulnerable population has been infected (as shown in Fig. 3 in [29]).
When the BGP routing worm and Code Red implement the same permutation scan as the Warhol worm
instead of uniform scan, these three worms will still have the similar propagation relationship as what
shown in Fig. 2 by replacing the hit-list worm with the Warhol worm. However, they cannot be modeled
by the uniform scan worm model (4) anymore because of their permutation scan.

A routing worm increases its speed by reducing its scanning space; a hit-list worm increases its speed
by knowing addresses of a large number of vulnerable hosts. Based on above experiments and analyses,
we derive a guideline on worm defense.

Proposition 1. It is crucial to prevent attackers from easily identifying the IP addresses of a large number
of potentially vulnerable hosts through a public service (such as Google search), or obtaining address
allocation information to dramatically reduce a worm’s scanning space.

This guideline tells us that: (1) we should not advertise addresses of computers unless it is absolutely
necessary (such as web servers), otherwise attackers can easily get the addresses of a large number of
hosts through a public service, such as the Google search service1 and (2) BGP routing table is inherently
public, and hence we cannot prevent attackers from exploiting it.2 We should, however, prevent attackers
from further reducing their worm’s scanning space.

Of course, attackers can always generate a target list by slowly scanning the Internet to build the hit-list
for their hit-list worm, it is inherent in the nature of the Internet. However, such a hit-list building process
might take some time and also might alert many people of the incoming worm attack. The first half of
the Proposition 1 tells us not to make it easy for attackers to build a hit-list worm.

4.1.5. Divide-and-conquer scan worm
A uniform scan worm can use a “divide-and-conquer” approach to allow different infected hosts to scan

and infect vulnerable hosts on different parts of IP space, which is referred to as a “divide-and-conquer
scan worm”. This scanning strategy might be used by a routing worm or a hit-list worm to reduce the
worm payload by carrying a small part of routing prefixes or hit-list in each worm copy.

Now we model such a divide-and-conquer scan worm. Assume that when the worm infects a target,
it passes half of its scanning space to the target (the space passed to the target includes the target host),
and then continues to scan the remaining half of its original scanning space. Suppose each infected host
uniformly scans addresses in its scanning space without remembering what addresses have already been
scanned, which means that a same address might be scanned more than once, this is the assumption

1 For example, Santy worm used Google search engine to find web servers that have phpBB software in use [9].
2 Because of the BGP protocol, any one of the major BGP routers around the world has (almost) complete information of all

BGP routing prefixes.
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used in deriving the uniform scan worm model (4). We also assume that vulnerable hosts are uniformly
distributed in the worm’s scanning space Ω (e.g., the entire IPv4 space or the BGP routable space); each
of those I(0) initially infected hosts is responsible for one scanning space with Ω/I(0) addresses.

Under the above divide-and-conquer process, each infected host is the only infected one in its scanning
space. Thus, at time t the whole scanning space Ω is divided into I(t) blocks: each infected host is
responsible for one scanning space with the average size of [Ω/I(t) − 1] (minus 1 because an infected
host will not scan itself). Since vulnerable hosts are uniformly distributed and the worm uniformly picks
addresses to infect, at any time the remaining vulnerable hosts are also uniformly distributed. Thus, at
time t, each infected host’s scanning space contains on average [N/I(t) − 1] vulnerable hosts (minus 1
because of the infected host itself).

According to (2), the probability an infected host scans a specific IP address during a time interval δ is
q = ηδ/[Ω/I(t) − 1]. Using the same infinitesimal analysis procedure as in deriving (3), we get:

I(t + δ) = I(t) + I(t)
[

N

I(t)
− 1

]
q (7)

Taking δ → 0, we derive the propagation model of the divide-and-conquer scan worm:

dI(t)

dt
= η

Ω − I(t)
I(t)[N − I(t)] ≈ η

Ω
I(t)[N − I(t)] (8)

which is exactly the uniform scan worm model (4). In (8), Ω − I(t) � Ω because an Internet-scale worm
has I(t) ≤ N � Ω.

Summarizing the above arguments yields.

Proposition 2. If vulnerable hosts are uniformly distributed in the worm’s scanning space, a “divide-
and-conquer” scan worm has the same propagation speed as a uniform scan worm and can be modeled
by (4).

Note that Wu et al. [31] discussed a similar “divide-and-conquer” scan worm. However, they assumed
that no IP address would be scanned twice. This is the reason why their “divide-and-conquer” scan worm
propagates exponentially [31]. Such a scanning strategy requires that an infected host either needs to record
what IP addresses it has already scanned, or needs some perfect cooperative mechanism. Therefore, we
believe the divide-and-conquer scan we have modeled above is more realistic.

4.2. Idealized worm

In this section, we study two idealized worms: “cooperative scan worm” and “flash worm”. We call
them “idealized worms” because they are theoretical worms that are hard to be implemented by attackers
on the global scale of the Internet.

4.2.1. Cooperative scan worm
A “cooperative scan worm” is a worm that lets all infected hosts to cooperate with each other such

that no IP address would be scanned more than once. As described above, the “divide-and-conquer” scan
worm in [31] satisfies the condition and thus is one kind cooperative scan worm.

Now we model a general cooperative scan worm that randomly scans its unscanned IP space; all
infected hosts are assumed to have set up a perfect communication channel such that no IP address
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Fig. 3. Worm propagation comparison between a “cooperative scan worm” and original Code Red.

is scanned more than once. Denote d(t) as the density of vulnerable hosts in the unscanned IP space
by time t. At beginning t = 0, N ′ = N − I(0) hosts are vulnerable and the worm’s scanning space has
Ω′ = Ω − I(0) unscanned addresses. Thus, d(0) = N ′/Ω′. When the worm infects another vulnerable
host at time t0, on average Ω′/N ′ IP addresses have been scanned by all infected hosts. Thus, at time t0 the
density d(t0) = [N ′ − 1]/[Ω′ − Ω′/N ′] = N ′/Ω′. Carry on this process and we derive that at any time t,
d(t) ≡ N ′/Ω′ � N/Ω (when I(0) � N). From time t to time t + δ, I(t) infected hosts send out on average
ηδI(t) scans, which in turn infect on average ηδI(t)d(t) hosts. Therefore, I(t + δ) = I(t) + ηδI(t)N/Ω.
Taking δ → 0, we derive the propagation model of a cooperative scan worm:

dI(t)

dt
=

{
η

Ω
NI(t), I(t) < N

0, I(t) = N
(9)

When Code Red is changed to a cooperative scan worm, Fig. 3 shows its propagation in comparison
with the original Code Red. Comparing this figure with Fig. 2, we can see that the “cooperative scan”
strategy does not increase a worm’s propagation speed as much as the “hit-list” or the “routing” scanning
strategies. This is because at the early stage of a worm’s propagation, few scans from a uniform scan
worm are wasted on already scanned IP addresses. Thus, cooperative scan has little effect at the early
stage of a worm’s propagation.

The cooperative scanning strategy discussed above is an optimal cooperation between all worm copies,
which is hard to be implemented by a worm. The “permutation scan” presented in “Warhol worm” [26],
which can be easily implemented by a worm, is a sub-optimal cooperation. Thus, the propagation curve
of a permutation scan worm lies in between those two curves shown in Fig. 3.

Summarizing this analysis yields.

Proposition 3. An optimal cooperative scanning strategy increases a worm’s propagation speed by
maintaining the worm’s exponential growth until finishing the infection process. However, it does not
increase the speed “significantly”, since it does not increase the exponential growth rate at the early
stage of the worm’s propagation (not as effective as the hit-list strategy or the routing scanning strategy).

This proposition provides a fundamental understanding of cooperation in a distributed system. It
shows that instead of designing various complex cooperative mechanisms, it is more effective for
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attackers to design a better infection and scanning strategy (such as the hit-list scan or the routing
scan).

4.2.2. Flash worm
Staniford et al. [26] introduced a “flash worm”, which knows the IP addresses of all vulnerable hosts in

the Internet and uses divide-and-conquer to scan the address list. If such an approach makes sure that no IP
address is scanned more than once, the flash worm is a special cooperative scan worm that has a scanning
space with the size Ω = N. A “flash worm” is hard to be deployed by attackers because: (1) it needs
attackers to scan the whole IPv4 Internet to collect a complete address list of all potentially vulnerable
hosts and (2) to split the large address-list payload among worm copies, it requires a complicated divide-
and-conquer algorithm that is robust to the removal of infected hosts.

A flash worm propagates much faster than an ordinary worm that scans the entire IPv4 space because
of its scanning space Ω = N � 232. For this reason, in the flash worm modeling we need to consider the
time delay caused by the infection process of a vulnerable host. Denote ε as the time delay, which is the
time interval from the time when a worm scan is sent out to the time when the vulnerable host infected
by the scan begins to send out worm scans. Based on model (9), we derive the flash worm propagation
model:

dI(t)

dt
=

{
ηI(t − ε), I(t) < N

0, I(t) = N
(10)

where I(t − ε) = 0, ∀t < ε.
If a flash worm uniformly scans the address list of all vulnerable hosts, we call it as a “uniform-scan

flash worm”, which can be modeled by the model (4) with the worm’s scanning space Ω = N. After
considering the propagation delay ε, the uniform-scan flash worm is modeled by:

dI(t)

dt
= η

N
I(t − ε)[N − I(t)] (11)

where I(t − ε) = 0, ∀t < ε.
In fact, a uniform-scan flash worm can be derived when maximizing the spreading speed of either a

hit-list worm or a routing worm, the size of a flash worm’s scanning space, Ω = N, is the optimal value
for the size of both the hit-list in a hit-list worm and the scanning space of a routing worm.

Fig. 4 shows I(t) as a function of time for the flash worm and the uniform-scan flash worm (ε = 2 s).
To compare with previous experiments, here we use the same Code Red parameters, i.e., N = 360, 000,
η = 358 min, I(0) = 10. Note that these flash worms finish infection within 20 s, while Code Red finishes
infection around 500 min as shown in Fig. 2 (because of flash worms’ scanning space Ω = N � 232).

Summarizing the above analysis yields.

Proposition 4. A flash worm that uses uniform scan is an optimal spreading worm converged both from
hit-list worm and from routing worm. A flash worm that conducts cooperative scan (i.e., no IP address is
scanned more than once) is the fastest spreading worm in terms of worm scanning strategy.

4.3. Local preference scan worm

Uniform scan is the simplest scanning strategy for a worm to use. However, it is not optimal since
vulnerable hosts in the Internet are not uniformly distributed. Intuitively, a worm could increase its
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Fig. 4. Propagation of flash worms. (Note that the time scale is second instead of minute in Figs. 2 and 3.)

spreading speed when it scans more intensively in the IP space where vulnerable hosts are more densely
distributed.

For this reason, attackers have implemented “local preference scan” in their worms, such as in Code
Red II [19]: it has a higher probability to scan an IP address within the same “/16” or “/8” network than
a random IP address. In general, “local preference scan” is the scanning strategy where an infected host
scans IP addresses close to its address with a higher probability than addresses farther away.

In this paper, we model and analyze a local preference scan worm that has probability p to uniformly
scan addresses in its own “/n” prefix network and probability (1 − p) to uniformly scan other addresses.
A “/n” prefix network is a network containing all IP addresses that have the same first n bits. Thus,
in the current IPv4 Internet, a “/n” prefix network contains 232−n IP addresses. Assume that the worm
scanning space Ω consists of K “/n” prefix networks (Ω = K232−n), each network has Nk vulnerable
hosts, initially k = 1, 2, . . . , K. Denote by Ik(t) the number of infected hosts in the kth network at the time
t; β′ and β′′ as the pairwise rates of infection in local scan and remote scan, respectively. Then according
to (5), we have

β′ = pη

232−n
, β′′ = (1 − p)η

(K − 1)232−n
(12)

Based on the epidemic model (1), the propagation of a local preference scan worm can be modeled by:

dIk(t)

dt
=

⎡
⎣β′Ik(t) +

∑
j 
=k

β′′Ij(t)

⎤
⎦ [Nk − Ik(t)] (13)

with initial conditions Ik(0) for k = 1, . . . , K.
In the current Internet, computers are not uniformly distributed within the IPv4 address space. For

example, currently about 116 out of the total 256 “/8” networks of the IPv4 space contain routable IP
addresses [34]. Without loss of generality, suppose in K “/n” prefix networks, only the first m networks
(m < K) have uniformly distributed vulnerable hosts, i.e., N1 = · · · = Nm = N/m, Nm+1 = · · · = NK =
0. However, attackers do not know which “/n” prefix networks are empty (otherwise, attackers can use
the “routing worm” idea [34] to remove those empty networks from the worm’s scanning space). From
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(13), the worm propagation on each network follows (k = 1, . . . , m):

dIk(t)

dt
= [β′ + (m − 1)β′′]Ik(t)[Nk − Ik(t)] (14)

Suppose Ik(0) = I1(0) > 0, k = 2, 3, . . . , m. From the entire Internet point of view, the worm follows

dI(t)

dt
= m

dI1(t)

dt
= β′ + (m − 1)β′′

m
I(t)[N − I(t)] (15)

A local preference scan worm propagates fastest when it chooses the optimal value p = 1 to maximize
the pairwise rate of infection [β′ + (m − 1)β′′]/m in (15). Such a conclusion seems unexpected, but it
is reasonable for the assumptions we have used, all m “/n” networks are assumed to be identical. When
p = 1, no worm scans will be wasted in the other (K − m) empty “/n” networks.

In reality, no network is exactly the same as others. Remote scan is necessary for a worm to spread out to
every part of the Internet. When we assume that initially I(0) = I1(0) > 0 and Ik(0) = 0, k = 2, 3, . . . , m,
then a local preference scan worm requires p < 1 in order to spread out into other networks. For this sce-
nario, Ik(t) ≡ I2(t), k = 3, . . . , m. Hence, the worm propagation on each prefix network is described by:

dI1(t)

dt
= [β′I1(t) + (m − 1)β′′I2(t)]

[
N

m
− I1(t)

]

dIk(t)

dt
= [β′′I1(t) + (β′ + mβ′′ − 2β′′)Ik(t)]

[
N

m
− Ik(t)

] (16)

for k = 2, 3, . . . , m. From the entire Internet point of view, I(t) = I1(t) + (m − 1)I2(t).
Serazzi and Zanero [23] presented a “compartment-based” model that is similar to (16). The

compartment-based model tries to explain the worm infection process between Autonomous Systems;
here, we use the model (16) to explain and model the propagation of a local preference scan worm. In
fact, these two models are essentially the same, both of them try to model the worm propagation within
many interacting groups.

We use Matlab Simulink [12] to solve the model above under different preference probabilities p. We use
the previous Code Red parameters in the study here, i.e., N = 360, 000, η = 358 min, I(0) = I1(0) = 10.
We consider two scenarios to study the effect of the size of “/n” prefix networks: one considering local
scan on “/8” networks and another considering local scan on “/16” networks.

For the first scenario where each prefix network is “/8”, K = 28 = 256. [34] points out that currently
around 116 “/8” networks are routable, thus m = 116. Based on these parameters, Fig. 5(a) shows I(t)
under different preference probabilities p. For comparison, we also show the original Code Red prop-
agation on this figure (the one labelled as “uniform scan worm”). If attackers know that m = 116 “/8”
networks have vulnerable hosts and know their prefixes, they can implement the “/8 routing worm” [34]
to uniformly scan the m “/8” networks IP space only. The propagation of such a worm is also shown in
Fig. 5(a).

For the second scenario where each network is “/16”, K = 216 = 65536. Since 116 “/8” networks have
been allocated and each one of them contains 28 “/16” networks, we assume m = 116 × 28 = 29, 696.
Based on these parameters, Fig. 5(b) shows I(t) under different preference probabilities p.

Fig. 5 shows that when vulnerable hosts are not uniformly distributed, local preference scan increases
a worm’s propagation speed. When local scan is on “/16” prefix networks, the optimal value of p is about
0.85; on the other hand, it is close to one when local scan is on “/8” prefix networks.
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Fig. 5. Comparison of Code Red, a /8 routing worm, a local preference worm with different preference probabilities p. (a) Local
preference scan on “/8” network level (K = 256, m = 116). (b) Local preference scan on “/16” network level (K = 65, 536,
m = 29, 696).

Therefore, the optimal value of p is determined by the locality in local scan. We explain it in an intuitive
way: when x “/n” networks have infected hosts initially, the purpose of remote scans is to spread out
worm seeds to every one of the other (m − x) “/n” networks. If a worm uses “/8” network in its local
preference scan, it needs to spread out worm seeds to at most m = 116 networks. On the other hand, using
“/16” network in its local scan, a worm needs to spread out worm seeds to everyone in those m = 29, 696
networks. Therefore, a “/16” local scan worm needs much more effort to spread out worm seeds than a
“/8” local scan worm.

Summarizing the above analysis yields.

Proposition 5. When vulnerable hosts are not uniformly distributed in a worm’s scanning space, local
preference scan increases a worm’s propagation speed. The optimal local preference scan probability p
increases as the size of local scan networks increases.

Note that in this analysis, we have not considered the impact of possible network congestion and
the impact of different network connection speed. If a worm extensively uses local preference scan, the
intense local scan traffic might cause congestion to local networks and slow down the worm’s overall
spreading speed. In this case, the optimal local scan probability p should be smaller than our derived
theoretical optimal value to avoid local congestion. On the other hand, a local preference scan worm
enjoys the benefit of better network connections and smaller values of Round-Trip-Time (RTT) in its
local scanning. So if there is no congestion issue, then the optimal local scan probability p should be a
bit bigger than the theoretical optimal value derived in our analysis.

Besides the speed concern, other advantages of using local preference scan include: (1) infect more
hosts in local networks that are either behind firewalls or have private IP addresses and (2) decrease the
number of scans that across organizational perimeters (where advanced intrusion detection systems are
more likely to be deployed) to avoid detection.

Chen et al. [4] modeled local preference scan- based on their discrete-time worm propagation model.
However, they assumed that vulnerable hosts are evenly distributed in every subnet, which is not the case
for the current Internet. In our analysis, we have used a more realistic assumption that vulnerable hosts
are uniformly distributed in BGP routable subnetworks.
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4.4. Sequential scan worm

Until now we have assumed that worms scan IP addresses not in any order. A very different scanning
strategy is to scan IP addresses sequentially. Once a vulnerable host is infected by a “sequential scan
worm”, it begins to sequentially scan from a starting IP address selected by the worm. Blaster is a typical
sequential scan worm [8]. Without loss of generality, we assume that a sequential scan worm scans IP
addresses additively.

In our previous analysis, we find that local preference scan increases the spreading speed of a random
scan worm. For a sequential scan worm, “local preference” means when a worm chooses its starting
point, it chooses an address close to its own one with a higher probability than an address far away. We
call such a worm as a “preference sequential scan worm”. Blaster is such a worm: it chooses its starting
point locally as the first address of its Class C subnetwork with a probability 0.4 [8].

Now we analyze the effect of such a local preference scan on a worm’s propagation. When an infected
host (parent) finds and infects a vulnerable host (child) that has address x, the parent will keep going
on to scan IP addresses x + 1, x + 2, . . .. If the child infected host uses local preference to select its
starting point, it is more likely to repeat its parent’s scanning trail, i.e., repeatedly scans IP addresses
x + 1, x + 2, . . . that have already been scanned by its parent. Therefore, the local preference strategy
wastes most of the infection power of infected hosts that have chosen local IP addresses to start scanning.

Summarizing the analysis above yields.

Proposition 6. For a sequential scan worm, using local preference in selecting the worm’s starting point
slows down the worm’s propagation speed.

For this reason, we mainly model and analyze a sequential scan worm with a uniformly chosen starting
point, which is referred to as a “non-preference sequential scan worm”. First, we analyze the propagation
of such a worm when vulnerable hosts are uniformly distributed. Suppose at time t, I(t) hosts are infected
by a non-preference sequential scan worm; and the density of vulnerable hosts in the worm’s scanning
space is [N − I(t)]/Ω. During the next small time interval δ, each infected host sequentially scans ηδ IP
addresses and thus infects on average ηδ[N − I(t)]/Ω vulnerable hosts. When δ is sufficiently small, the
probability of two infected hosts infecting the same vulnerable target is negligible. Thus, we have

I(t + δ) = I(t) + ηδ

Ω
I(t)[N − I(t)] (17)

Taking δ → 0, we derive the same propagation model as the uniform scan worm model (4).
Summarizing the analysis above yields.

Proposition 7. If vulnerable hosts are uniformly distributed in the worm’s scanning space, a sequential
scan worm that uniformly selects its starting point has the same propagation speed as a uniform scan
worm and can be modeled by (4).

To verify our analysis, we simulate a “uniform scan worm” (Code Red); a “preference sequential
scan worm” that chooses its starting point locally with probability 0.4 (Blaster) and a “non-preference
sequential scan worm”. For comparison, we use the same Code Red parameters, N = 360, 000, I(0) =
10, η = 358 min, for all these three worms. Considering that different infected hosts have different scan
rates, we use the same simulation method as in [32]: every host has a scan rate x while x follows a normal
distribution N(358, 1002).
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Fig. 6. Comparison of a non-preference sequential scan worm, a preference sequential scan worm with 40% local preference,
and a uniform scan worm (vulnerable hosts uniformly distributed in the BGP routable space; 100 simulation runs). (a) Mean
value of worm propagation and (b) variabilities in worm propagation.

In this experiment, we need to consider the distribution of vulnerable hosts in the Internet. Since we do
not know the real distribution, a reasonable approach is to assume that all vulnerable hosts are uniformly
distributed in the routable space defined by BGP routing prefixes [34]. We simulate each of the above three
worms 100 times and show the results in Fig. 6. Fig. 6(a) plots the mean value of I(t) of each worm over
100 simulation runs; Fig. 6(b) shows the variability of worm propagation for the uniform scan worm and
the non-preference sequential scan worm. The “95%” propagation curve means that a worm propagates
no faster than this curve in 95 out of 100 simulation runs. Therefore, in 90 out of 100 simulation runs, a
worm propagates within the boundary defined by the “5%” and “95%” propagation curves.

Fig. 6(a) agrees with Proposition 6: for a sequential scan worm, using local preference in selecting its
starting point significantly slows down the worm’s propagation speed. Fig. 6(b) shows that the propagation
of a sequential scan worm varies considerably because of the non-uniform distribution of vulnerable hosts.

To verify Proposition 7, we run the above 100-simulation experiment again with the assumption that
vulnerable hosts are uniformly distributed in the entire IPv4 space. This time the experiment shows that
the average I(t) (over 100 simulation runs) of the non-preference sequential scan worm is identical to the
uniform scan worm, which verifies Proposition 7. In Fig. 6(a), because of the non-uniform distribution of
vulnerable hosts, the non-preference sequential scan worm propagates slightly slower than the uniform
scan worm.

4.5. Selective attack worm

Attackers may not want their worm to infect or destroy all compromised computers in the Internet. In a
selective attack, attackers only care about how fast a worm propagates in the target domain, not how many
vulnerable hosts have been infected in the global Internet. Suppose the target domain has Ne vulnerable
hosts and a scanning space of size Ωe; the other domains have No vulnerable hosts and a scanning space
of size Ωo. Thus, overall N = Ne + No, Ω = Ωe + Ωo. Denote by Ie(t) and Io(t) the number of infected
hosts at time t in the target domain and in the other domains, respectively.

“Target-only” scanning strategy means that a selective attack worm only scans and infects vulnerable
hosts in the target domain. In this case, if the worm uniformly scans the target domain, the worm’s
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propagation follows the uniform scan worm model (4) by replacing the scanning space Ω to Ωe:

dIe(t)

dt
= η

Ωe
Ie(t)[Ne − Ie(t)] (18)

On the other hand, a selective attack worm can uniformly scans the entire scanning space Ω. We call
such a worm as a “global scan worm”, which is modeled by the uniform scan worm model (4). The
question is: which worm propagates faster in the target domain, the target-only worm or the global scan
worm?

Assume that c1 = Ωe/Ω and c2 = Ne/N; if c2 > c1, vulnerable hosts are more densely distributed in
the target domain than in other domains. The global scan worm has Ie(t) = c2I(t) because of its uniform
scan strategy. Substituting this equation into model (4), we derive:

dIe(t)

dt
= η

c2Ω
Ie(t)[Ne − Ie(t)] (19)

Comparing (18) with (19), we observe that, if c2 > c1, i.e., vulnerable hosts are more densely distributed
in the target domain than in other domains, then the target-only worm propagates faster than the global
scan worm in the target domain (and vice versa).

Summarizing the above analysis yields.

Proposition 8. For a selective attack worm, if vulnerable hosts are more densely distributed in the target
domain than in other domains, the worm propagates faster in the target domain if it only scans the IP
space of the target domain instead of all domains.

5. Modeling destructive worm: Witty

Most previous worms are “benevolent” worms that do not destroy any resource on compromised com-
puters. However, recent “Witty” worm (appeared on March 20, 2004) is the first widely spread worm
that carries a destructive payload [3]. We call such a worm as a “destructive worm”. A destructive
worm wants to destroy as many computers as possible, thus it should destroy a compromised com-
puter as soon as possible to prevent people from having time to clean the computer. However, destroy-
ing a compromised computer might make the computer unable to send out worm packets to infect
others, and thus, prevent the worm from spreading out quickly. Therefore, a destructive worm usu-
ally needs to make a trade-off between destroying a computer and holding an infected computer for
propagation.

After sending out 20,000 infection packets, Witty worm writes 65 K data to a random point of hard
disk on a compromised computer and then repeats this process until the computer is crashed due to
the random destruction of hard disk [3]. Since the destructive data has fixed size and is written to a
random point of hard disk, each hard disk destructive writing has a small but constant probability q to
crash a compromised computer, where q is determined by the computer’s operating system and hard
disk volume. Suppose a compromised computer is crashed when the worm writes X times destruc-
tive data, then X follows “geometric distribution”. Define “destruction time” as the time interval from
compromising a computer to the crashing of the computer due to Witty’s destructive data. Suppose a
compromised computer takes a constant time T to send out 20,000 infection packets due to its constant
network bandwidth, then the destruction time follows geometric distribution, too. Because q � 1, the
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destruction time can be roughly modeled by a continuous “exponential distribution” with a rate q/T . Due
to differences in network bandwidth and hard disk volume, different Witty compromised computers have
exponential distributed destruction time with different rates, we denote the average “destruction rate”
as λ.

Denote D(t) as the number of crashed computers due to the destruction of Witty worm. Suppose there
are I(t) infectious hosts at time t. In the next small time interval δ, each infected host has the small
probability λδ to be crashed, regardless of how long the host has been infected due to the memoryless
exponential distribution of destruction time. Thus, on average λδI(t) infected hosts will be crashed and
removed from I(t) from time t to time t + δ (added to D(t)). Taking δ → 0 and from the uniform scan
worm model (4), we derive the worm propagation model for Witty worm (which is identical to the
Kermack–Mckendrick epidemic model [6]):

dI(t)

dt
= η

Ω
I(t)[N − I(t) − D(t)] − dD(t)

dt
,

dD(t)

dt
= λI(t) (20)

We obtain a set of Witty monitored data from the “Internet Motion Sensor” (IMS) in University of
Michigan [1]. The data shows the number of Witty scans per 1000 s observed by IMS on three “/24”
blackhole networks, it can represent the number of infectious hosts I(t) in the entire Internet since Witty
uniformly scanned the Internet. In the modeling, Ω = 232 since Witty scanned the entire IPv4 space.
Witty infected about 12,000 machines with around 110 initially infected hosts [3], thus in our model
(20), we choose N = 12, 000, I(0) = 110. To match the model (20) with the monitored worm trace, we
choose the worm’s average scan rate η = 1200 s and the average destructive rate λ = 0.000025 s, this
value of λ means that on average a Witty infected computer would be crashed 1/λ = 11.1 h after it was
compromised.

Fig. 7(a) shows the number of infectious hosts I(t) derived from model (20) compared with the mon-
itored trace within the first 24 h of the worm’s outbreak. It shows that our model (20) could model well
the propagation of Witty worm.

Fig. 7. Witty worm modeling compared with real monitored trace. (a) Infectious population in the first 24 h and (b) long-time
infectious population.
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However, if we consider the monitored worm trace over several days, we find that, as shown in Fig.
7(b), Witty died out slower than our model (20) predicts. This is because as time went on, Witty infectious
computers had a decreasing average destruction rate λ, not a constant rate as used in model (20). Due
to hard disk volume and network bandwidth differences, different Witty infected computers had very
different destruction time. After Witty infected almost all vulnerable computers in the Internet within
1 h [3], compromised computers with larger destruction rates were crashed first, making the remaining
infectious computers to have a decreasing average destruction rate λ as time went on, the decreasing λ

made the Witty infectious population I(t) dropped slower than the model (20) predicts.
There are two other possible reasons for the slow decay of Witty infected population in the long

term: (1) some new vulnerable hosts gradually came on online in those several days and got infected
and (2) some infected hosts were counted multiple times due to the changes of their DHCP-assigned
IP addresses. However, without packet-level monitored data, we cannot analyze the impact of these two
factors. Currently, we are trying to obtain such detailed monitored data from other researchers in order
to conduct further analysis.

Summarizing the above analysis yields.

Proposition 9. A computer infected by Witty worm has a crash time that is exponentially distributed; the
mean value of the crash time of an infected computer is proportional to the computer’s hard disk volume
and inversely proportional to its network bandwidth.

6. Worm monitoring system design

For worm defense, we first need to set up a worm monitoring infrastructure to monitor and early detect
the presence of a worm in the Internet. CAIDA has set up a large-scale network monitoring system by
using the “network telescope” concept [20], which covers several large chunks of IP space. Although
such a monitoring system is good at monitoring a uniform scan worm such as Code Red and Slammer,
it performs poorly for a non-uniform scan worm, especially a sequential scan worm, such as Blaster. For
example, Slammer is a uniform scan worm with η = 4000 scans/s [18]. If a monitoring system covers one
big chunk of IP block consisting of 217 addresses (two Class B networks), then on average an infected host
can be observed 2(32−17)/η = 8.2 s after it is infected.3 On the other hand, if Slammer randomly chooses
a starting point to sequentially scan the Internet, on average an infected host requires 232/(2η) = 6.2 days
to be observed by the monitoring system (an infected host on average needs to scan half of IPv4 space to
hit the monitored IP block). Therefore, if an infected host sequentially scans the Internet by starting far
from any monitored address, the monitoring system will not be able to observe it for a long time.

In previous Blaster simulation, the “preference sequential” worm shown in Fig. 6(a), we have also
simulated two monitoring systems: one monitors 16 blocks of Class B IP space; another monitors 1024
equal-size blocks of IP space of size 210. Both monitoring systems monitor the same number of IP
addresses (220) and all monitored address blocks are evenly distributed in the entire IPv4 space.

A worm monitoring system primarily observes two data sets [32]: the number of scans observed
in each monitoring time interval, denoted by Z(t) and the cumulative number of infected hosts ob-
served by time t, denoted by C(t). Fig. 8(a) shows the number of infected hosts I(t) in the Internet

3 Because of uniform scan, each worm scan has probability 1/2(32−17) to hit the monitoring system. The hitting event forms a
Bernoulli trial, and hence, an infected host needs to send out on average 2(32−17) scans to hit the monitoring system once.
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Fig. 8. Blaster propagation and its monitoring (vulnerable hosts are uniformly distributed in BGP routable space; this figure
shows the results of one simulation run). (a) Worm propagation and monitored infected C(t) (Y-axis is log format). (b) Monitored
data Z(t) compared with worm propagation. (c) Monitored data Z(t) after using a low-pass filter.

as a function of time t for one simulation run. It also shows C(t) from both monitoring systems. Be-
cause observed C(t) is very small compared with I(t), we plot this figure by taking logarithm on Y-
axis. This figure shows that we can observe less than 0.1% of infected hosts in the Internet from the
16-block monitoring system during the worm’s propagation period. Even if we use a 1024-block mon-
itoring system, we can only observe less than 4% of infected hosts. This is the reason why until now
researchers have not derived an accurate estimate of how many computers were really infected by Blaster
worm.

Fig. 8(b) shows the monitored data Z(t), the number of worm scans observed within each minute.
Compared to the 16-block monitoring system. The 1024-block monitoring system gives noisier observa-
tion Z(t). This is because as time goes on, an infected host will enter or leave one of the monitored IP
blocks more frequently in the 1024-block monitoring system than in the other one.

From the monitored data sets, we want to know the worm propagation pattern on the global Internet,
i.e., the curve of I(t) shown in Fig. 8(b). Such a growth pattern of I(t) is a low frequency signal compared
with the high frequency noise contained in Z(t). Therefore, we can use a low-pass filter to filter out noise
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from Z(t) without changing the worm’s propagation pattern. Fig. 8(c) shows the observation data Z(t)
after filtered by a first-order low-pass filter.4 Fig. 8(c) shows that the observation data Z(t) from the 1024-
block monitoring system represents better a worm’s propagation pattern than the 16-block monitoring
system.

Worm propagation in other Blaster simulation runs give similar results to what shown in Fig. 8. On
occasion the 16-block monitoring system provides as good observation as the 1024-block monitoring
system. However, the 1024-block monitoring system provides stable observations in all simulation runs,
while the 16-block monitoring system provides very poor observations in many instances.

Summarizing the analysis above yields.

Proposition 10. In order to monitor the propagation of a non-uniform scan worm in the Internet, es-
pecially the propagation of a sequential scan worm, the address space covered by a monitoring system
should be as distributed as possible.

7. Conclusion

Like earthquake modeling or tornado modeling, a good Internet worm model can: (1) give us deep
understanding of the dynamics of a worm; (2) provide the simulation basis for accurately evaluating the
performance of various worm defense systems and (3) help us to generate effective early warning (the
early warning system in [32] is based on worm model) and provide accurate worm damage prediction.

For these purposes, based on a uniform modeling framework, we model and analyze many different
worms that use various scanning strategies, including uniform scan, hit-list scan, routing scan, local
preference scan, cooperative scan, sequential scan, divide-and-conquer scan, target scan, destructive
scan, etc. Although most conclusions drawn in this paper are intuitively clear, we prove them through
sound mathematical models that have the same underlying principles. The analysis in this paper makes
it clear how different scanning strategies are related with each other. We hope this paper could provide a
solid framework on Internet worm modeling and help us to better understand and defend against future
Internet worm attacks.
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