Current Trends in Automated Planning

Dana S. Nau
Homework

- Planning in games
What is a plan?
[a representation] of future behavior ... usually a set of actions, with temporal and other constraints on them, for execution by some agent or agents. - Austin Tate

[MIT Encyclopedia of the Cognitive Sciences, 1999]
Generating Plans of Action

- Computer programs to aid human planners
 - Project management (consumer software)
 - Plan storage and retrieval
 » e.g., *variant process planning* in manufacturing
 - Automatic schedule generation
 » various OR and AI techniques
- For some problems, we would like generate plans (or pieces of plans) automatically
 - Much more difficult
 - Automated-planning research is starting to pay off
What are planners useful for?
Space Exploration

- Autonomous planning, scheduling, control
 - NASA: JPL and Ames
- Remote Agent Experiment (RAX)
 - Deep Space 1
- Mars Exploration Rover (MER)
Manufacturing

- Sheet-metal bending machines - Amada Corporation
 - Software to plan the sequence of bends
 [Gupta and Bourne, *J. Manufacturing Sci. and Engr.*, 1999]
Games

- *Bridge Baron* - Great Game Products
 - 1997 world champion of computer bridge
 [Smith, Nau, and Throop, *AI Magazine*, 1998]
 - 2004: 2nd place

West—♦A2
(North—♠Q)
(North—♠3)

East—♠J
South—♠5
South—♠Q

Games

- *Bridge Baron* - Great Game Products
 - 1997 world champion of computer bridge
 [Smith, Nau, and Throop, *AI Magazine*, 1998]
 - 2004: 2nd place
Outline

- Conceptual model for planning
- Example domain
- Types of planners
 - Domain-dependent
 - Domain-independent
 - Configurable
- Classical planning assumptions
Conceptual Model

1. Environment

State transition system

\[\Sigma = (S, A, E, \gamma) \]
State Transition System

Σ = (S, A, E, γ)

- S = {states}
- A = {actions}
- E = {exogenous events}
- State-transition function
 γ: S × (A ∪ E) → 2^S

- S = {s_0, ..., s_5}
- A = {move1, move2, put, take, load, unload}
- E = {}
- γ: see the arrows

The Dock Worker Robots (DWR) domain
Complete observability:
\[h(s) = s \]

Observation function
\[h: S \rightarrow O \]

Conceptual Model

2. Controller

State transition system
\[\Sigma = (S,A,E,\gamma) \]
Conceptual Model

3. Planner’s Input

State transition system

\[\Sigma = (S,A,E,\gamma) \]

Depends on whether planning is online or offline

Planning problem

Initial state

Objectives

Execution status

Planner

Description of \(\Sigma \)

Controller

Planner’s Input

Observation function

\(h: S \rightarrow O \)

Given observation \(o \) in \(O \), produces action \(a \) in \(A \)

System \(\Sigma \)

Events

Observations

Plans

Actions
Planning Problem

Description of Σ
Initial state or set of states
Initial state $= s_0$
Objective
Goal state, set of goal states, set of tasks, “trajectory” of states, objective function, …
Goal state $= s_5$

The Dock Worker Robots (DWR) domain
Conceptual Model

4. Planner’s Output

- **Planning problem**
 - Depends on whether planning is online or offline

- **Observation function**
 - $h(s) = s$

- **State transition system**
 - $\Sigma = (S, A, E, \gamma)$

- **Description of Σ**
 - Given observation o in O, produces action a in A

- **Instructions to the controller**
 - Depends on whether planning is online or offline

- **Controller**
 - Plans
 - Actions

- **System Σ**
 - Observations
 - Execution status

- **Planner**
 - Initial state
 - Objectives

Dana Nau: Lecture slides for *Automated Planning*
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/
Plans

Classical plan: a sequence of actions

\[\langle \text{take}, \text{move1}, \text{load}, \text{move2} \rangle \]

Policy: partial function from \(S \) into \(A \)

\[\{(s_0, \text{take}), (s_1, \text{move1}), (s_3, \text{load}), (s_4, \text{move2})\} \]

The Dock Worker Robots (DWR) domain
A running example: Dock Worker Robots

- **Locations**: l₁, l₂, …
- **Containers**: c₁, c₂, …
 - can be stacked in piles, loaded onto robots, or held by cranes
- **Piles**: p₁, p₂, …
 - fixed areas where containers are stacked
 - pallet at the bottom of each pile
- **Robot carts**: r₁, r₂, …
 - can move to adjacent locations
 - carry at most one container
- **Cranes**: k₁, k₂, …
 - each belongs to a single location
 - move containers between piles and robots
 - if there is a pile at a location, there must also be a crane there
A running example: Dock Worker Robots

- Fixed relations: same in all states
 - adjacent(l,l')
 - attached(p,l)
 - belong(k,l)

- Dynamic relations: differ from one state to another
 - occupied(l)
 - at(r,l)
 - loaded(r,c)
 - unloaded(r)
 - holding(k,c)
 - empty(k)
 - in(c,p)
 - on(c,c')
 - top(c,p)
 - top(pallet,p)

- Actions:
 - take(c,k,p)
 - put(c,k,p)
 - load(r,c,k)
 - unload(r)
 - move(r,l,l')
Planning Versus Scheduling

- What is the difference between these two types of problems?
Planning Versus Scheduling

• Scheduling
 - Decide when and how to perform a given set of actions
 - Time constraints
 - Resource constraints
 - Objective functions
 - Typically NP-complete

• Planning
 - Decide what actions to use to achieve some set of objectives
 - Can be much worse than NP-complete; worst case is undecidable
Three Main Types of Planners

1. Domain-specific
2. Domain-independent
3. Configurable
Types of Planners: 1. Domain-Specific

- Made or tuned for a specific domain
- Won’t work well (if at all) in any other domain
- Most successful real-world planning systems work this way
Types of Planners
2. Domain-Independent

- In principle, a domain-independent planner works in any planning domain
- Uses no domain-specific knowledge except the definitions of the basic actions
- Representation written in a STRIPS or PDDL-type formalism
- In practice,
 - Not feasible to develop domain-independent planners that work in every possible domain
- Make simplifying assumptions to restrict the set of domains
 - Classical planning
 - Historical focus of most automated-planning research
Restrictive Assumptions

- **A0**: Finite system
 - finitely many states, actions, and events
- **A1**: Fully observable
 - the controller always knows what state Σ is in
- **A2**: Deterministic
 - each action or event has only one possible outcome
- **A3**: Static
 - No exogenous events: no changes except those performed by the controller
Restrictive Assumptions

A4: Attainment goals
- a set of goal states S_g

A5: Sequential plans
- a plan is a linearly ordered sequence of actions (a_1, a_2, \ldots, a_n)

A6: Implicit time
- no time durations
- linear sequence of instantaneous states

A7: Off-line planning
- planner doesn’t know the execution status
Classical Planning

- Classical planning requires all eight restrictive assumptions
 - Offline generation of action sequences for a deterministic, static, finite system, with complete knowledge, attainment goals, and implicit time
- Reduces to the following problem:
 - Given \((\Sigma, s_0, S_g)\)
 - Find a sequence of actions \((a_1, a_2, \ldots, a_n)\) that produces a sequence of state transitions \((s_1, s_2, \ldots, s_n)\) such that \(s_n\) is in \(S_g\).
- This is just path-searching in a graph
 - Nodes = states
 - Edges = actions
- Is this trivial?
Classical Planning

- Generalize the earlier example:
 - Five locations, three robot carts, 100 containers, three piles
 » Then there are 10^{277} states
 - Number of particles in the universe is only about 10^{87}
 » The example is more than 10^{190} times as large!

- Automated-planning research has been heavily dominated by classical planning
 - Dozens (hundreds?) of different algorithms
Plan-Space Planning (UCPOP)

- Decompose sets of goals into the individual goals
- Plan for them separately
 - Bookkeeping info to detect and resolve interactions

For classical planning, not used very much any more
RAX and MER use temporal-planning extensions of it
Planning Graphs

- Relaxed problem
 [Blum & Furst, 1995]
- Apply all applicable actions at once
- Next “level” contains all the effects of all of those actions
For \(n = 1, 2, \ldots \)
- Make planning graph of \(n \) levels (*polynomial time*)
- State-space search *within the planning graph*

Graphplan’s many children
- IPP, CGP, DGP, LGP, PGP, SGP, TGP, …
Heuristic Search

- Can we do an A*-style heuristic search?
- For many years, nobody could come up with a good h function
 - But planning graphs make it feasible
 - Can extract h from the planning graph

- Problem: A* quickly runs out of memory
 - So do a greedy search

- Greedy search can get trapped in local minima
 - Greedy search plus local search at local minima

- HSP [Bonet & Geffner]
- FastForward [Hoffmann]
Translation to Other Domains

- Translate the planning problem or the planning graph into another kind of problem for which there are efficient solvers
 - Find a solution to that problem
 - Translate the solution back into a plan

- Satisfiability solvers, especially those that use local search
 - Satplan and Blackbox [Kautz & Selman]

- Integer programming solvers such as Cplex
 - [Vossen et al.]
Types of Planners

- Domain-independent planners are quite slow compared with domain-specific planners
 - Blocks world in linear time [Slaney and Thiébaux, *A.I.*, 2001]
 - Can get analogous results in many other domains
- But we don’t want to write a whole new planner for every domain!
- Configurable planners
 - Domain-independent planning engine
 - Input includes info about how to solve problems in the domain
 » Hierarchical Task Network (HTN) planning
 » Planning with control formulas
HTN Planning

- Problem reduction
 - Tasks (activities) rather than goals
 - Methods to decompose tasks into subtasks
 - Enforce constraints, backtrack if necessary
- Real-world applications
- Noah, Nonlin, O-Plan, SIPE, SIPE-2, SHOP, SHOP2
Planning with Control Formulas

At each state s_i we have a control formula f_i in temporal logic:

$$ontable(x) \land \neg \exists y:GOAL(on(x,y)) \Rightarrow \Box(\neg holding(x))$$

“never pick up x from table unless x needs to be on another block”

For each successor of s, derive a control formula using logical progression.

Prune any successor state in which the progressed formula is false.

- TLPlan [Bacchus & Kabanza]
- TALplanner [Kvarnstrom & Doherty]
Which type of planner is better?
Comparisons

- Domain-specific planner
 - Write an entire computer program - lots of work
 - Lots of domain-specific performance improvements

- Domain-independent planner
 - Just give it the basic actions - not much effort
 - Not very efficient
Comparisons

- A domain-specific planner only works in one domain

- **In principle**, configurable and domain-independent planners should both be able to work in any domain

- **In practice**, configurable planners work in a larger variety of domains
 - Partly due to efficiency
 - Partly due to expressive power
Example

- The planning competitions
 - All of them included domain-independent planners
- In addition, AIPS 2000 and *IPC* 2002 included configurable planners
- The configurable planners
 - Solved the most problems
 - Solved them the fastest
 - Usually found better solutions
 - Worked in many non-classical planning domains that were beyond the scope of the domain-independent planners
But Wait …

- The 2004 International Planning Competition contained *no* configurable planners.
 - Why not?
But Wait …

- The 2004 International Planning Competition contained no configurable planners.
 - Why not?
- Hard to enter them in the competition
 - Must write all the domain knowledge yourself
 - Too much trouble except to make a point
 - The authors of TLPlan, TALplanner, and SHOP2 felt they had already made their point
- Why not provide the domain knowledge?
 - Drew McDermott proposed this at ICAPS-05
 - There was a surprising amount of resistance
 - Cultural bias against the idea
Cultural Bias

- Most automated-planning researchers feel that using domain knowledge is “cheating”
- Researchers in other fields have trouble comprehending this
 - Operations research, control theory, engineering, …
 - Why would anyone not want to use the knowledge they have about a problem they’re trying to solve?
- In the past, the bias has been very useful
 - Without it, automated planning wouldn’t have grown into a separate field from its potential application areas
- But it’s not useful any more
 - The field has matured
 - The bias is too restrictive
What are classical planners bad at?
Example

- Typical characteristics of application domains
 - Dynamic world
 - Multiple agents
 - Imperfect/uncertain info
 - External info sources
 - users, sensors, databases
 - Durations, time constraints, asynchronous actions
 - Numeric computations
 - geometry, probability, etc.
- Classical planning excludes all of these
Relax the Assumptions

- Relax A2 (deterministic Σ):
 - Actions have more than one possible outcome
 - Seek policy or contingency plan
 - With probabilities:
 » Discrete Markov Decision Processes (MDPs)
 - Without probabilities:
 » Nondeterministic transition systems

$$\Sigma = (S, A, E, \gamma)$$
$$S = \{\text{states}\}$$
$$A = \{\text{actions}\}$$
$$E = \{\text{events}\}$$
$$\gamma: S \times (A \cup E) \rightarrow 2^S$$
Relax the Assumptions

- Relax A1 and A2:
 - Finite POMDPs
 - Plan over belief states
 - Exponential time & space
- Relax A0 and A2:
 - Continuous or hybrid MDPs
 - Control theory
- Relax A0, A1, and A2:
 - Continuous or hybrid POMDPs
 - Robotics

\[\Sigma = (S, A, E, \gamma) \]
\[S = \{ \text{states} \} \]
\[A = \{ \text{actions} \} \]
\[E = \{ \text{events} \} \]
\[\gamma: S \times (A \cup E) \rightarrow 2^S \]
Relax the Assumptions

- Relax A3 (static Σ):
 - Other agents or dynamic environment
 - Finite perfect-info zero-sum games (introductory AI courses)
 - Randomly behaving environment
 - Decision analysis (business, operations research)
 - Can sometimes map this into MDPs or POMDPs
 - Case studies: Chapters 19 (space), 22 (emergency evacuation)

- Relax A1 and A3
 - Imperfect-information games
 - Case study: Chapter 23 (bridge)

\[\Sigma = (S, A, E, \gamma) \]
\[S = \{ \text{states} \} \]
\[A = \{ \text{actions} \} \]
\[E = \{ \text{events} \} \]
\[\gamma: S \times (A \cup E) \rightarrow 2^S \]
Relax the Assumptions

- Relax A5 (sequential plans) and A6 (implicit time):
 - Temporal planning
- Relax A0, A5, A5
 - Planning and resource scheduling

\[
\Sigma = (S, A, E, \gamma)
\]

\[
S = \{\text{states}\}
\]

\[
A = \{\text{actions}\}
\]

\[
E = \{\text{events}\}
\]

\[
\gamma: S \times (A \cup E) \rightarrow 2^S
\]