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Abstract

Intimate to the functioning and behavior of intelligent
systems is the manner in which information is represented
internally. The conventional approach to intelligent system
design assumes a particular bias in the manner by which
this information is represented. Typically, this is char-
acterized by an “abstract” or “objective” design methodol-
ogy which holds that intelligence is not a function of the
physical nature of the system. Such an approach suffers
from several shortcomings, most notably problems relating
to scaling and complexity. Recent physiological research,
however, has demonstrated that physical bodily form is a
fundamental building block in the organization of mam-
malian cortical structures. Consequently, this article ex-
plores such a biologically motivated “subjective” or “ego-
centric” approach to system design, and demonstrates its
utility in a simple robot arm control problem.

1 Introduction

Fundamental to intelligence, be it machine or biolog-
ical, is the method by which information is organized in-
ternally to create internal representations. These internal
representations are in turn processed by the system as it
satisfies its goal conditions.

The nature of these representations are fundamental to
any processing system, comprising its most basic com-
ponent. This article argues that most conventional ap-
proaches to intelligent system design assume a particular
“objective” bias in constructing these internal represen-
tations, and are consequently plagued with scaling and
complexity issues when moving from trivial to “real world”
domains. The article will offer a novel design method with
a different underlying “subjective” bias, presented as a
possible means with which to address the potential short-
comings endemic in the conventional approach.

Of course, the field of robotics spans in and of itself
a wide range of views and approaches, from the mono-
lithic philosophy of good old fashioned artificial intelli-
gence, GOFAI, through to the distributed architectures of
Brooks’s behavior based robotics [2], [3]. Such behav-
ior based systems are characterized by the interaction of
competing sub-systems, each responsible for a particular
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motor behavior. Brooks, in addressing issues surrounding
scaling such robots to “humanoid”-level systems, defines
cognitive robotics, which expand upon behavior based
systems in several areas, viz bodily form, motivation, co-
herence, self adaption, development, and physiological
inspiration [4].

Other approaches to scaling robotic intelligence argue
for a more ontogenetic perspective [6]. Such views de-
rive from cognitive robotics, developmental psychology,
and cognitive neuroscience — arguing for a developmen-
tal instead of evolutionary approach. These stem from the
assertion that biological intelligences are not born “fully-
formed” but develop from immaturity and are shaped by
experience, trial and error, goal-orientation, etc. through
to adulthood. Development is not evolutionary in the
sense of gradual, minor changes to a basically static struc-
ture; rather the very framework of this structure is contin-
ually refined, broken down, and rebuilt.

An obvious source for cognitive modeling can be found
in the physiology of the mammalian cortex itself. Recent
work by Kaas [15], [10], [11], [13] has convincingly argued
for a re-evaluation of numerous cortical concepts, most
notably issues surrounding the multiplicity and extent of
sensorimotor mappings, the parallel organization of corti-
cal information pathways, and functional considerations
apparent in the nature of internal mappings.

Inspired by basic physiology is work by Bizzi [17], [1],
[16] on the Equilibrium Point Hypothesis. This presents
a model for muscle and posture control based on the
length-tension properties of muscles, and argues for a
control-regime quite different to that of conventional
robotic approaches. Nonetheless, it lacks an underlying
mathematical or signal-flow grounding, and consequently
its filtration into conventional robotic control design has
been low.

As far as control system design is concerned, Grossberg
has made several important contributions, notably the
Adaptive Vector Integration To Endpoint (AVITE) model,
and offered a framework for learning via motor babbling
[71, [8], [9]- Although this AVITE model has been presented
in a serial context, its applicability in parallel-processing
architectures has not been fully explored (as implied by



physiology) nor have aspects of its information flow been
analyzed (as implied by the Equilibrium Point Hypothe-
sis).

2 Egocentricity defined
2.1 Preliminaries

Egocentricity as a concept addresses the basic nature
by which information is organized within a processing
system. Logically thus, we need to present some system
preliminaries before defining egocentricity.

Consider the interaction mechanism of a processing
system with some external environment. Entities within
this environment, as well as the environment itself need
to be modeled by the system as one or several internal re-
flections. These internal reflections are in turn processed
by the system, in so doing modifying its internal state
and/or aspects of the external environment. Any exter-
nal changes are reflected in a corresponding update of in-
ternal reflections; in this manner the interaction process
forms a closed loop between the external environment,
internal reflections, and back again to the external envi-
ronment.

The kernel concept lies in the apparently obvious re-
alization that a processing system creates internal reflec-
tions. These internal reflections are then manipulated by
the system as it interacts with its external environment.

2.2 What is egocentricity

Simply stated, egocentricity holds that internal reflec-
tions must be constructed from building blocks based on
the physical “bodily” form of the system itself. These
“body-based” building blocks are in turn manipulated by
the system to construct reflections of its external environ-
ment.

2.3 Why egocentricity

As briefly alluded to earlier, the complexity of “real-
world” systems and their method of internal represen-
tation pose considerable “scaling” problems. A single
jointed arm has a trivial inverse kinematics/dynamics
solution; the nature of the inverse solution to a two
jointed problem, while more complex, is not necessarily
intractable. Adding another joint, not only complicates
the problem, but the nature of the solution is different to
that of a two jointed limb, and is in turn different to that of
a four-jointed system. In short, the mechanism of prob-
lem specification and resolution in conventional systems
is such that a change to the “real-world” environment of-
ten implies a complete re-evaluation and re-structuring of
the solution.

Given that processing systems need to construct inter-
nal reflections of an external reality, one could argue that
the conventional methodology holds such reflections to
be completely abstract or “objective”. By this is meant that
these internal reflections hold little information about the
system that constructed them.

Egocentricity challenges that basic “objective” asser-
tion, offering in its place representations that are “sub-

jective” in the sense that they reflect the physical system-
specific attributes.

Fundamentally, egocentricity attempts, by virtue of its
derivation from biological concerns, to emulate biologi-
cal success. Contemporary robots, despite a superficial
insect-like appearance, are comparatively clumsy, inani-
mate constructs. Any insights derived from biology can
only be to the ultimate benefit of robotic design.

3 Physiological support

This section will present an overview analysis of phys-
iological concepts relevant to mammalian cortical orga-
nization, demonstrating how egocentricity is a logical in-
tegration of this knowledge. First, some basic research
in direct support of egocentricity will be presented. Sub-
sequently, two physiologically based models — the Equi-
librium Point Hypothesis and VITE structures — will be
briefly mentioned. While the basic research of Section 3.1
supports “proof of concept”, the models of Sections 3.2
and 3.3 provide the “means of implementation” that will
form the basis of Section 4.

3.1 Aspectsof mammalian cortical organiza-
tion
The basic representational building blocks on the cor-
tical surface are mappings. Simply stated, a mapping is a
continuous area of the cortical surface that represents a
body surface in either a motor or sensory context.
Contemporary findings on mammalian physiology can
be summarized as:

e Studies on several classes of mammals (primates,
carnivores, and some herbivores) have demonstrated
the existence of multiple sensory mappings within
the visual, auditory, and somatosensory cortices. As
a matter of fact, the organization of cortical struc-
tures across mammalian species is remarkably sim-
ilar, implying that fundamental information process-
ing principles are conserved with few variations[11],
[13], [14].

e Different body components are reflected multiply
across the cortex within modalities [15]. There is thus
proportionately little non-topographically organized
cortex, so much so that the existence of an abstract
“association cortex” that is responsible for highest
level perception is unlikely.

e From an evolutionary viewpoint, the main differ-
ence between more advanced mammals and their
more primitive cousins lies in the number of sen-
sory/motor mappings, with the number of mappings
increasing with more advanced species.

e The nature of cortical mappings argues for an orga-
nization that reflects functional considerations of the
animal’s interaction with its environment [15]. These
maps have also been shown to be plastic, adapting
to the changing circumstances of a physical bodily
component [12].



e The information flow pattern in mammalian cor-
tical structures is not serial, but distinctly paral-
lel. Information propagates from peripheral recep-
tors through the thalamus to the cortex in multiple-
component parallel paths, feeding information in
different mixes to different cortical representational
fields [15] [13].

3.2 Equilibrium point hypothesis

The Equilibrium Point Hypothesis is a conceptual
model for motor control within biological systems. Given
the basic support discussed above, the Equilibrium Point
Hypothesis provides insight into the type of initial/final
control relationships that can exist between these self-
based internal reflections.

3.2.1 Definition

Muscles are arranged about joints in an agonist-
antagonist configuration. Consequently, a limb’s posture
is maintained when the torques exerted by the opposing
muscle groups are equal and opposite. The core of the
Equilibrium Point Hypothesis rests in the realization that
in order to move a limb, it is sufficient for the nervous sys-
tem to merely specify the pattern of agonist-antagonist
equilibrium conditions that would exist across the mus-
cles of the limb as if the limb were already in the correct
position [5].

3.2.2 Experimental Concerns

In a set of experiments on spinalized frogs (i.e. the
surgical disconnection from the brain stem of the spinal
cord), Bizzi et al has demonstrated convincing support of
the Equilibrium Point Hypothesis [17], [1]. Electromyo-
graphic analysis indicates that the same general pattern
of innervation is supplied to muscles irrespective of the
initial orientation, and that it is largely a function of final
state.

3.2.3 Egocentricimplications

At its root, the Equilibrium Point Hypothesis relies
upon the elastic corrective forces of muscles to construct a
domain in which movements are processed. These prop-
erties are basic and integral to muscles, and also reflect
the interaction of muscle systems with their environment.
In other words, the Equilibrium Point Hypothesis controls
muscle systems based upon a subjective interpretation of
their properties and interaction with an external system.
Subjective in this context implies a representation derived
from operational characteristics of a specific set of mus-
cles unique to a particular animal.

3.3 Egocentric control

While the Equilibrium Point Hypothesis sketches the
nature of a relationship between internal reflections,
Grossberg’s VITE/AVITE models can be used as a means to
implement this relationship. These VITE/AVITE structures
are essentially control systems that use the basic structure
for both operation and unsupervised learning [7] [8] [9].
The Adaptive Vector Integration To Endpoint (AVITE) is

based on a first order control structure known as the Vec-
tor Integration To Endpoint (VITE). The VITE model con-
sists of four basic modules: the TPC, the PPC, a DV unit,
and a gated GO signal (see Figure 1).
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Figure 1: Underlying Pl control structure inherent to
VITE and AVITE models. [A] PI control loop. [B] DV
module expanded to show input filtering matrices.

Essentially, the VITE implements a simple proportional
integral feedback control structure to drive the system to a
desired state, as shown in Figure 1. Shown within the DV
are input filtering L and feedback filtering J matrices.

3.3.1 Adaptive learning

The entire purpose of the AVITE model is to present a
learning strategy designed to change the weights of the L
matrix in a way that drives the DV to zero. After learning
is complete, the DV can only equal zero if the TPC and the
PPC represent the same position or egocentric representa-
tion. In effect, therefore, the AVITE generates dimension-
ally consistent signals from the TPC — DV and from the
PPC — DV.

3.3.2 Physiological support

Grossberg [7] [8] has summarized experimental evi-
dence suggesting that the TPC is computed in the parietal
cortex, the DV in the motor cortex, and GO signal in the
globus pallidus, with the PPC computed in the precentral
motor cortex.

3.3.3 Egocentricimplications

The VITE models afford us the means by which to as-
sociate egocentrically defined state variables with each
other by providing a mechanism for associating a particu-
lar present representation with a desired target represen-
tation. Each internal representation, therefore, has a VITE
control structure associated with it.



4 Control system implementation
4.1 Physical system description

The physical system can be described in two domains:
a “real world” external domain, and the internal represen-
tation thereof.

As far as the “real world” domain is concerned, the sim-
plest way to describe it is to draw it. Figure 2 shows the
major system components. On the top left is a shoulder
jointand a limb that articulates with this joint. The shoul-
der (and hence the attached limb) can rotate around this
fulcrum. This limb (referred to as the arm) can also ex-
tend and contract along its length similar to a radio’s an-
tenna. In this way, the arm is quite unlike most other bio-
logical arms. At the other end of the arm is another joint
that communicates with the fixed length hand. The na-
ture of this joint is such that the hand can rotate 360 de-
grees around the end of the arm.

Wrist  Hand

Shoulder Joint

a Q\

Figure 2: The physical robot-arm system. Four “motor”
components are present: an arm, a hand, an arm/hand
joint, and an arm/shoulder joint

By focusing beyond the detail of AVITE topology, we see
that it merely provides the mechanism for linking two en-
tities together. Dropping this unnecessary detail we can
define a simpler Object Flow topology that merely shows
the topological relation between objects without specify-
ing how information flows between them. In other words,
we generalize any linking as comprising two nodes con-
nected by a single association map. These can be simply
drawn by representing nodes as open circles, association
maps by squares, and by connecting all these together us-
ing single arcs, as shown in Figure 3.

An important implication of Figure 3 is that by focus-
ing only on relations between entities and not on an ex-
plicit causal flow of information between them, the same
general topology can represent an association of A — B or
B — A (shown by the selective filling in the small circles
on a node’s surface). Information flow in such a topology
is set by defining a particular node as a causal source and
allowing the effect of this causality to propagate through
association maps to other nodes.

Returning to the physical system under consideration,
note that individual bodily components can be reflected
in individual nodes. Thus, the arm, which has a § and p
motor dimension can have two internal reflections, each
biased to a particular dimension, reflecting its current
state. It can additionally have further reflections in the
same egocentric domain reflecting desired or target states.
We can describe the arm’s egocentric reflections in the fol-
lowing example syntax: ,,,T., where the m subscript indi-
cates a “motor”, the T" indicates a “target” type (“present”
states are likewise denoted by P), and the a subscript in-
dicates an “arm” reflection, whilst 4 denotes “hand”. An
optional suffix could further specify the class of reflection
(6 or p).

By referring to Figure 2, we see two entities: an arm and
a hand. Additionally, the entire workspace forms a visual
entity. Note also that another visual entity is defined: the
region around the hand.

If we define the set AV to contain the system’s nodes, we
have

N = {mTa(G,p))m Thyo Tayo Thym Pa(e,p))m Ph(&)yv Pa.y Ph}
(€))

Whilst nodes provide a logical structure in which to
describe bodily reflections, association maps provide the
mechanism by which nodes are linked together. We can
therefore deduce the necessary association maps given
the available nodes and a knowledge of the physical struc-
ture of the system. The most obvious association is be-
tween a motor target and a motor present (in either the
hand or arm modality). Thus, a motor target arm can be
linked to a motor present hand by an association module

wmTy =5 AME =, P, ®)

Equations of the form of Equation 2 denote relations
between nodes and association maps. The usage of the
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Figure 3: Demonstrating causality in object flow dia-
grams. [A] Forward causality (from “A" to “B") [B]
Reverse causality (from “B"” to “A").



right arrow (—) is to indicate the direction of forward
causality.
Continuing, in the hand modality we have,

mTh = AMby —m Py 3)

In Equations 2 and 3, the association map is de-
fined according to the syntax where reading from left to
right over the subscripts and superscripts defines the di-
rection of forward causality (in accordance to using the
—). The subscripts indicate the mode (motor arm, motor
hand, etc), and the superscripts the mode’s type (target or
present in this implementation).

The derivation of the visual association maps develops
analogously. Furthermore, if we specify that the process-
ing system relates its hand to its arm in a visual manner,
we can deduce that a visual target hand reflection requires
information from both the visual target arm node as well
as the visual present arm node. Considering also that in-
formation from the visual target arm node also influences
the visual present arm node, we can relate the major visual
nodes as

T P
vaAMy, — v P

| ! (@)

TP T
oITao —— i AMy, —— T

where the association 7, AM?” denotes the motor
nodes and their attendant associations.

In conclusion, if we define the set A to contain the as-
sociation maps, we have

"4 = {Z’LhAMf’Lh:Z’La AM ZawTa AM;LOJTI:LG AM vPa:
e AM i AM G us” AMG}  (5)

4.2 Control topology

The final “goal” state of the system can specify not only
the fact of the arm “reaching” a particular position in its
workspace, but also the final orientation of the hand with
respect to this target position. Such an orientation can be
implemented as a “memory” reflection. Here, we take a
memory to be a particular past state of a bodily compo-
nent. Within such an egocentric framework, a “memory”
is merely an additional node with a fixed internal state,
communicating with similar nodes via appropriate asso-
ciation maps. Such a motor hand target memory can be
added to the system as shown in Figure 4.

We are now finally in a position to consider the flow of
information in this egocentric network and the implica-
tions of the Equilibrium Point Hypothesis.

Consider that from a conventional control systems
viewpoint a target end state is input to some system which

@ AMP

Figure 4: A memory node. Here a motor target hand
memory node is illustrated. It is differentiated from a
motor target hand node by the Greek 7 character.

has an internal present state. Irrespective of any internal
mechanisms, the ultimate goal of the control system is the
synchronization of target and present states. Relative to
the target state space, the present “moves” through a time
frame to reach the target. However, relative to the present
state’s reference frame, it is static and the target “moves”
towards it.

Now, assume that from an arbitrary reference point ex-
ternal to both the present and target states it were possi-
ble to physically change the causal flow of information be-
tween these states. There are two possible instances, each
with the same end goal: the synchronization of present
and target. In the one case, causality flows from the tar-
get and the effect is the motion of the present. In the other
case, causality flows from the present and the effect is the
motion of the target.

It is with this realization that we now see the link to
the Equilibrium Point Hypothesis. In order to implement
this hypothesis, we simply identify a desired end goal, set
the corresponding node state accordingly, and assign this
node as the source of causality.

Consider Figure 5 which shows the final
arm/hand/visual system in its entirety (with the memory
node added). Initially, when a visual target becomes
active in the visual field, ,T;, acts as the causal source
of the network, and information starts to propagate as
shown. In order to simplify analysis, we specify that the
hand sub-system remains inactive until such a time as the
arm is within hand range of the final target.

Now, at some stage, the arm crosses a threshold and is
close enough to the target for the hand to reach it. Infor-
mation flows from , 7, down through the previously in-
active sub-network, supplying the memory node ,,,7, and
the active node ,,,T},. Assume that the memory node con-
tains a desired state for the hand to finally attain. This
could be interpreted as the hand touching the target with



Figure 5: The system topology with a motor memory
target included. When a visual target becomes active,
information initially flows as described by the directed
arrows.

a desired final orientation.

By the Equilibrium Point Hypothesis, it should be suf-
ficient for the motor target hand node to be specified as
if it were already in this state. Practically, this can be real-
ized by reassigning the source of causality to be contained
within ,,,7,. The flow of information changes throughout
the network topology feeding back through %;¥ AMZ), en-
tering , P, and ultimately reaching ,T,. This has the cas-
caded result of each node now traveling through its state
space so as to realign itself with the new source of causal-
ity. Indeed the visual arm present state forces the visual
arm target to change, almost as if the system “sees” where
the arm target should move in order to accommodate the
desired orientation of the hand.

4.3 Results and discussion

For the purposes of this simulation, the system’s
boundary conditions are such that the arm and hand start
near the bottom left of the workspace (the initial system
present state) and end at the top right (the target state).
Additionally, the final hand orientation is horizontal so
that it “points” at the specified target position, just “touch-
ing” it.

In this section, we will analyze the specific case where
the association linking the motor target hand (,,,7%,) and
the expected motor target hand (,,,7,) is a standard pro-
portional integral control structure.

Additionally, the flow of information when the expecta-
tion node becomes a source is such that the visual present
arm is driven by the motor target hand, as shown in Equa-
tion 6. Causality flows ultimately back to the visual target

arm, which moves now to track the visual present arm —a
prime example of how cause and effect nodes have been
reversed.

mTh mTh vlh vPa
| [ |
m P oTo «—— mTa
(6)
|
vPh

The system operates in two distinct phases, corre-
sponding with the two sources of causality. At first the vi-
sual target arm is the source of causality; yet once the arm
is sufficiently close to the target, the source of causality
switches to the expected motor target hand, (,, 7). Subse-
gquent system behavior retains the source of causality here
as shown in Figure 6 demonstrating the development of
hand-0 reflections. Figures 7 and 8 respectively illustrate
the 6- and p-arm modal trajectories.

T T T T T T T T T
100 169 238 307 376 445 514 5.83 6.52 721 7.90
mTh
mPn
E(mTh)

Figure 6: Motor hand-based 6 trajectories. The expected
value is # = 0, and when active, attracts the motor target
hand trajectory, which in turn attracts the motor present
hand trajectory.

Consider the ,,, T}, trajectory. The first three seconds
(approximately) of simulation time correspond to the pe-
riod during which the hand reflections are inactive or dor-
mant. No information flows in the hand-based branch
of the network topology, and the hand itself can be con-
sidered in a “resting” state. The ,,, P, 6 state is “pointing
down”, and ,,, T} is in a random dormant state (in this case
mTh(00) = 1).

As the arm approaches the target point, the hand-
based visual target (,7%) will at some stage become stim-
ulated, containing an active point on the boundary of its
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Figure 7: The motor 0 state trajectory. The independent
coordinate (z-axis) is time in seconds.

retinal map. This corresponds to the moment when the
final target point is within range of the hand.

At this time, the position of the system’s final target rel-
ative to the center of the hand’s visual space can be de-
termined. For the current simulation, this corresponds to
the step response of ,,, T}, from 1 to -6. Simultaneously, the
memory node becomes a causal source, and consequently
starts driving ,,, T}, to O (there is a brief delay before ,,, T}, is
influenced - this is due to internal conditions specific to
the software simulation).

The organization of the hand-based modes are such
that ,,,7} in turn drives ,,P,. This is reflected in the
response of ,, P, as it tracks from its initial position of
mPn(6o) = 6 to its steady state position of ,, P, (6ss) = 0.

Simply stated, a related chain of cause and effect can
be defined: initially the motor memory becomes active.
This is subsequently tracked by the motor target, which
in its turn is tracked by the motor present. Since all of
these modes communicate via first order control struc-
tures, and considering that from the network topology the
motor present is two association maps away from the mo-
tor target memory, one could postulate that the motor
present trajectory would display second order character-
istics, which is confirmed in Figure 6.

Related behavior is also evident in the trajectories of
the arm-based motor modes. Consider Figure 8 which
shows the expected arm-based p plots. As information
flows outward from the motor target memory node, an in-
formation flow path leads back through the visual target
hand (,7%), and from there flows into the visual present
arm (, P,) before reaching the present arm motor nodes .

The approximately first three seconds of Figure 8 shows
m P, following first order convergence as it tracks ,,, 7, due
to the causal source in ,T;. A slight “blip” is evident when
the rate of convergence has slowed to the point where
topological considerations of the underlying p-mask sur-

Figure 8: The motor p state trajectory. The independent
coordinate (z-axis) is time in seconds.

face come into play. Hereafter, the source of causality
shifts from ,T, to ,,7, and consequently ,, P, becomes
driven by information flowing from ,T), and ,P,. The
step-like behavior of ,, P, is due to the quantization of the
»1h, and , P, visual modes.

Furthermore, , T}, now tracks , P,, converging as shown.
Causality in a very real sense flows backward as the target
now adapts itself to be consistent with the present. When
the simulation has ended and one considers the end states
without knowledge of how the system evolved, one might
be tempted to postulate that the visual target arm’s entire
trajectory was calculated from the beginning and drove
the present trajectory throughout. In reality though, the
visual target drove the system for a while, and then causal-
ity shifted completely such that for the last part, the target
was driven by the present. The end result is the same, al-
though the approach followed here is considerably sim-
pler to implement and requires no prior complex calcula-
tions.

5 Conclusion

This paper addressed issues pertaining to the process-
ing of information within intelligent systems. Specifically,
the mechanisms by which internal reflections are con-
structed, as well as their relation to the processing system
were explored.

In effect, current physiological research was used to
create a design framework within which a new processing
model was created. This model, or egocentric construct,
held that internal reflections of environmental entities are
strongly based on the system’s physical “bodily” form and
its subjective interaction with an environment. Simply
stated, egocentricity at its root maintains that reflections
of a system’s physical body form the basis of all process-
ing. This basic precept is strongly supported by relatively
recent physiological research on mammalian cortical or-




ganization.

An example simulated robot controller was presented.
This example problem demonstrated how relatively sim-
ple it is to accommodate increasing external complexity
by merely expanding the processing topology accordingly
(the addition of a hand to the arm, and the addition of a
hand memory to the whole system).

Alluding back to the introduction, we propose that
such work can contribute to the cognitive robotics of
Brooks as well as the ontogenetic perspective of Kemp by
providing a definite link back to more physiologically in-
spired research, explicitly demonstrating the importance
of “bodily” form in the construction of a processing topol-
ogy. More importantly perhaps, egocentricity provides a
common philosophical framework within which to cast
the somewhat disparate knowledge “sources” that Brooks
has drawn upon to develop cognitive robotics.

In a similar vein, egocentricity allows the contributions
of Kaas et al to be efficiently integrated into a systems-
based philosophy, thus opening the door and allowing ba-
sic physiological work to make a more fundamental con-
tribution to systems engineering.

Likewise, the Equilibrium Point Hypothesis can be
applied to control systems as was shown, implying the
powerful concept of “fluid” causality whereby different
nodes within a processing topology can function as causal
sources at different times.

The VITE and AVITE control structures proposed by
Grossberg were originally presented in a serial context.
Here, they were applied in parallel and used to associate
egocentric data structures — demonstrating their useful-
ness in a problem domain possibly quite removed from
their original home. Combined with the implications of
the Equilibrium Point Hypothesis, they formed the basic
mathematical building blocks of the entire processing sys-
tem.

Finally, egocentricity within this introductory paper is
presented as a possible philosophy uniting cortical phys-
iology and robotic engineering. It is hoped that future
research within such an egocentric context can address
problems relating to machine learning, i.e. the self-
genesis of a processing topology. Moreover, it is hoped
that egocentricity can provide a fresh perspective on in-
telligent systems and provide the means by which new in-
sights into not only system design but also physiological
processing can be developed.
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