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a b s t r a c t

In this paper, we propose a computational model for arm reaching control and learning. Our model
describes not only the mechanism of motor control but also that of learning. Although several motor
control models have been proposed to explain the control mechanism underlying well-trained arm
reaching movements, it has not been fully considered how the central nervous system (CNS) learns to
control our body. One of the great abilities of the CNS is that it can learn by itself how to control our
body to execute required tasks. Our model is designed to improve the performance of control in a trial-
and-error manner which is commonly seen in human’s motor skill learning. In this paper, we focus on
a reaching task in the sagittal plane and show that our model can learn and generate accurate reaching
toward various target points without prior knowledge of arm dynamics. Furthermore, by comparing the
movement trajectories with those made by human subjects, we show that our model can reproduce
human-like reaching motions without specifying desired trajectories.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

When we move our hand from one point to another, the hand
paths tend to gently curve and the hand speed profiles are bell-
shaped (Abend, Bizzi, & Morasso, 1982; Atkeson & Hollerback,
1985; Uno, Kawato, & Suzuki, 1989). Since humans show these
highly stereotyped trajectories among an infinite number of
possible ones, it has been suggested that the central nervous
system (CNS) is optimizing arm movements so as to minimize
some kind of cost function (Flash & Hogan, 1985; Harris &
Wolpert, 1998; Uno et al., 1989). Cost functions specifymovement-
related variables that should be minimized during or after the
movement. Meanwhile, several computational control models
have been proposed to explain the way the CNS generates a set
of motor commands that could minimize cost functions (Flash,
1987; Gribble, Ostry, Sanguineti, & Laboissiere, 1998; Hogan, 1984;
Miyamoto, Nakano, Wolpert, & Kawato, 2004; Todorov & Jordan,
2002; Wada & Kawato, 1993). The hand trajectories predicted by
these models are in strong agreement with experimental data.
The purpose of these models, however, is to predict well-learned

∗ Corresponding author at: Tokyo Institute of Technology, Precision and
Intelligence Laboratory, Yokohama, 226-8503, Japan. Tel.: +81 45 924 5054; fax:
+81 45 924 5016.

E-mail address: hkambara@hi.pi.titech.ac.jp (H. Kambara).

reachingmovements themselves and not to describe the process of
learning. In order to reproduce themovements, the control models
were designed using detailed knowledge about the dynamics of
musculoskeletal systems.

The purpose of this paper is to propose a motor control model
that can learn the control law for reaching movements while
actually controlling the arm. Let us call this type of model a ‘‘motor
control-learning model’’. From observing infants’ inaccurate and
jerky motions (Konczak & Dichgans, 1997; Zaal, Daigle, Gottlieb,
& Thelen, 1999), the motor skill to generate accurate and smooth
adult-likemovements seem to be acquired throughmotor learning
performed in our daily life. However, this kind of learning is not
as simple as general supervised learning problems. Since there is
no explicit ‘‘teacher’’ that can provide the CNS with correct motor
commands, the CNS has to learn how to control the body in a trial-
and-error manner, through interaction with the environment.

Reinforcement learning has attracted much attention as a self-
learning paradigm for acquiring optimal control strategy through
trial-and-error (Sutton & Barto, 1998). In particular, the actor-
critic method, one of the major frameworks for the temporal
difference learning, has been proposed as a model of learning in
the basal ganglia (Barto, 1995; Doya, 1999). We adopt the actor-
criticmethod (Doya, 2000) in order to acquire a feedback controller
for multi-joint reaching movements. Although we are not the first
to apply the actor-critic method to a reaching task, the previous
model only explained a reaching movement toward one particular
target (Izawa, Kondo, & Ito, 2004). In our daily life, we are not
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always reaching to the same target. The CNS should be learning
how to generate reachingmovements toward various targets in the
workspace. However, it is difficult to realize various movements
with high accuracy using a single feedback controller. Since the
gravitational force acting on the arm depends on the posture of the
arm, the force required to hold the hand at the target varies with
the target position. Furthermore, the magnitude of muscle tension
varies with the posture of the arm even if a level command signal
is sent to the muscle. For these reasons, there is no guarantee that
a single feedback controller trained for a particular target would
generate accurate reaching movements to other targets.

Here we introduce an additional controller called an inverse
statics model, which supports the feedback controller in gener-
ating reaching movements toward various targets. It handles the
static component of the inverse dynamics of the arm. That is, it
transforms a desired position (or posture) into a set of motor com-
mands that leads the hand to the desired position and holds it
there. Note that the arm converges to a certain equilibrium pos-
ture when a constant set of motor commands is sent to the mus-
cles because of the spring-like properties of the musculoskeletal
system (Feldman, 1966). If the inverse statics model is trained
properly, it can compensate for the static forces (e.g. gravity) at
the target point. Therefore, accurate reaching movements toward
various target points are realized by combining the inverse stat-
ics model and the feedback controller that works moderately well
within theworkspace. To acquire an accurate inverse staticsmodel
in a trial-and-error manner, we adopt the feedback-error-learning
scheme (Kawato, Furukawa, & Suzuki, 1987). In this scheme, in-
verse dynamics (or statics)models of controlled objects are trained
by using command outputs of the feedback controller as error sig-
nals. This learning scheme was originally proposed as a computa-
tional coherent model of cerebellar motor learning (Kawato et al.,
1987). The original model, however, did not explain how to ac-
quire the feedback controller for armmovements. In ourmodel, the
actor-critic method is introduced to train the feedback controller.
Therefore, our model gives a possible solution to the problem of
feedback controller design in the feedback-error-learning scheme.

In addition to the feedback controller and the inverse statics
model, we introduced a forward dynamics model of the arm
into our motor control-learning model. The forward dynamics
model is an internal model that predicts a future state of the
arm given outgoing motor commands. It has been proposed that
the CNS is utilizing the forward dynamics model to internally
predict the state of the arm during the control process (Miall &
Wolpert, 1996; Wolpert, Miall, & Kawato, 1998). The existence
of the forward dynamics model in the CNS is also supported
by psychophysical experiments (Bard, Turrell, Fleury, Teasdale,
Lamarre, & Martin, 1999; Wolpert, Ghahramani, & Jordan, 1995).
The forward dynamics model can be trained in a supervised
learning manner since the teaching signal can be obtained from
somatosensory feedback. In the literature of automatic control,
the strategy to combine system identification with reinforcement
learning succeeded in autonomously controlling machines with
complex dynamics such as helicopters (Abbeel, Coates, Quigley, &
Ng, 2007). In our model, the forward dynamics model is designed
to predict the state of the arm at a future time instant so
as to compensate for delay of motor output caused by graded
development of the muscle force. The predicted future states are
then utilized to determine command outputs of the feedback
controller.

In the present study, we apply our motor control-learning
model to a point-to-point reaching task in the sagittal plane. By
simulating the learning process of the reaching task, we show
that our model can accurately control the arm to reach toward
various target points without assuming prior knowledge of the
arm dynamics. In addition, we compare reaching movements

Fig. 1. The architecture of motor control-learning model: the model has three
mainmodules, Inverse StaticsModel (ISM), Feedback Controller (FBC), and Forward
Dynamics Model (FDM). The FBC is composed of actor and critic units, which
correspond to a controller and value function estimator respectively in the actor-
critic method. The ISM generates a feed-forward motor command uism that shifts
the equilibrium state of the arm to the desired state xd . On the other hand, the
FBC generates a feedback motor command ufbc that reduces the error between the
desired state xd and the future state x̂future predicted by the FDM. The error signal
for the ISM is the feedbackmotor command ufbc . Meanwhile, the teaching signal for
the FDM is the state of the arm x observed at next time instant. The FBC is trained by
the actor-critic method so as to maximize the cumulative reward r . The temporal
difference error δ related to the reward r is used as the reinforcer and error signal
for the actor and critic units, respectively.

simulated by our model with those of human subjects, and show
that ourmodel can reproduce features of both hand path and speed
profile in human reaching movements without planning desired
trajectories.

2. Motor control-learning model

Fig. 1 illustrates architecture of the motor control-learning
model for a reaching task. The model consists of three main
modules, inverse statics model (ISM), feedback controller (FBC),
and forward dynamics model (FDM). The FBC is composed of
actor and critic units, which correspond to a controller and value
function estimator respectively in the actor-critic method.

At the beginning of each trial, a target point of reaching is given
as a desired state xd to the model. This xd is kept constant at the
target point throughout the trial. The ISM receives xd as an input
and generates a time-invariant motor command uism. If the ISM
were trained correctly, uism shifts the equilibrium of the arm to
the target point. On the other hand, at time t , the FBC receives a
state error between desired state xd and future state x̂future(t −�t)
predicted by the FDM �t second before time t . The FBC, then,
transforms the state error into a feedback motor command ufbc(t).
The sum of uism and ufbc(t) is sent to the arm as a total motor
command u(t). Based on the total motor command u(t) and the
state x(t), the FDM predicts next state x̂next(t) and also future state
x̂future(t).

The three modules improve their performance in the following
way. A teaching signal for FDM’s prediction x̂next(t) is given by
observing the actual state at time t+�t . Therefore, the FDM can be
trained in normal supervised learning manner, in which the error
signal is determined as

Efdm(t) = x(t + �t) − x̂next(t). (1)

On the other hand, the ISM is trained with the feedback-error-
learning scheme in which the error signal for ISM’s output uism is
FDM’s output, that is,

Eism(t) = ufbc(t). (2)
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Fig. 2. Two link arm model with two joints and six muscles: θ1 and θ2 are the
angles of shoulder and elbow joints, respectively. Six muscles numbered from 1
to 6 are shoulder flexor, shoulder extensor, elbow flexor, elbow extensor, double-
joints flexor and double-joints extensor, respectively. ai,j is the moment arm of the
ith muscle torque against the jth joint.

Finally, the FBC is trained with the actor-critic method. The signal
used to improve both actor and critic units is TD (temporal
difference) error δ. The value of δ is determined from a reward
signal r and state-value of the state error (xd − x̂future) estimated
by the critic unit. The TD error δ serves as an error signal for the
critic unit. Meanwhile, it serves as a reinforcement signal for the
actor unit (the details are described in Section 3).

3. Mathematical descriptionof armandmotor control-learning
model

We present here detailed mathematical descriptions of multi-
joint arm model and the motor control-learning model shown in
the previous section.

3.1. Arm model

We adopted an armmodel composed of two-link armwith two
joints and six muscles as shown in Fig. 2. Two joints correspond
to shoulder and elbow joints. Six muscles are two pairs of mono-
articularmuscles acting on shoulder and elbowexclusively andone
pair of bi-articular muscles acting on both joints.

An input signal of the arm model is a motor command vector
u = (u1, . . . , u6)

T. Each ui ∈ [0, 1] determines the activation
level of the ith muscle. We introduced biological noise in motor
command that increases with the mean level of motor command.
Such signal-dependent noise is often modeled as a white noise
with zero mean and variance of ku2 (Harris & Wolpert, 1998). The
motor command including the noise is calculated as

unoise
i (t) = ui(t) + wi(t) (i = 1, 2, . . . , 6) (3)

where wi(t) ∼ N(0, ksdnu2
i (t)) with a coefficient ksdn = 0.01.

In neurophysiological studies, it is known that muscle force
changes smoothly in time and it can be well predicted by low-pass
filtering the neural impulse with a second-order filter (Mannard &
Stein, 1973). To implement such a property in the arm model, we
applied a second-order low-pass filter to unoise as

ũi(t) =
� t

0
unoise
i (s) h(t − s) ds (4)

where function h is an impulse response of the filter given by

h(z) = 1
κ1 − κ2

�
exp

�
− z

κ1

�
− exp

�
− z

κ2

��
. (5)

Here κ1 and κ2 are time constants and we set them as 92.6 ms and
60.5 ms, respectively. The values of two time constants were used
for reconstructing muscle tension from EMG (electromyograph)
signal in human (Koike & Kawato, 1995).

The muscle force T is then determined from the filtered motor
command ũ, muscle length L, and contraction velocity L̇ as

Ti = Ki(ũi){Li − Lresti (ũi)} + Bi(ũi)L̇i (6)
where K (ũ), B(ũ), and Lrest(ũ) denote muscle stiffness, vis-
cosity, and rest length, respectively. This model is called the
Kelvin–Voight model (Ozkaya & Nordin, 1999). We assume that
K (ũ), B(ũ), and Lrest(ũ) are linear functions of the filtered motor
command ũ,
Ki(ũi) = k0i + k1iũi

Bi(ũi) = b0i + b1iũi

Lresti (ũi) = lrest0i − lrest1i ũi (7)
where k0i, b0i, and lrest0i are intrinsic elasticity, viscosity, and rest
length of the ith muscle, respectively. Also, k1i, b1i, and lrest1i
represent the variation rate of elasticity, viscosity, and rest length,
respectively. We also assume that the values of moment arms are
constant. As a consequence, the muscle length L is described as a
linear function of the joint angles θ, given by

Li = l0i −
2�

j=1

Ai,jθj (8)

where l0i is the length of the ithmuscle when the joint angle θ = 0,
and Ai,j is the (i, j) element of the moment arm matrix A given by

A =
�
a11 −a21 0 0 a51 −a61
0 0 a32 −a42 a52 −a62

�T

. (9)

The joint torque τ is then determined as

τ = ATT . (10)
The dynamic equations of 2-link arm moving within the sagittal
plane are shown in Appendix A. The values of all parameters used
in the arm model are presented in Appendices A and B.

3.2. State and motor command

The state variable x shown in Fig. 1 is composed of joint angles
and angular velocities, and represented as x = (θ1, θ2, θ̇1, θ̇2)

T,
where θ1 and θ2 are shoulder and elbow joint angles in Fig. 2,
respectively. The desired state xd has the same dimension as the
state x, but its angular velocity components are always set 0,
that is, xd = (θ

trg
1 , θ

trg
2 , 0, 0)T, where θ

trg
1 and θ

trg
2 are the angles

of shoulder and elbow joint at the target position, respectively.
Since the arm has two degrees of freedom, target joint angles can
be uniquely determined from target positions of the hand in the
sagittal plane.

Each element of the feed-forward motor command uism shown
in Fig. 1 is set between 0 and 1. On the other hand, each element
of the feedback motor command ufbc is set between −0.5 and 0.5.
The total motor command u sent to the arm is then given by

ui =






0 for uism
i + ufbc

i < 0

1 for uism
i + ufbc

i > 1

uism
i + ufbc

i otherwise.

(11)

We show in Section 3.3 the equations determining the values of
uism and ufbc .
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3.3. Networks

To implement the three modules FBC, ISM, and FDM in our
motor control-learningmodel, we adopt artificial neural networks.
The FBC is composed of actor and critic units, and each unit
is implemented by a NRBF (normalized gaussian radial basis
function) network (Bugmann, 1998). The input signal to both
networks is a deviation between the desired state xd and the
predicted future state x̂future. Let us denote this deviation as q ≡
xd−x̂future. In the actor-criticmethod, the actor unit learns a control
law µ(q), and the critic unit learns a value function V (q). The
output of the critic unit is given by

V (q) =
N�

k=1

wC
k bk(q) (12)

where bk(q) is the kth basis function, N denotes the total number
of basis functions, andwC

k is theweight parameter. The value of the
kth basis function is given by

bk(q) = exp
�
−�Sk(q − ck)�2

�

N�
n=1

exp
�
−�Sn(q − cn)�2

� (13)

where the vector ck defines the center of the kth basis function, and
the matrix Sk determines the shape of the kth basis function. The
feedback motor command ufbc is determined by the output of the
actor unit as

ufbc
i (q) = g (µi(q) + σni) − 0.5

µi(q) =
N�

k=1

wA
i,kbk(q). (14)

Here, µi(q) is the ith output of the actor unit’s network and
wA

i,k is the weight parameter. The function g(y) in Eq. (14) is the
sigmoid function of y, and used to limit the value of the feedback
motor command within the range from −0.5 to 0.5. Also, ni is the
white noise formotor command exploration, andσ determines the
magnitude of the noise given by

σ = σ0 exp(−V (q)) (15)

where σ0 is a constant parameter.
In order to update the values of the weight parameters wC

k and
wA

i,k, we used the continuous-time version of TD error (Doya, 2000)
given by

δ(t) = r(t) − V (q(t)) + γ V̇ (q(t)) (16)

where r(t) is the reward signal explained in Section 3.4, and γ is
the time constant for discounting future rewards. At each time t ,
theweight parameters in the network of the critic unit are updated
by using the rule

ẇC
k = ηCδ(t)eCk (t) (17)

where ηC is the learning rate and eCk (t) is the eligibility trace given
by

eCk (t) =
� t

0
exp

�
− t − s

λ

�
bk(q(s)) ds (18)

where λ is the decay factor for the eligibility trace. The weight
parameters in the network of the actor unit are updated by using
the rule

ẇA
i,k = ηAδ(t)eAi,k(t) (19)

where ηA is the learning rate and eAi,k(t) is the eligibility trace given
by

eAi,k(t) =
� t

0
h(t − s)dAi,k(s) ds

dAi,k(s) = σ (s)ni(s)bk(q(s)). (20)

Here the function h(z) is the same function as the impulse
response of the second order low-pass filter used for filtering
motor command (Eq. (5)).

The ISM module is also implemented by a NRBF network. The
input to the ISM is the desired state xd, and the ith element of ISM’s
output is given by

uism
i = g

�
M�

k=1

vi,kck(xd)

�

(21)

where ck(xd),M and vi,k are the kth basis function, the total number
of basis functions and the weight parameter, respectively. We
adopt the feedback-error-learning scheme (Kawato et al., 1987) to
train the network of the ISM. In this learning scheme, feedback
controller’s output is used as an error signal for feed-forward
controller’s output. The updating rule for the weight parameters
in the network of the ISM is given by

v̇i,k = ηI ũfbc
i (t)ck(xd) (22)

ũfbc
i (t) =

� t

0
h(t − s)ufbc

i (s) ds (23)

where ηI is the learning rate and ũfbc
i (t) is the filtered feedback

motor command. The function h(z) is the impulse response of the
low-pass filter defined by Eq. (5). Note that the error signal ũfbc

i (t)
includes dynamical terms of the inverse dynamics of the arm, since
ũfbc
i (t) is determined not only from the positional deviation but

also from its time derivative. Therefore, when the arm is moving,
it does not provide accurate error information to the ISM. To train
the ISM properly, there must be a time period that the arm is held
around the target posture. Therefore, we set the total time of each
training trial long enough to include the holding period after the
arm reached around the target.

Finally, the FDMmodule is implemented by a three-layer feed-
forward neural network. The inputs to the network at time t are
the current state x(t) and the filtered motor command ũ(t). The
network’s output �x̂(t) is a prediction of an amount of the state
change made within the period from time t to t + �t . Here �t is
a time step of the simulation, and we set it as �t = 0.01 s. The
predicted next state x̂next(t) is then given by

x̂next(t) = x(t) + �x̂(t). (24)

The future state x̂future(t), a predicted state of the armatα�t ahead,
is determined by iterating above procedure α times. During the
iteration, the filtered motor command inputted into the FDM is
kept constant at ũ(t). We set α = 12 and thus the FDM predicts
the state of the arm at 0.12 s ahead as the future state. The reason
for setting α = 12 comes from the fact that the delay time in step
response of the low-pass filter used to smooth motor command
(Eq. (4)) is about 0.127 s. A teaching signal for the predicted next
state x̂next(t) is the actual state x(t + �t) observed at time t +
�t and the weight parameters in the network is updated by the
backpropagation method.
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3.4. Reward

The reward signal r in Fig. 1 is determined by two components,
rd and ru. The first component rd is a reward for reducing the
distance between the target point and the hand position of future
state of the arm predicted by the FDM. Let us name this distance
‘‘future hand distance’’ and denote it as d̂. Then rd at time t is
represented as

rd(t) = kd

�

exp

�

− d̂(t)2

σ 2
d

�

− 0.5

�

(25)

where kd and σd are positive constant parameters. We set them
as kd = 1 and σd = 0.06 m. The magnitude of rd increases with
decrease of the future hand distance d̂. The second component ru
is the penalty for energy consumption, and its value is determined
from the filtered motor command ũ as

ru(t) = ku
6�

i=1

ũi(t)2 (26)

where ku is a positive constant parameter, andwe set it as ku = 0.1.
The total reward r is then given by

r(t) = rd(t) − ru(t). (27)

4. Simulation of motor learning in reaching task

In order to assess the reliability of our motor control-learning
model, we simulated the learning process of a point-to-point
reaching task in the sagittal plane. Based on results of the
simulation, we demonstrate how the motor control system,
generating reasonable reaching movements, is formed by our
model.

4.1. Conditions of simulation

The whole learning process consists of 100,000 trials. At the
beginning of each trial, the target angles of shoulder and elbow
joints are determined randomly within the range −100 ≤ θ

trg
1 ≤

−20 deg and 30 ≤ θ
trg
2 ≤ 110 deg, respectively. The initial joint

angles θ1(0) and θ2(0) are also determined randomly within the
same range as that of target angles. Meanwhile, the initial angular
velocities θ̇1(0) and θ̇2(0) are both set 0 deg/s. The total duration
of each trial is set 2 s and each trial terminates when 2 s has passed
or the arm state gets out the pre-determined state space. The state
of the arm is updated at every �t (=0.01 s) with fourth-order
Runge–Kutta method. The motor command signal is also updated
at every time step �t . The weight parameters in the networks and
the eligibility traces are also updated at every �t by applying the
update rules described in Section 3.3 with the Euler integration.

The NRBF networks of both actor and critic units have 11 ×
11× 9× 9 gaussian basis functions located on a grid with an even
interval in each dimension of the input space (−90 ≤ q1, q2 ≤
90 deg, −720 ≤ q3, q4 ≤ 720 deg/s). On the other hand, 17 ×
17×1×1 gaussian basis functions in the NRBF network of the ISM
were located on a grid with an even interval in each dimension of
the input space (−100 ≤ xd1 ≤ −20 deg, 30 ≤ xd2 ≤ 110 deg, xd3 =
xd4 = 0 deg/s). We set 20 nodes in the hidden layer of the neural
network for the FDM. Before starting the learning process, values of
the weight parameters in the networks of the actor and critic units
are randomly determined so as to distribute uniformly within 0
and 1. Those of the FDM network are also randomly determined
within the range between 0 and 0.1. On the other hand, values
of the weight parameters in the ISM network are all set at 0. The
learning rates for the actor unit, critic unit, ISM, and FDM are set

Fig. 3. Learning performance: (A) Total reward signal gained in each trial.
(B) Distance between the target and the hand position at the last moment of each
trial. We added −(2− tl)/�t to the total reward for the trial that did not last for 2 s
(tl and �t are the time that the state of the arm get out the state space and the step
time in the simulation, respectively). The data plotted in the figure are the average
over successive 100 trials.

at 5, 5, 0.5, and 0.1, respectively. We set other constant parameters
mentioned in Section 3.3 as σ0 = 1, γ = 1, and λ = 0.3. Note
that the weight parameters in the networks are initialized only at
the beginning of the first trial and updated throughwhole learning
process. This means that although the training situation differs
from trial to trial, the same motor control system is continuously
trained. The skill acquisition process usually experienced by infant
or adult is this kind of learning process.

4.2. Results

4.2.1. Learning performance
The total reward signals gained in each trial and the hand

distance at the last moment of each trial are plotted against trial
number in Fig. 3. Here the hand distance denotes a distance
between the target and the hand position, and let us call the hand
distance at the end of each trial as final hand distance. As the
number of trials increases, the total reward approaches a certain
high value and the final hand distance comes close to zero. From
this result, we can say that the motor control-learning model
succeeded in improving the performance of reaching through
training trials.

4.2.2. Improvements in ISM, FBC, and FDM
Let us see how the abilities of the three modules, ISM, FBC,

and FDM, improved during the learning process. Fig. 4 shows the
changes in command outputs of the ISM and the FBC, and state
prediction error of the FDM. We plot, from the top of the figure,
(A) ISM’s output uism at the beginning of each trial, (B) FDM’s
output ufbc(q) when the predicted state corresponds to the target
state, and (C) the average errors in FDM’s prediction within each
trial. Note that the predicted future state rarely corresponds to
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Fig. 4. Improvements in the ISM, FBC, and FDM: (A) The output of the ISM in
each trial. (B) The output of the FBC when the predicted future state of the arm
corresponds to the target state, that is, q = 0. (C) Average error of FDM’s prediction
in each trial. The plots are only made for the range from 1st to 30,000th trial and
each of them is the average over successive 100 trials. Notable changes were not
found after the 30,000th trial. Note that the data plotted in (B) were obtained by
inputting q = 0 into the FBC at the interval between one trial and the next.

the target state during each trial. Therefore, we obtained the data
plotted on (B) by inputting q = 0 to the FBC at the interval
between one trial and the next. Since the FDM was trained in a
supervised learning manner in which the teaching signals were
given by observing the state of the arm, its prediction error kept
reducing from the beginning of the learning process (see Fig. 4(C)).
The ISM was also trained with supervised learning in the meaning
that the error signals were given by the FBC. However, unlike the
FDM, its outputs were unchanged in the early stage of the learning
process (see Fig. 4(A)). This is because the FBC, whose outputswere
used as the error signals to train the ISM, needed thousands of
training trials to acquire decent performance. The output of the
ISMbegan to change since the FBC started to generate biasedmotor
commands needed to hold the arm against the gravitational force.
ISM’s training progressed as the number of trial increases, and
FDM’s output against q = 0, the error signal for the ISM when the
predicted future state corresponds to the target state, came close
to zero (see Fig. 4(B)).

4.2.3. Reaching motions
Next, let us see how the reaching motion changed during the

learning process. Fig. 5 illustrates reachingmotions simulatedwith
sets of weight parameters just after 1000th, 5000th, 10,000th, and
100,000th trial. The tangential velocity profiles of the hand are
also plotted under the illustrations of the arm’s motions. We set
initial and target states as θ(0) = (−40, 80, 0, 0) and θtrg =
(−80, 40, 0, 0) for these demonstrations. At the early stage of the
learning process (1000th trial), the elbow joint was extended and
the arm got away from the target (Fig. 5(A)). As a result, the arm
got out of the work space and the reaching ended up in failure.
The reaching at the 5000th trial also failed. However, considerable
improvement can be seen in the behavioral output. Unlike the
1000th trial, the arm once moved toward the target as seen in
Fig. 5(B). Although the arm did not stop at the target, it remained
within the work space. As the number of trials increases up to
10,000, the motor control-learning model became able to stop the

arm at the target and hold it there as seen in Fig. 5(C). Although
the velocity profile is almost bell-shaped, there is a small bump
around t = 0.5 s, indicating a lack of smooth deceleration of the
arm. This small bump in the velocity profile seems to result from a
small corrective motion that is seen around the target point. At the
final stage of the learning process (100,000th trial), no corrective
movement is observed in arm’s motion and the velocity profile
became a smooth bell-shape typically observed in point-to-point
reaching movements of adult human (Fig. 5(D)).

4.2.4. Dependence of movement accuracy on the target position
To see how accurately the motor control-learning model

became able to reach the targets through training trials, we
simulated reaching movements toward 900 different targets. We
used a set of weight parameters just after 100,000th trial to
implement the control system. As a measure of the accuracy
of reaching movement, we adopted the final hand distance, the
distance between the target point and the hand position at the
last moment of each trial. For each of the 900 targets, ten reaching
movements starting from ten randomly chosen initial states were
simulated. The average value of ten final hand distances against
the same target is converted into color grade and shown on
the position of corresponding target to represent the accuracy of
reaching as the color map (Fig. 6). For almost all of the targets,
the hand reached the points within 10 mm around the target
points. The average and standard deviation of the final hand
distances among all targets are 3.37mmand 1.57mm, respectively.
Therefore, it can be said that our model succeeded in achieving
highly accurate reaching through the successful learning process.

4.3. Essential role of ISM in reaching control and learning

As we mentioned in the introduction of this paper, the ISM
seems necessary for accurate reaching movements toward various
target points, since it can provide the target-dependent static force
required to hold the hand at the target. However, one might think
that the FBC learned with the actor-critic method would be good
enough for the reaching task. In order to show the importance
of the ISM in arm reaching control and learning, we simulated
the learning process of the reaching task with a motor control-
learning model that has almost the same architecture as proposed
one except for not including the ISM. To avoid themotor command
being negative, we made the feedback motor command ufbc to
take the value within 0 to 1 by altering Eq. (14) to ufbc

i (q) =
g (µi(q) + σni), where function g() is the sigmoid function. The
total motor command u is then equal to ufbc . By comparing the
results of the learning processes simulated by proposedmodel and
the model without the ISM, we demonstrate how the ISM affects
the learning process of the reaching task.

4.3.1. Learning performance
We simulated ten learning processes for both models. The

values of initial weight parameters and the seed given to a
randomnumber generator variedwithin ten learning processes. All
conditions for the simulations were the same as those described in
Section 4.1.

To illustrate the time course of each of ten learning processes,
we plotted the total reward signal gained in each trial in Fig. 7.
The patterns of the growth of total reward signal differ between
the learning processes simulated by our model and the model
without the ISM. Transitions of the total reward signal followed
almost the same course in ten learning processes simulated by
our model. In addition, the learning convergence is faster and
much steeper compared to the learning processes simulated by
the model without the ISM. By contrast, without the ISM, the time
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(A) 1000th trial. (B) 5000th trial. (C) 10,000th trial. (D) 100,000th trial.

Fig. 5. Reaching motions during learning process. Upper and lower plots in each of (A)–(D) illustrate arm’s motion and tangential velocity profile of the hand from time
0 to 1 s, respectively. White circles in the upper plots denote the locations of the hand during each trial. On the other hand, black circles and hexagrams denote initial
positions of the hand and target positions, respectively. The joint angles at the initial and target positions in all of the trials are set as (θ1(0), θ2(0)) = (−80, 40) and
(θ

trg
1 , θ

trg
2 ) = (−40, 80), respectively.

Fig. 6. Accuracy of reaching movements toward 900 targets: The final hand
distance, the distance between target and hand position at the end of reaching
movement, is displayed on the target position in the color map. The origin is set
at the shoulder position and three stick figures of the arm are superimposed so as
to illustrate the relative size of target area against the arm. All reachingmovements
are simulatedusing a set ofweight parameters acquiredwith 100,000 training trials.
The average and standard deviation of the 900 final hand distances are 3.37mm and
1.56 mm, respectively.

course of total reward signals varies from one process to another
and two of ten learning processes even ended up in failure. The
values of total reward signal at the end of the learning processes
were also affected by the existence of the ISM. The average values
are 143.0 for ten learning processes with the ISM but 92.1 for eight
successful learning processes without the ISM.

4.3.2. Accuracy of reaching movement
We also investigated the effect of the ISM on the accuracy of

reaching movements. The accuracy of the reaching movements
without the ISM was analyzed in the same way we did in
Section 4.2.4. Reaching movements toward 900 different target
points were simulated with the motor control-learning model
without the ISM. To implement the model, we used a set of weight
parameters acquired by the learning process that ended up with
highest total reward signal among ten learning processes without
the ISM.

Fig. 8 shows the final hand distances of the reachingmovements
against 900 target points. The average and standard deviation of
the final hand distances among all targets became 11.27 mm and

Fig. 7. Learning performancewith andwithout the ISM: Total reward signal gained
in each trial in the learning processes simulated by our model (blue lines) and the
model without the ISM (red lines). Each of the data plotted in the figure is the
average over successive 1000 trials.

Fig. 8. Accuracy of reaching movements toward 900 targets without the ISM: The
final hand distances against 900 different targets are displayed on the target position
in the color map. All reaching movements are simulated using weight parameters
set acquired by the motor control-learning model without the ISM. The average
and standard deviation of the 900 final hand distances are 11.27 mm and 4.06 mm,
respectively.
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Fig. 9. Posture control task with and without the ISM: The distance between each target and the hand during posture control tasks simulated by the control model with the
ISM (blue lines) and without the ISM (red lines). Asterisk markers on the left side figure are the target points. The area bounded by the dashed line is the target area shown
in Figs. 6 and 8.

4.06mm, respectively, while those are 3.37mm and 1.56mmwith
our model. The reaching movements without the ISM are not as
accurate as those generated by our model. Furthermore, the final
hand distances aremore sensitive on the target positions compared
with those in Fig. 6. The lack of the ISM, which compensates
target-dependent static forces, reduced the accuracy of reaching
movements and made it more sensitive on the location of target.

In addition, the ISM seems to be useful to keep the hand
from trembling around target points. Fig. 9 illustrates temporal
variations of hand deviation from target points during the posture
control task. Here, we simulated a posture control task by
starting reaching movements from the target. When the arm was
controlled without the ISM, the hand trembled around the target
points in some cases. On the other hand, our model made the
hand stay at the point close to the target in any case. These results
demonstrate the essential role of the ISM in effective learning
and precise and stable control of arm reaching movements in the
sagittal plane.

5. Reaching movements of human subject and simulation

In this section, to investigate whether our model can reproduce
human-like motions, we compare hand trajectories of point-to-
point reaching movements simulated by our model with those
of human subjects. We also compare them with the trajectories
generated by the ‘‘minimum-variance model’’ (Harris & Wolpert,
1998), that is one of today’smost popularmotion planningmodels.

5.1. Experiment setup and data processing

Three right-handed male subjects A, B, C (age 24–32) were
asked to generate unconstrained point-to-point reaching move-
ments in the sagittal plane with their right arm. The position of
the hand was measured by 3-dimensional position measurement
equipment (OPTOTRAK 3020, NDI). We set seven points in the
sagittal plane (Fig. 10), and chose seven pairs of initial and tar-
get points from them. Seven pairs are shown in Table 1. The sub-
jects executed ten reaching movements for each pair. In order to
present locations of the initial and target points, we marked seven
points on a clear glass and placed it at subject’s underarm. The sub-
jects made a fist and an optical marker was attached to the back
of their hands. We also marked a dot at the opposite side of the
optical marker on their hands and asked them to make reaching
movements so as to overlap the dot to the target points marked on

Fig. 10. Location of terminal points for reaching movements in the sagittal plane:
The origin is set at the position of the shoulder joint. The positions (X, Y ) of seven
terminal points are T1 = (0.4, 0), T2 = (0.5, 0), T3 = (0.5, −0.1), T4 =
(0.4, −0.2), T5 = (0.55, −0.2), T6 = (0.5, −0.3), T7 = (0.4, −0.4). A stick figure
of the arm is superimposed so as to illustrate the relative position of terminal points
against the shoulder position.

Table 1
Seven pairs of initial and target points.

Pair index Initial Target

a T5 T1
b T5 T7
c T7 T1
d T2 T7
e T5 T4
f T3 T4
g T6 T4

the clear glass. We asked them to reach as accurately as possible
with natural speed and without rotating their wrists. No instruc-
tion about the form of hand path or trajectory execution was given
to the subjects.

For each of the subjects, we calculated average movement
trajectory for each of the seven pairs of initial and target points.
The data analysis described belowwas carried out for each subject.
First, positional data of the hand in each movement were digitally
low-pass filtered at 10 Hz using fourth-order Butterworth filter.
To specify movement duration of each movement, we determined
the timing of movement onset and offset using a certain threshold
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of hand tangential velocity. We then interpolated the positional
data by the spline curve and resampled 100 positional data at
equally spaced points between movement onset and offset. The
average trajectory of each of the seven pairs was calculated by
using the resampled trajectories. We excluded trials whose hand
path deviated widely from the average. The average movement
duration of each of the seven pairs was used to calculate the
tangential velocity of average hand path.

5.2. Simulation setup

To simulate the subjects’ reaching using our motor control-
learning model, we used a set of weight parameters acquired after
100,000 trials in the learning simulation mentioned in Section 4.
For each of the three subjects, seven reaching movements were
simulated. In the simulation, initial states of the arm were
calculated from the initial hand positions specified in Fig. 10. Since
the subjects could not reach exactly to the target points specified
in Fig. 10, we determined target states of the arm in the simulation
by using the point where subject’s average hand path terminates.
Note that the only information given to our model to simulate the
subjects’ movements are the initial and target states of the arm.
That is, no information about the position and velocity during the
movements was given to our model. Furthermore, the information
about the movement duration was not given either.

5.3. Minimum-variance trajectory

The minimum-variance model is one of the most well-known
computational models for motor planning of reaching. It claims
that reaching movements are planned, in the presence of signal-
dependent noise, so as to minimize the variance of hand position
over a short post-movement period (Harris & Wolpert, 1998).
Themodel succeeded in reproducing human-like hand trajectories
in various reaching tasks in the horizontal plane (Hamilton &
Wolpert, 2002; Harris & Wolpert, 1998; Miyamoto et al., 2004).
Here we acquired the hand trajectories that minimize the post-
movement variance of the reaching movements in the sagittal
plane. Initial and target hand positions, and movement durations
given to the minimum-variance model are determined from each
subject’s data. The optimization procedure that we used is almost
the same as the one used in the previous work of Harris and
Wolpert (1998), except for using the unscented transformation
algorithm (Julier, Uhlmann, & Durrant-Whyte, 2004) to derive the
variance of hand position during post-movement period. The hand
trajectories were parameterized as quintic splines with 7 knots
evenly spaced in time. Locations of the knots are initialized so that
the quintic splines overlapped with the subjects’ trajectories. The
post-movement periods were set at 500 ms for all movements.
The simplex search method was then used to find optimal knot
locations.

The structure of arm model was also almost the same as the
one used in the work of Harris and Wolpert (1998), except for the
values of link parameters and the existence of gravitational force.
Time constants of linear second-order joint actuators are 92.6 ms
and 60.5 ms. We set mass, length, center of mass, and inertia of
each link at the values used in our simulation (Table 2). We also
set shoulder and elbow joint viscosities at 0.52 N m s/rad and
0.33 N m s/rad, respectively. These values are equivalent to the
net-viscosities generated by six muscles modeled as Eq. (6), given
ũi = 0.5 (for all i = 1, . . . , 6).

We programmed the optimization procedure in MATLAB, and
verified that the program generates similar results as Harris and
Wolpert (1998) when it is applied to reaching movements in the
horizontal plane.

5.4. Results

Fig. 11 shows hand trajectories of point-to-point reaching
movements executed by the subjects and those simulated by our
model. Hand paths and tangential velocity profiles are shown in
the figure. Gently curved hand paths were obtained both in the
reaching movements of the subjects and our model. For almost all
of the movements, the hand paths of the subjects and our model
overlap with each other on most parts between the initial and
target points. Furthermore, smooth and bell-shaped curves in the
velocity profiles of the subjects are reproduced well by our model.
Although there are a few movements in which the peak velocities
differ between the subjects and ourmodel (movement ‘c’ and ‘d’ in
(B) and (C)), the hand tangential velocity profiles in the simulation
reasonably overlap with the subject’s data.

Note that a small bump at the tail of bell-shape relates to
a corrective motion around a target point. Such bump can be
seen in some of the velocity profiles of our model, while they
do not appear in the subjects’ data. However, it does not imply
that corrective motions exist only in the movements simulated
by our model. In fact, the subjects sometimes made corrective
motions. The reason why small bumps disappear from the velocity
profiles of the subjects is that themovement data during corrective
motions were eliminated from the analysis so as to gain the
average trajectories. Fig. 12 shows the hand velocity profiles of all
of the ten reaching movements between target pair ‘b’, generated
by subject A. Small bumps appear in some of the velocity profiles,
indicating the existence of corrective motions in the subject’s
reaching movements. We have confirmed that these corrective
motions can be observed in reaching movements for other target
pairs and for other subjects.

The hand trajectories predicted by the minimum-variance
model are also plotted in Fig. 11. Some of the hand paths largely
deviated from the subjects’ data. Upward movements (‘a’ and ‘c’)
curved largely, while downward movements (‘b’ and ‘d’) became
a straight line. To investigate which of the two models, our model
and the minimum-variance model, makes better prediction of the
subjects’ trajectories, areas enclosedwith hand paths of the subject
and those of each model are calculated as a measure of hand path
error. In addition, areas enclosed with velocity profiles of subject
and each model are calculated as a measure of velocity profile
error. Fig. 13 shows the histograms of the hand path errors and
velocity profile errors in seven movement patterns. The values
shown in the figure are the average data over the three subjects.
The hand path errors for our model became smaller in all of the
movement patterns, except for pattern ‘e’. The velocity profile
errors for ourmodel became smaller in four patterns (‘a’, ‘c’, ‘e’, and
‘g’). Consequently, for three out of seven movement patterns, our
model yields less prediction error in both hand path and velocity
profile. By contrast, there is no movement pattern for which the
prediction error of the minimum-variance model became smaller
in both hand path and velocity profile.

6. Discussion

In this paper, we proposed a computational model for neural
motor control of reaching movements. Our model explains not
only a mechanism of control but also that of learning. We adopted
the feedback-error-learning (FEL) scheme and the actor-critic
method so that an inverse statics model and a feedback controller
can be trained while executing arm reaching movements. In
the FEL scheme, a feedback motor command is used as an
error signal to train inverse models of a control object. The
original FEL scheme (Kawato et al., 1987), however, did not
explain how to acquire a feedback controller itself. In some
studies applying the FEL scheme to trajectory control of robotic
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Fig. 11. Reaching movements for seven pairs of initial and target points in the sagittal plane: (A)–(C) Hand trajectory data of subject A–C (gray solid lines), those simulated
by our model (blue solid lines), and those simulated by the minimum-variance model (green dashed lines). Left side plots in each of (A)–(C) illustrate hand paths of reaching
movements for seven target pairs (‘a’, . . . , ‘g’) shown in Table 1. Right side plots illustrate corresponding hand tangential velocity profiles. The velocity profiles are aligned so
that the timing of peak velocity coincides with each other.

manipulators, PID or PD controllers with prefixed gain were used
as feedback controllers (Katayama & Kawato, 1991; Miyamoto,
Kawato, Setoyoama, & Suzuki, 1988). Although those studies
succeeded in acquiring inverse dynamics models for robots, it is
hard to assume that those kinds of prefixed gain controllers exist
in our brain. The CNS has to learn and adjust the gain in accordance
with properties of the body and environment. Although there is a
model in which feedback gain is modulated simultaneously with
improving feed-forward control (Stroeve, 1996), prior knowledge
of the dynamics of the arm and that of the cost function are
essential for successful learning in that model. In our model, a
feedback controller is trained with the actor-critic method in
which reward signals dependent on the results of movements are

used to improve the performance. The reward signal used in our
model is a scalar value and the control system does not knowwhat
elements affect the reward value. Therefore, our model requires
neither prior knowledge of the dynamics of the arm, nor that of
the reward function to execute reachingmovements. Furthermore,
it has the ability to automatically adapt to new environments.
Whenever the properties of the environment change, the feedback
controller is re-adjusted so as to improve the performance of the
movements under thenewenvironment and, as a consequence, the
inverse statics model is also re-adjusted.

In addition to the problem arising in learning feedback
controller, the FEL scheme also has a problem arising from desired
trajectory formation when it is applied to reaching tasks. When



358 H. Kambara et al. / Neural Networks 22 (2009) 348–361

Fig. 12. Trial by trial hand velocity profiles of subject: each line indicates the hand
velocity profile of the reaching movements for the target pair ‘b’, generated by
subject A. The velocity profiles are aligned at the timewhen the tangential velocities
decrease and become 0.15 m/s during the later half of the movements.

Fig. 13. Trajectory error between subject and the two models: in the upper
histogram, areas enclosed with hand paths of subject and each of the two models
are shown as a measure of hand path error for seven movement pattern (target
pair ‘a’, . . .,‘g’). Likewise, in the lower histogram, areas enclosed with hand velocity
profiles of subject and each of the two models are shown as a measure of velocity
profile error. Blue bars indicate the trajectory errors of our model, while green bars
indicate those of the minimum-variance model. The values in the histograms are
the average over three subjects.

inverse dynamics models are trained based on the FEL scheme,
the desired trajectoriesmust be specified. The original FEL scheme,
however, does not take into account the mechanism of trajectory
planning in the CNS. Note that the term ‘trajectory’ includes not
only a sequence of positions, but also sequences of velocities and
accelerations. The musculoskeletal system is extremely complex,
including non-linear dynamics andmany redundancies. Therefore,
complex calculation is often necessary to acquire the human-
like trajectories minimizing some cost function. In addition,
movement duration must be specified to determine the desired
trajectory. Although there is a neural network model for trajectory
formation (Wada&Kawato, 1993), it requires a pre-trained inverse
dynamics model. Thus, the trajectory formation problem in the
FEL scheme remains to be solved. An important advantage of
combining reinforcement learning with the inverse statics model
is that the desired trajectories are no longer needed. In our motor
control-learning model, the feedback controller is trained so as to
maximize expected cumulative ‘‘reward’’ (which is the same as

minimizing cost), and it drives the arm directly toward the target.
The concept of using a goal-directed control strategy, instead of
following a desired trajectory, has produced successful results in
predicting the features of several human movements (Todorov &
Jordan, 2002). The inverse statics model also serves as a goal-
directed feed-forward controller in our model. It transforms the
target position into a set of motor commands that shift the arm’s
equilibrium position to the target. Combining two goal-directed
controllers, the inverse statics model and the feedback controller,
our model starts driving the arm directly toward a target as soon
as the target is specified. Consequently, the desired trajectories are
not needed in our model andmovement durations are determined
as results of movement executions.

In our model, a forward dynamics model was introduced in
addition to the feedback controller and the inverse statics model.
Since muscle force develops gradually in time, there exists a time
delay between the motor command and muscle force (Mannard
& Stein, 1973). Therefore, the arm becomes unstable if a feedback
motor command is determined from current joint angle and
its time derivative. To compensate for the time delay of force
development, we designed the forward dynamics model to predict
future state of the angles and angular velocities of arm joints. The
predicted future state is then used to calculate the feedback motor
command. Through the simulations, we demonstrated that our
model can learn stable control of an armwithmusclesmodeled as a
second order system. Granted, the prediction of future state seems
unnecessary for stable control if the feedback motor command
is properly determined from, in addition to current joint angles
and angular velocities, variables representing muscle tension and
its time derivative. However, it is still unknown whether the CNS
can estimate such quantities as time derivative of muscle tension.
Furthermore, the number of muscles in the body is quite large
compared with that of joints, and so the number of state variables
that the control system has to take into account greatly increases.
From a technical point of view, the increase in dimensionality
causes the so-called ‘‘curse of dimensionality’’ and makes the
control problem harder to solve by reinforcement learning. We
avoided the increase in dimensionality of state space by designing
the forward dynamics model to predict future angles and angular
velocities of the arm and utilize them to determine the current
motor command. The existence of the forward dynamics model in
the CNS is supported by psychophysical experiments (Bard et al.,
1999; Flanagan, Vetter, Johansson, &Wolpert, 2003;Wolpert et al.,
1995). Fine predictive adjustments of body movement are also
found in some types of voluntary armmovements (DeWolf, Slijper,
& Latash, 1998; Flanagan & Wing, 1997; Gribble & Ostry, 1999).
We have not analyzed in detail the effects of using the forward
dynamics model, and in particular how far in the future it should
attempt to predict. However, there is a possibility that the CNS
is predicting the future state and utilizing it intelligently so as to
control our complex body.

The hand paths of reachingmovements simulated by ourmodel
were qualitatively in strong agreement with those of subjects’
movements. Moreover, our model succeeded in reproducing
smooth bell-shaped velocity profiles that is a common invariant
feature in arm reaching movements. The main reason that our
model produced the smooth bell-shaped velocity profiles seems to
come from the properties of the armmodel, especially the gradual
development of muscle force. One might think that smooth basis
functions used for the description of the artificial networks of the
FBC and the ISM induced smooth changes in motor commands,
and hence, smooth movements were realized. However, this is
not the case for our simulation. If we do not assume low-pass
filtering of motor commands such as that used in Eq. (5), velocity
profiles show steep initial rises at the movement onset even
though the networks of the FBC and the ISM are described using
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smooth gaussian basis functions (Kambara, Kim, Sato, & Koike,
2004). There might be also the suggestion that signal-dependent
biological noise constrains the trajectories to become smooth so
as to minimize movement variance (Harris & Wolpert, 1998).
However, this is not the case either.We designed themusclemodel
to have properties similar to biological muscles. The reason we
introduced signal-dependent noise into the arm model was that
it is an inherent property of the muscles. We did not expect it to
make trajectories smoother. In fact, we made the same learning
simulation as described in Section 4 under the condition that the
signal-dependent noise was excluded from the arm model. From
the results of the simulation, we verified that the hand velocity
profiles become smooth and bell-shaped such as those shown in
Fig. 12. In addition, the velocity profiles in Harris and Wolpert
(1998) became smooth and bell-shaped only if the second-order
muscle model was used. If there were no time delay between
motor command and force generation, a steep initial rise appeared
in the velocity profile even though signal-dependent noise was
introduced (see Figure 2b inHarris andWolpert (1998)). It has been
widely thought that smooth bell-shaped velocity profiles result
from the execution of smooth desired movement planned before
movement onset (Flash & Hogan, 1985; Harris & Wolpert, 1998;
Nakano et al., 1999; Uno et al., 1989). However, it has been shown
in recent study that smoothmovement trajectories can be acquired
by filtering sparse and discontinuous command signals (Sakaguchi
& Ikeda, 2007). In the simulations we made, the desired position
of the arm was instantaneously shifted to the target position.
Therefore, it can be said that the desired trajectory given to the
control system changed discontinuously. However, the velocity
profiles became smooth and bell-shaped. This is attributed to the
fact thatmuscles in the simulationweremodeled as a second-order
system just like biological muscles.

We also considered the biological plausibility of our model. The
model consists of three main components, a forward dynamics
model, inverse statics model, and feedback controller. The forward
dynamics model predicts the future state of the arm given
the current state and ongoing motor commands. It has been
suggested that the forward dynamics model is acquired in the
cerebellum (Miall & Wolpert, 1993; Wolpert et al., 1998). It can be
trained in a supervised learningmanner using actually sensed state
as the teaching signal. The circuit structure of the cerebellum has
been shown to be capable of implementing the supervised learning
paradigm (Albus, 1971; Doya, 1999; Ito, 1989; Marr, 1969). The
mossy fibers, input pathway to the cerebellum, carry both afferent
sensory and cerebral efferent signals. Thus, information about
current state of the arm and efferent copies of ongoing motor
commands can be fed to the cerebellum through the mossy fiber
input pathway. The activity of some of the Purkinje cells, whose
axons provide cerebellar output through deep cerebellar nuclei,
correlates with kinematical state of movement (Coltz, Johnson,
& Ebner, 2000; Fu, Flament, Coltz, & Ebner, 1997). The climbing
fibers, another input pathway to the cerebellum, are suggested
to carry information about error signals of cerebellar outputs.
Although there is no direct evidence indicating that the climbing
fibers encode prediction error of the body’s state, it is reported
that the climbing fibers have sensitivity to unexpected sensory
events (Andersson & Armstrong, 1987; Gellman, Gibson, & Houk,
1985). Taking this evidence into account, there is a possibility
that the forward dynamics model of the arm is acquired in the
cerebellum, and its output, that is the prediction of future state,
is relayed to the cerebral cortex through the thalamus and utilized
to generate a feedback command signal.

The inverse statics model in our model handles the static
component of the inverse dynamics of the arm and controls the
equilibrium of the arm. It has been suggested that the inverse
dynamics models of the body are acquired by feedback-error-
learning in the cerebellum (Kawato & Gomi, 1992; Schwighofer,

Table 2
Link parameters.

Upper arm (j = 1) Lower arm (j = 2)

mj (kg) 1.59 1.44
lj (m) 0.3 0.35
lgj (m) 0.18 0.21
Ij (kg m2) 6.78 × 10−2 7.99 × 10−2

Table 3
Moment arms:

a11 a21 a32 a42 a51 a52 a61 a62

Moment arm (cm) 4.0 4.0 2.5 2.5 2.8 2.8 3.5 3.5

Spoelstra, Arbib, & Kawato, 1998). Although there is direct
neurophysiological support for the cerebellar feedback-error-
learning model of eye movements (Kawato, 1999), it is unknown
whether the inverse dynamics model of the arm exists in the
cerebellum. However, taking into account the uniformity of neural
circuitry in the cerebellum, the possibility of cerebellar feedback-
error-learning of arm movements cannot be eliminated. Since
complex spikes of the Purkinje cells, driven by the climbing fibers’
activities, occur during steady posture (Miall, Keating, Malkmus,
& Thach, 1998), we believe that the inverse statics model is
acquired in the cerebellum through feedback-error-learning. It has
been shown that the activities of arm muscles correlate with the
activities of some of the Purkinje cells in the intermediate part of
lobules IV–VI (Yamamoto, Kawato, Kotosaka, & Kitazawa, 2007). In
addition, the arm area of the primary motor cortex receives input
from the Purkinje cells in that part (Kelly & Strick, 2003). Therefore,
it seems possible that the motor command generated from the
cerebellum is integrated with the feedback motor command at the
primarymotor cortex and is sent to themuscles through the spinal
motor neurons.

Finally, the feedback controller in our model is trained
by reinforcement learning. There are several suggestions that
reinforcement learning is implemented in the neural circuits
involving cortico-striatal and striato-nigral loops (Barto, 1995;
Doya, 1999; Haruno & Kawato, 2006; Joel, Niv, & Ruppin,
2002). In addition, the dopamine neurons in the basal ganglia
(substantia nigra pars compacta) are known to encode the
signals acting like the TD error in reinforcement learning
paradigm (Schultz, Dayan, & Montague, 1997; Suri, 2002). We
have not found, so far, direct evidence suggesting the existence
of feedback controller for the arm movements in the cerebral
cortex. However, taking into account the fact that Huntington’s
disease patients showed a dysfunction in error feedback control
during reaching movements (Smith, Brandt, & Shadmehr, 2000),
there seems a possibility that the feedback controller is trained by
reinforcement learning and acquired somewhere in cortico-striatal
loop, especially involving the pre- and primary motor cortices.

7. Conclusion

In this paper, we proposed a computational model for arm
reaching control and learning. Our model consists of neural
networks implementing feedback controller, inverse staticsmodel,
and forward dynamics model of the arm. Each of them is
trained with reinforcement learning, feedback-error-learning, and



360 H. Kambara et al. / Neural Networks 22 (2009) 348–361

Table 4
Muscle parameters:

k0i (N/m) k1i (N/m) b0i (N s/m) b1i (N s/m) lrest1i (cm) l0i − lrest0i (cm)

Shoulder flexor (i = 1) 1000 3000 50 100 15.0 7.7
Shoulder extensor (i = 2) 1000 2000 50 100 15.0 12.8
Elbow flexor (i = 3) 600 1400 50 100 15.0 10.0
Elbow extensor (i = 4) 600 1200 50 100 15.0 4.0
Double-joint flexor (i = 5) 300 600 50 100 15.0 2.0
Double-joint extensor (i = 6) 300 600 50 100 15.0 1.9

supervised learning, respectively. The error signals given to our
model are the state vector of the arm and scalar reward indicating
the task performance. Prior knowledge about the dynamics of
the arm is not necessary for our model to accomplish a reaching
task. Instead, the performance of reaching movement is improved
through training trials inwhich the arm is controlled in a trial-and-
error manner. We applied our model to a multi-joint reaching task
in the sagittal plane. Simulation results demonstrated the ability of
our model to generate quite accurate reaching movements toward
various target points.

The other important feature of our model is that it drives
the arm directly toward the target points, and hence, it does
not require desired trajectories to generate reaching movements.
We compared the movement trajectories of the simulation with
those of human subjects. The hand paths and velocity profiles
in the simulation were qualitatively in good agreement with
experimental data. It is quite reasonable based on the present
result that the CNS can realize smoothmovementswithout desired
trajectory planning if it controls the arm in the way our model
adopted.
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Appendix A. Dynamic equations of the 2-link arm

The dynamic equations of the 2-link arm in the sagittal plane
shown in Fig. 2 are given by

τ1 = M11θ̈1 + M12θ̈2 + h122θ̇
2
2 + 2h112θ̇1θ̇2 + g1

τ2 = M21θ̈1 + M22θ̈2 + h211θ̇
2
1 + g2 (28)

where

M11 = I1 + I2 + m2(l21 + 2l1lg2 cos θ2)

M12 = M21 = I2 + m2l1lg2 cos θ2

M22 = I2
h122 = h112 = −h211 = −m2l1lg2 sin θ2

g1 = m1ĝ lg1 cos θ1 + m2ĝ(l1 cos θ1 + lg2 cos(θ1 + θ2))

g2 = m2ĝ lg2 cos(θ1 + θ2). (29)

Here, mj, lj, lgj, Ij are the mass, the length, the distance from the
center of mass to the joint, and the rotary inertia of the jth link
around the joint, respectively. θ1 and θ2 are angles of shoulder and
elbow joints, respectively. ĝ is the gravitational acceleration. The
parameters of the 2-link arm are shown in Table 2.

Appendix B. Values of muscle parameters

We set the values of moment arms and muscle parameters as
shown in Tables 3 and 4, respectively. The meaning of muscle
parameters are explained in Section 3.1. We determined the value
of (l0i − lrest0i ) so that the muscle tension does not become negative
for all possible situations.
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