4 h

CAP6671 Intelligent Systems

Lecture 5:
Learning to Plan

Instructor: Dr. Gita Sukthankar
Email: gitars@eecs.ucf.edu
Schedule: T & Th 9:00-10:15am

Location: HEC 302
Office Hours (in HEC 232):

\ T & Th 10:30am-12 /

Reading

» Reading: Amy Greenwald and Peter Stone,
Autonomous Bidding Agents in the Trading
Agent Competition IEEE Internet Computing,
5(2):52.60, March/April 2001.

CAP6671: Dr. Gita Sukthankar

Two Approaches to Planning

= Control rules:

= Write rules to prune every action that doesn’t fit the
recipe

= Hierarchical Task Network (HTN) planning:

= Describe the actions and subtasks that do fit the
recipe

CAP6671: Dr. Gita Sukthankar

Task: | travel(x,y)

p \v

Method: taxi-travel(x,y)

\-

Method: air-travel(x,y)

\ 4

o . - t't- k t)
get-taxif—> ride(x,y) [—|pay-driver = a(y))) fly(a(x),a(y)) | travel(a(y).y)
_ % _ travel(x,a(x)) J

HTN

travel(UMD, Toulouse)

P | ann | N g get-ticket(BWI, TLS)[/ \ get-ticket(IAD, TLS)
go-to-Orbitz K \ go-to-Orbitz
find-flights(BW1,TLS)¢ find-flights(IAD, TLS)

_ BACKTRACK — .7 buy-ticket(IAD,TLS)
= Problem reduction travel(UMD, IAD)
C et-taxi
= Jasks (activities) rather than goals ?ide(UMD IAD)
= Methods to decompose tasks into pay-driver
fly(BWI, Toulouse)
subtasks _ travel(TLS, LAAS)
= Enforce constraints \get-taxi
= E.g., taxi not good for long distances ride(TLS, Toulouse)
pay-driver

capeer1 DACKITRGKT ecessary 7

Task: | travel(x,y)

p \v

Method: taxi-travel(x,y)

\-

Method: air-travel(x,y)

\ 4

o . - t't- k t)
get-taxif—> ride(x,y) [—|pay-driver = a(y))) fly(a(x),a(y)) | travel(a(y).y)
_ % _ travel(x,a(x)) J

HTN

travel(UMD, Toulouse)

P | ann | N g get-ticket(BWI, TLS)[/ \ get-ticket(IAD, TLS)
go-to-Orbitz K \ go-to-Orbitz
find-flights(BW1,TLS)¢ find-flights(IAD, TLS)

_ BACKTRACK — .7 buy-ticket(IAD,TLS)
= Problem reduction travel(UMD, IAD)
C et-taxi
= Jasks (activities) rather than goals ?ide(UMD IAD)
= Methods to decompose tasks into pay-driver
fly(BWI, Toulouse)
subtasks _ travel(TLS, LAAS)
= Enforce constraints \get-taxi
= E.g., taxi not good for long distances ride(TLS, Toulouse)
pay-driver

capeer1 DACKITRGKT ecessary 5

Simple Task Network (STN)

= A special case of HTN planning

= States and operators
= The same as in classical planning

= Jask: an expression of the form #uy,...,u,)
» [Is a lask symbol, and each v;is a term

= Two kinds of task symbols (and tasks):
= primitive: tasks that we know how to execute directly
= task symbol is an operator name
= nonprimitive: tasks that must be decomposed into subtasks
= use methods (next slide)

CAP6671: Dr. Gita Sukthankar

Totally Ordered Method

= Totally ordered method: a 4-tuple
m = (name(/m), task(/m), precond(/n),
subtasks(/m))

* name(/n): an expression of the form ﬂ(Xl,...ﬁ'
" X.,...,X, are parameters - variable syn@
o air-travel(x,y)
= task(/m): a nonprimitive task

= precond(/7): preconditions (literals| jong-distance(x.y)

» subtasks(/77): a sequence /—//’ \\ \\=\

of tasks (£, ..., |buy-ticket (a(x), a(y)) ||travel (x, a(x))|[fly (a(x), a(y))||travel (a(y), y)

travel(x,y)

air-travel(x,))
task: travel(x,))
precond. long-distance(.x,))

subtasks. (buy-ticket(a(x), a(y)), travel(x,a(x)), fly(a(x), z;z(y)),7
CAP6671: Dr. Gita ﬂ"éWéT@{()/), J/)>

Partially Ordered Methods

= Partially ordered method: a 4-tuple
m = (name(/m), task(/m), precond(/n),

subtasks(/m))

* name(/n): an expression of the form n(Xl,ﬂ,;)

travel(x,y)

" X,,...,X, are parameters - variable sy air-travel(x,y)

= task(/m): a nonprimitive task
= precond(/m): preconditions (literal

long-distance(x,y)

= subtasks(/m): a partially ordgteel// \ \\

set of tasks {{buy-ticket (a(x), a(y))||travel (x, a(x))

fly (a(x), a(y))

travel (a(y), y)

air-travel(x,))
task: travel(x,))
precond. long-distance(.x,))

N —

S~

network: u,=buy-ticket(a(x),a(y)), v,= travel(x,a(x)), u,= fly(a(x),
cnpasr1 B o= travel(a)), (v, i), (Uy), (Us Uy}

ukthankar

8

Domains, Problems, Solutions

= STN planning domain: methods, operators

= STN planning problem: methods, operators,
Initial state, task list

= Solution: any executable plan| nonprimitive task
that can be generated by
recursively applying

= methods to preco@
nonprimitive tasks B
= Operators to primitive task primitive task

primitive tasks < operator instance > <_operator instance >
N\ N\

Sy | |precond| |effects| |s; | |precond| |effects| |s,

method instance

CAP6671: Dr. Gita Sukthankar d

Example

= Suppose we want to move three stacks of

I

‘ cranel # crang2 * crane3
c31
L7 c2d L7 c32 L7
cll - plc c22 . p2c c33 > p3c
cl2 A c23 Z____ 7 c34 A
pla p1b p2a p2b ; p3a p3b _
locl loc2 loc3
(a) initial state
If L I;
‘ cranel l crang2 * cranes c31
c2l c32
cll cl2 c33
cl2 c23 c34
o plc L plc - p3c
A A A
A 4 1D g7 52b A4 53D
pla _ pla : p3a ;
locl locZ loc3

containers while preserving container order

(b) goal

10

Example (continued)

= A way to move each stack:

= first move the

containers cranel crane? crane3
from pto an — o1
Intermediate GL pic | c22 p2C | ¢33 o
cl2 A €23 A c34 A 4
plle s pis D10 p2a p2b K p3b
locl loc2 locs
(a) initial state
= then move
them from — — — —
c21 c32
rto g — CH cs2
cl2 c23 c34
plc plc p3c
L :plb Loy szb a— Zﬁb
plLa . pLd) p3a -
locl loc2 loc3

CAP6671: Dr. Gita Sukthanna

(b) goal

take-and-put(c, k: Il} EE;pl,pE; L1 m?):

task: move-topmost-container(p1, p2) T t I O d
precond: top(ec,p1), on(ec,z1), ; true if p1 is not empty O a - r er

attached(p1,!1), belong(k,l1), ; bindl; and k

attached (s, 1), top(a2,p2) | bind 1> and 72 FOFMUlAtION

subtasks: {take(k, "511 C, 'Tflapl)- pUt(ka EE} c, $23p2)>

i

recursive-move(p, q, ¢, T): ‘ cranel
task: move-stack(p, q)
precond: top(e,p), on(ec,z) ; true if p is not empty
subtasks: (move-topmost-container(p, g), move-stack(p, g)) mf ! p?c’
;. the second subtask recursively moves the rest of the stack | 12 J:b’
pla p1
do-nothing(p, q) locl
task: move-stack(p, q)
precond: top(pallet,p) ; true if p is empty
subtasks: () ; no subtasks, because we are done
move-each-twice() ¢ cranel
task: move-all-stacks() 11
precond: ; no preconditions c12
btasks: ; h stack twice: 7 hie
subtasks: ; move each stack twice jp—
{move-stack(pla,plb), move-stack(plb,plc), :pla pib
move-stack(p2a,p2b), move-stack(p2b,p2c), locl

move-stack(p3a,p3b), move-stack(p3b,p3c))

Solving Total-Order STNs

-TFD(s, (t1,..., %), O, M)
if k = 0 then return () (i.e., the empty plan)
if t; is primitive then
active < {(a,o) | a is a ground instance of an operator in O,
o 1s a substitution such that a is relevant for o (t;),
and a is applicable to s}
if active = @ then return failure

nondeterministically choose any (a,o) € active state s; task list T=(|t; \ty,...)

m <« TFD(y(s,a),o({t,..., %)), O, M) action|a
if m = failure then return failure
else return a. state|y(s,a) |; task list T=(t,, ...)

else if #; 1s nonprimitive then
active < {m | m is a ground instance of a method in M,
o 15 a substitution such that m is relevant for o (t;),
and m is applicable to s} task list T=(t,) t,....)
if active = @ then return failure

method instance m

nondeterministically choose any (m, o) € active
w < subtasks(m). o ((fa,.. ., tx)) o e T:(@

return TFD(s, w, O, M)
CAPG6 /1: Dr. Gita Sukthankar

SHOP2 includes the following

= SHOP is very similar to the STN planner

= SHOPZ2 includes the following extensions
» Partially-ordered tasks

Quantifiers

= Axioms to specify preconditions

Conditional effects

Search criterion to use when satisfying a method’s
preconditions

Extensions for temporal planning

CAP6671: Dr. Gita Sukthankar 14

Learning and Planning

= What kind of things would we like our planner to
be able to learn?

CAP6671: Dr. Gita Sukthankar 15

What would we like to learn?

* |earn macro-operators

= | earning search control knowledge
= Learn task hierarchies

» Learn plan abstraction

» Transfer learning (this paper)

CAP6671: Dr. Gita Sukthankar

16

Learn2SHOP

= Learn how to play different scenarios in a real-
time strategy game

= Uses HTN traces from games that were
successful at a scenario

» Learns what the necessary preconditions are to
apply a method

CAP6671: Dr. Gita Sukthankar

17

Concept Learning

= Candidate learning:

» Use training examples to determine which hypotheses
are applicable

= Version space: set of all hypotheses which
correctly label examples

= G: most general hypothesis set consistent with
examples

= S: set of most specific hypotheses consistent with
examples

= Hypotheses are in the form of fact sets that represent
method preconditions

= Search through hypotheses by reintroducing variables
Into the state

CAP6671: Dr. Gita Sukthankar 18

System Architecture

HTN Solution
Problem plan
(3))
£~ SHOP £

Planner

Method
library |(3)
HTN plan trace &l

Method Learner

) Operator
brary

(1)

CAP6671: Dr. Gita Sukthankar

19

Results

» Evaluated system on performance measures
= Success rate

= Jump start (advantage of transfer knowledge on 1st
trial)

» Transfer ratio (overall advantage of transferred
knowledge on whole training set)

= Asymptotic advantage (advantage of transferred
knowledge in last trial)

CAP6671: Dr. Gita Sukthankar

20

