
Incorporating Search Algorithms into RTS Game Agents

David Churchill and Michael Buro
University of Alberta

Computing Science Department
Edmonton, Alberta, Canada, T6G 2E8

Abstract

Real-time strategy (RTS) games are known to be one of the
most complex game genres for humans to play, as well as
one of the most difficult games for computer AI agents to
play well. To tackle the task of applying AI to RTS games,
recent techniques have focused on a divide-and-conquer ap-
proach, splitting the game into strategic components, and de-
veloping separate systems to solve each. This trend gives rise
to a new problem: how to tie these systems together into
a functional real-time strategy game playing agent. In this
paper we discuss the architecture of UAlbertaBot, our entry
into the 2011/2012 StarCraft AI competitions, and the tech-
niques used to include heuristic search based AI systems for
the intelligent automation of both build order planning and
unit control for combat scenarios.

Introduction
Traditional games such as Chess and Go have for centuries
been regarded as the most strategically difficult games to
play at a top level. High-level play involves complex strate-
gic decisions based on knowledge obtained through study
and training, combined with online analysis of the pieces
on the current board. Top players are able to “look ahead”
a dozen or more moves into the future to decide on an ac-
tion, often under strict time constraints, with clocks for each
player ticking away as they think make their decision. Let
us now imagine a genre of game in which the playing field
is 256 times as large, contains up to several hundred pieces
per player, with pieces able to be created or destroyed at any
moment. On top of this, players may move any number of
pieces simultaneously in real-time, with the only limit be-
ing their own dexterity. What we have just described is a
real-time strategy (RTS) game, which combines the complex
strategic elements of traditional games with the real-time ac-
tions of a modern video game.

A relatively new genre, the first RTS games started to ap-
pear in the early 1990s with titles such as Dune II, War-
Craft, and Command and Conquer. Originally introduced
as a single-player war simulation, their popularity exploded
as the internet allowed for players to compete against each
other in multiplayer scenarios. With the creation of StarCraft
in 1998, RTS games had reached a level of strategy unseen
in other video game genres. Tournaments such as the World

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Cyber Games had prize pools large enough to create the first
professional players by the year 2000, with prize totals in
2011 totalling in the millions of dollars.

In recent years, the field of AI for RTS games has grown
as it has shown to be an excellent test-bed for AI algorithms.
Due to the enormous size and complexity of the RTS do-
main, as well as its harsh real-time processing requirements,
RTS AI agents are still quite weak with respect to their hu-
man counterparts, when compared to the successes of AI
agents in traditional games like chess. For example, the win-
ning entry of both the 2011 AIIDE StarCraft AI Competition
and the 2011 CIG StarCraft AI Competition, Skynet, was
later trivially defeated by a skilled amateur player in a man-
machine showmatch.

Due to the complexity of AI algorithms for RTS games
(Furtak and Buro 2010), current state of the art RTS AI
agents consist primarily of large rule-based systems (like fi-
nite state machines) which implement hard-coded strategies
derived from expert knowledge. Recently however some
agents have started to incorporate dynamic AI solutions in
an to attempt to improve performance in certain areas of
their play. As more and more AI solutions are developed,
the task of integrating them smoothly into an existing agent
can be a difficult one.

In this paper we address the problem of incorporating AI
algorithms into RTS game agents which face uncertainty
about the durations of actions as they are executed by the
game engine for which no source code is available. More-
over, game engine interfaces may limit access to essential
state information, such as the last time opponent units fired,
which is crucial for planning actions for combat units. In the
following sections we first describe the StarCraft program-
ming interface and how to extract relevant game data from
it. Then we discuss our RTS game agent’s hierarchical AI
structure and its novel search-based AI modules for build or-
der planning and unit micro-management, and encountered
complications when integrating the search procedures into
our StarCraft agent. We conclude the paper by experimental
results and remarks on future work in this research area.

StarCraft Programming
In the development of any game-playing agent, two require-
ments are crucial:
• Access to game specific data to perform strategic analysis

both on and offline



• Access to play the game itself
Unlike traditional games like chess, real-time strategy

games are much more difficult to simulate, requiring sys-
tems that govern all aspects of play such as unit movements
and attacking. Because StarCraft is a retail game for which
no publicly available source code exists, we have two op-
tions: either model an approximation of the game in a sys-
tem we construct, or construct a programming interface to
the game to allow us to play the exact version. Luckily, there
are tools available for us that do both.

BWAPI
BWAPI (http://code.google.com/p/bwapi/) is a program-
ming interface written in C++ which allows users to read
data and send game commands to a StarCraft: BroodWar
game client. BWAPI contains all functionality necessary for
the creation of a competitive AI agent. Examples of BWAPI
functionality are:
• Perform unit actions, i.e.: Attack, Move, Build

• Obtain current data about any visible unit, such as
Position, HP, Mana, isIdle

• Obtain offline data about any unit type, such as
MaxSpeed, Damage, MaxHP, Size, isFlyer

Programs written with BWAPI are compiled into a Win-
dows dynamically linked library (dll) which is injected into
the StarCraft game process via a third-party program called
“ChaosLauncher”. BWAPI allows the user to perform any
of the above functionality while the game is running, after
each logic frame update within the game’s software. After
each logic frame, BWAPI interrupts the StarCraft process
and allows the user to read game data and issue commands,
which are stored in a queue to be executed during the game’s
next logic frame. No further StarCraft game logic or anima-
tion updates are allowed until all sequential user code has
finished executing, a fact we will be concerned about when
writing resource intensive AI systems.

As no StarCraft source code has been released by its pro-
ducer (Blizzard), BWAPI has been created via a process of
reverse engineering, with all functionality arising from the
getting and setting of data in the StarCraft process’ mem-
ory space. Although BWAPI provides much functionality, it
currently does not give access to some specific data such as
unit attack animation frame durations, which are necessary
for optimal unit control (discussed in section 5).

PyICE
To extract additional data, we use PyICE: part of the
PyMS (http://www.broodwarai.com/index.php?page=pyms)
modding suite, it is a tool which allows the reading and
editing of StarCraft IScript bin files, which are used by the
game to control various aspects of StarCraft such as unit
behaviour, sprite animations, attack damage timings, and
sound triggers. By analyzing the game script files we are
able to extract all additional information necessary to (in the-
ory) carry out unit commands.

Architecture
Several architecture models exist for the construction of
game playing agents. (Wintermute, Xu, and Laird 2007) use

Figure 1: UAlbertaBot Class Diagram

the SOAR cognitive architecture to implement an RTS agent
for the ORTS RTS game (ORTS 2010). They implement a
finite state machine based approach to respond to percep-
tual data from the game environment. (Jaidee, Muoz-Avila,
and Aha 2011), use a case-based reasoning architecture to
play Wargus, an open source clone of Warcraft II. Their
method selects goals based on ’discrepency’ events which
differ from expected behaviours. (McCoy and Mateas 2008)
designed a Wargus agent using ABL (A Behavioural Lan-
guage), a language designed for reactive planning. Their
system uses multiple manager modules for controlling sub-
tasks of more high-level goals.

Like many RTS game AI authors before, we have de-
signed UAlbertaBot’s architecture in a modular and hierar-
chical fashion (Figure 1) for two reasons: to retain an intu-
itive command hierarchy, and to avoid overlap in any com-
putations that need to be performed. Inspired by military
command structures, tasks are partitioned among modules
by their intuitive strategic meaning (combat, economy, etc.),
with vertical communication being performed on a “need to
know” basis. High level strategy decisions are made by the
game commander by compiling all known information about
the current game state. Commands are then given to com-
bat and macro sub-commanders, which in turn give com-
mands to their sub-commanders which are directly in charge
of completing the low-level task.

To illustrate how this system works, we will use an ex-
ample of combat unit micro-management. When the game
commander decides to attack a location on the map, it passes
this decision onto the combat manager. The combat manager
then decides on a squad of attack units to send and moves
them toward the location. Once these units enter a given ra-
dius of where the battle is to take place, the units are then
controlled by the micro manager. The micro manager pack-
ages the information about the current combat scenario and
then passes that information to a function which will return
the actions we should perform for each unit.

The advantage of this architecture is that this function can
now be of any level of sophistication, whether it be hand-
coded script or a complex search-based AI system. By im-
plementing this design, we can start with a system which

2



may be full of scripted modules, and gradually replace them
by more sophisticated AI systems as we develop them with-
out changing the overall architecture of the agent. For ex-
ample in 2010, UAlbertaBot used all scripted solutions for
each module it contained. For the 2011 version we devel-
oped a heuristic search algorithm for build order planning,
which simply replaced the existing scripted build order mod-
ule. We have now done the same thing with unit micro-
management by replacing our previously hand-scripted unit
actions with our AI based approach.

Resource Allocation
In most cases, the more resources given to an AI agent,
the stronger the results that will be returned. This can be
problematic for AI systems in RTS games due to the harsh
real-time constraints of the game. In the case of BWAPI,
the interface will halt the progression of the game until all
calculations in the agent’s onFrame() method have been
performed. If a user runs an algorithm for one minute to
decide on an action for a given frame, the game will be ef-
fectively paused for both players for the full minute. In the
2011 AIIDE StarCraft AI Competition, bots were given 55
ms per game frame to perform all calculations, with game
loss penalties for going over this threshold a set number of
times. Therefore, it is critical to come up with an efficient
scheme for resource allocation when integrating an AI sys-
tem into an agent that has to act in real-time.

BWAPI allows an agent to gain frame-accurate details
about a game state. Therefore, an ideal system would pro-
cess the game state at every frame and decide on a new set
of actions to be carried out for the following frame. This
however may not be possible in all cases due to resource
budgeting, so one of three situations must arise:

1. Resources (such as processing time) given to an AI sys-
tem must be reduced to produce an action for the follow-
ing frame. This will typically result in decreased perfor-
mance from the AI.

2. The AI system will use more time than is remaining in a
single frame, either by staggering the computations across
multiple frames, or by performing them in a separate
thread. This will yield delayed results from the algorithm
because they were given input from a frame at some point
in the past.

3. Similar to the previous situation, however one can attempt
to estimate the input of a future state to alleviate the side
effects of delayed effects. This method then relies on hav-
ing a good future estimation.

UAlbertaBot uses method 1 and method 2 for its AI sys-
tems. In the case of unit micro-management, method 1 is
used and the heuristic search algorithm is given the remain-
ing resources for a particular frame to perform its calcula-
tions. This is done due to the nature of real-time combat,
in which a delayed action may be the difference between
life or death. For the build order planning system method 2
is used and calculations are staggered over multiple frames
(up to a maximum of 50 frames). The reason for this is that
the build order planner may produce a plan which ends up
spanning several minutes into the future, so we typically see
that the shorter plans produced by allocating more resources

Algorithm 1 Game Commander onFrame
1: procedure ONFRAME()
2: Clock.start();
3: Tools.update();
4: ... Tools.Map.update();
5: ... Tools.Map.Pathfinder.update();
6: Macro.update();
7: ... Macro.WorkerManager.update();
8: ... Macro.ProductionManager.update();
9: Combat.update();

10: ... Combat.ScoutManager.update();
11: ... Combat.SquadManager.update();
12: ... Combat.MicroManager.update();
13: BuildPlannerAI.run(TimeLimit-Clock.elapsed());
14: MicroAISystem.run(TimeLimit-Clock.elapsed());

far outweigh delaying its execution for a few seconds. In
the cases where both AI systems are required to function
on the same frame, we simply split the available resources
equally among both systems, which can be done either in
sequence or in parallel by spawning a separate thread whose
duration matches the time remaining in the frame. To accu-
rately determine how much time to allocate to the AI sys-
tems we delay their execution until after all other bot tasks
have been completed for this frame. To illustrate how this
is done, pseudo code for game commander’s onFrame()
method is shown in Algorithm 1.

AI-Specific Implementation Details
When integrating an AI system into an RTS agent, especially
those designed to work with retail gaming software such as
StarCraft, we may encounter different issues depending on
the role of the AI we are implementing. In this section we
will discuss some of the implementation details and difficul-
ties associated with the two AI systems we have incorpo-
rated into UAlbertaBot.

Build Order Planning
In any RTS game there is an initial phase in which players
must gather resources in order to construct training facilities,
which in turn construct their armies which will engage in
combat. An ordered sequence of actions which produces a
given set of goal units is called a build order. Due to its
exponential time complexity, build order planning requires
an approximate AI solution for their construction. We have
developed a build order planning using an any-time depth
first branch and bound algorithm (Churchill and Buro 2011).

When implementing this system into UAlbertaBot, no
real difficulties arose. The system is treated as a black-box
function which when given an input set of unit goals, returns
a sequence of actions to be executed by the agent. This func-
tion simply replaced the previous build order system, which
was a rule based finite state machine. Due to the nature of
the the build order problem, all actions produced by the al-
gorithm are at a macro scale, such as “construct building”
and “gather minerals”, with no fine-grain motion or knowl-
edge of the StarCraft engine required.

This is not the case however for actions at a micro scale,
where delaying execution by even a few frames may cause
disastrous effects.

3



Table 1: Sequence of events occurring after an attack command has been given in StarCraft. Also listed are the associated
BWAPI unit.isAttacking() and unit.isAttackFrame() return values for the given step.

Attack Sequence isAttacking isAttackFrame Additional Notes
1. Unit is Idle False False Unit may be idle or performing another command (i.e.: move)
2. Issue Attack Cmd False False Player gives order to attack a target unit
3. Turn to Face Target False False May have 0 duration if already facing target
4. Approach Target False False May have 0 duration if already in range of target
5. Stop Moving False False Some units require unit to come to complete stop before firing
6. Begin Attack Anim True True Attack animation starts, damage not yet dealt
7. Anim Until Damage True True Animation frames until projectile released
8. Mandatory Anim True True Extra animation frames after damage (may be 0)
9. Optional Anim True True Other command can be issued to cancel extraneous frames
10. Wait for Reload True False Unit may be given other commands until it can shoot again
11. Goto Step 3 False False Repeat the attack

Unit Micro-Management
RTS battles are complex adversarial encounters which can
be classified as two-player zero-sum simultaneous move
games (Churchill and Buro 2011). As in most complex
games, no simple scripted strategy performs well in all pos-
sible scenarios. We implemented the ABCD (Alpha-Beta
search Considering Durations) search algorithm for use in
RTS combat settings that is described in (Churchill, Saffi-
dine, and Buro ), and integrated it into UAlbertaBot. ABCD
search takes action durations into account and approximates
game-theoretic solutions of simultaneous move games by
sequentializing moves using simple policies such as Max-
Min-Max-Min or Min-Max-Min-Max. Applied to RTS
game combat scenarios, the paper describes various state
evaluation methods ranging from simple static evaluation to
simulation-based approaches in which games are played to
completion by executing scripted policies. Some details of
our implementation are discussed later. For more informa-
tion about ABCD search we refer the reader to (Churchill,
Saffidine, and Buro ).

Similar to the build order planning system, our ABCD
search based combat AI system acts as a function which
takes a given combat scenario as input, and as output pro-
duces individual unit actions. Unlike the previous case how-
ever, these actions must be carried out with extreme preci-
sion in order to guarantee good results. Despite BWAPI’s
comprehensive interface into the StarCraft game engine,
there are still some intuitively simple tasks which require
non-trivial effort to implement. Take for example the case
of issuing an attack command to a unit in the game. To carry
out frame-perfect unit micro-management we will require
knowledge of the exact frame in which the unit has fired
its weapon and dealt its damage. This is important because
StarCraft’s game engine will cancel an attack command if
another command is given before damage has been dealt, re-
sulting in less damage being done by the unit over time. Cur-
rently, there is no functionality in BWAPI which can give us
this exact information, so it must be extracted via a combina-
tion of reverse-engineered game logic and animation script
data obtained via PyICE.

BWAPI gives us access to two separate functions
to help determine if a unit is currently attacking:
unit.isAttacking(), which returns true if the unit is
currently firing at a unit with intent to continue firing, and
unit.isAttackFrame(), which returns true if the unit

is current animating with an attack animation frame. Table 1
shows the sequence of events which take place after issuing
a unit.attack() command in StarCraft. Steps 1-5 deal with the
unit moving into a position and heading at which it can fire,
steps 6-9 deal with the actual firing time of the unit, and step
10 is a period of time where the unit is waiting until it can
fire again. We can see by this sequence that neither function
gives us the exact time when the unit dealt its damage, due
to steps 8 and 9, which are steps in which these functions
return true, but after damage has already been inflicted. We
must therefore use the information extracted from PyICE to
determine the frame when damage has been dealt (the end
of step 7). For a given unit, we extract the duration of steps
6-9 from PyICE and call this value atkFrames.

To determine this timing, we will keep track of the unit af-
ter we have given an attack command to make sure no other
commands are given before the end of step 7. We record the
first frame after the attack command was given for which the
unit.isAttackFrame() returns true (the beginning of step 6),
and call this value startAtk. We then calculate the frame in
the future when the unit will have dealt its damage by:

damageFrame = startAtk + atkFrames

By issuing subsequent commands to the unit only af-
ter damageFrame we ensure that no attacks will be in-
terrupted, while allowing the unit to perform other com-
mands between attacks for as long as possible. For exam-
ple, a Protoss Dragoon unit has an attack cooldown of 23
frames, but an atkFrames value of 7, which means it has
16 frames after firing that it is free to move around before
it fires again, which can be useful for strategic attack se-
quences such as kiting, a technique used against units with
short range weapons to avoid taking damage by fleeing out-
side of its weapon range while waiting to reload.

However, despite this effort which should work in theory,
in practice the StarCraft engine does not behave in a strict
deterministic fashion, and work is still being done to per-
fect this model so that a higher level of precise combat unit
control can be obtained.

Experiments
In order to evaluate the success of our architecture, we will
perform experiments that demonstrate two points:
• That the AI systems have been successfully integrated

into the bot, and that the resource allocation strategy we

4



Figure 2: Micro search experiment scenarios. A) 3 ranged Vultures vs. 3 melee Zealot. B) 2 ranged Dragoons vs. 6 fast melee
Zerglings. C) 3 Dragoon + 3 Zealots in symmetric formation. D) 8 Dragoons in symmetric two-column formation.

chose did not cause any issues in bot performance
• That the AI system contributed to the success of the agent

as a whole, and is an improvement over existing tech-
niques

Build Order Planner Performance
To evaluate our build order planning AI we use the re-
sults from the 2011 AIIDE StarCraft AI Competition. UAl-
bertaBot incorporated the build order planning system de-
scribed in section 5.1. All building actions were planned
by this system, and re-planning was triggered by the follow-
ing events: at the start of the game, when the current build
queue is exhausted, or when a worker unit or building unit
is destroyed.

As shown in Figure 1, the build order planner was con-
trolled by the production manager of the bot. When one
of the above events was triggered, the production manager
would pass a new unit composition goal into the planner, and
it would return an ordered list of actions to be carried out by
the building manager.

Resource management was implemented as shown in al-
gorithm 1. The game commander’s main onFrame() func-
tion keeps track of remaining resources as each of the other
systems perform their tasks. Remaining time resources for
the current frame were then given to the planner, which ran
for the given time limit during the current frame. At the end
of this frame time limit, the search state was saved, and the
computation resumed during the next frame, until an overall
time limit was reached. For our experiment, this overall time
limit was set to 5 seconds. The bot ran single-threaded on an
Intel E8500 CPU with 4 GB of RAM, with less than 1 MB
of memory used for the planner itself.

UAlbertaBot came in 2nd place in both the 2011 AIIDE
StarCraft AI Competition, as well as the 2011 CIG Star-
Craft AI Competition. All build orders (several dozen per
game) were planned using the AI system in real-time. Over
the course of 30 rounds of round robin competition, UAl-
bertaBot won 79.4% of its 360 matches, with no game losses
due to processing time-outs. While these results cannot con-
clude whether or not the planner contributed to the bot’s suc-
cess, they do confirm that the architecture and resource man-
agement strategies were sound. In addition, it was the only
build order planning AI present in any competition of 2011,
with all other entries using rule-based orderings.

Combat Micro AI Performance
To evaluate our combat search AI system, we implemented
a simplified version of UAlbertaBot in BWAPI which only

performs combat scenarios. Unfortunately, due to time con-
straints our micro AI system has not yet been implemented
into the full version of UAlbertaBot. For this reason we will
only allocate 5 ms per frame to our AI’s search algorithm
in order to simulate a harsh environment in which the full
bot is executing each frame. In 2011, UAlbertaBot’s micro-
management system involved a policy of “Attack Weakest
Enemy Unit in Range”, with an option for game comman-
der to retreat the squad from combat for various strategic
purposes. For this experiment no retreat was allowed —
combat is performed until one team has been eliminated or
a time limit of 5000 frames (208 seconds) is reached.

In this experiment we construct several StarCraft test
maps which contain pre-positioned combat scenarios. To
evaluate our AI system (Search) we will do a comparison
of its performance to that of the micro-management system
present in the 2011 version of UAlbertaBot (AttackWeak-
est). Due to the desire to avoid issues with network latency
(necessary to play one combat policy against the other di-
rectly) we instead chose to perform combat with both meth-
ods vs. the default StarCraft AI, and then compare the ob-
tained scores. The default StarCraft AI’s combat policy is
not explicitly known, however it is thought to be approxi-
mately equal to AttackWeakest, however it does not appear
to be deterministic. To test our BWAPI implementation it-
self we will also run the same experiments inside a sim-
ulated model of the StarCraft combat engine as described
in (Churchill, Saffidine, and Buro ). Games were played
against the AttackWeakest scripted policy, which is the clos-
est known to that of the default StarCraft AI.

The scenarios we construct are designed to be realistic
early-mid game combat scenarios which could be found in
an actual StarCraft game. They have also been designed
specifically to showcase a variety of scenarios for which
no single scripted combat policy can perform well under all
cases, and can be seen in Figure 2. Units for each player are
shown separated by a dotted line, with the default AI units
placed to the right of this line. Unit positions were fixed
to the formations shown at the start of each trial, but units
were allowed to freely move about the map if they are in-
structed to do so. For each method, 200 combat trials were
performed in each of the scenarios.

Scenario A is designed such that the quicker, ranged Vul-
ture units start within firing range of the zealots, and must
adopt a “run and shoot” strategy (known as kiting) to de-
feat the slower but stronger melee Zealot units. Scenario B
is similar to A. However, two strong ranged Dragoons must
also kite a swarm of weaker melee Zerglings to survive. Sce-

5



Table 2: Results from the micro AI experiment. Shown are
scores for Micro Search, AttackWeakest, and Kiter decision
policies each versus the built-in StarCraft AI for each sce-
nario. Scores are shown for both the micro simulator (Sim)
and the actual BWAPI-based implementation (Game).

Combat Decision Settings

Search (5 ms) AtkWeakest Kiter
Sim Game Sim Game Sim Game

A 1.00 0.81 0 0 1.00 0.99
A’ 1.00 0.78 0 0 1.00 0.99
B 1.00 0.65 0 0 1.00 0.94
B’ 1.00 0.68 0 0 1.00 0.89
C 1.00 0.95 0.50 0.56 0 0.14
C’ 1.00 0.94 0.50 0.61 0 0.09
D 1.00 0.96 0.50 0.58 0 0.11
D’ 1.00 0.97 0.50 0.55 0 0.08

Avg 1.00 0.84 0.25 0.29 0.50 0.53

nario C is symmetric, with initial positions allowing the Dra-
goons to reach the opponent zealots, but not the opponent
Dragoons. Scenario D is also symmetric, wherein each unit
is within firing range of each other unit. Therefore, a good
targeting policy will perform well.

In addition to the scenarios shown, four more scenarios
A’, B’, C’, and D’ were tested, each having a similar forma-
tion to the previously listed scenarios. However, their po-
sitions will be perturbed slightly to break their perfect line
formations. In the case of C and D, symmetry was main-
tained for fairness. These experiments were performed on
hardware similar to the build-order planning hardware, with
1 MB total memory used for the search routine and 2 MB
for the transposition table.

The results from the micro search experiment are pre-
sented in Table 2. Shown are scores for a given combat
method, which are defined as: score = wins + draws/2.
We can see from these results that it is possible (through ex-
pert knowledge) to design a scripted combat policy (such as
Kiter) which will perform well in scenarios where it is ben-
eficial to move out of shorter enemy attack range like in sce-
narios A/B, but will fail in scenarios where excess movement
is detrimental as it imposes an small delay on firing like in
scenarios C/D. Scripts such as AttackWeakest perform bet-
ter than Kiter in scenarios in which its better targeting policy
and lack of movement allow for more effect damage output,
but fail completely in situations such as A/B where stand-
ing still in range of powerful melee enemies spells certain
death. By implementing a dynamic AI solution for combat
micro problems, we have dramatically improved overall per-
formance over a wide range of scenarios, even while under
the extremely small time constraint of 5 ms per frame.

Also of note in these results is the fact that although the
scripted strategies are deterministic, the outcome in the ac-
tual BWAPI implementation was not always the same for
each trial. In a true deterministic and controllable RTS game
model (such as our simulator), each of the scripted results
should either be all wins, losses, or draws. This surpris-
ing result must be due to the nature of the StarCraft en-
gine itself, for which we do not have an exact model. It

is known that the StarCraft engine does have a small level
of stochastic behaviour both in its unit hit chance mecha-
nism (http://code.google.com/p/bwapi/wiki/StarcraftGuide)
and its random starting unit heading direction. It is un-
known whether or not the default combat policy contains
non-deterministic elements. It also highlights an additional
frustration of implementing an RTS game bot in a real-world
scenario: that results may not always be exactly repeatable,
so robust designs are necessary.

Conclusion and Future Work
In this paper we have described the architecture of our RTS
game playing agent and how we integrated various AI com-
ponents in a hierarchical fashion. The current focus of our
research is on adding AI search components for build or-
der planning and unit micro management. While integrat-
ing build order planning is straight forward because precise
action timing isn’t crucial, we have encountered problems
when incorporating our combat search module into a Star-
Craft bot that have yet to be overcome. The challenge is to
accurately model complex action timings — many of them
undocumented but crucial for combat situations — based
on limited information provided by BWAPI, the program-
ming interface to the StarCraft game engine. Stated another
way, we need to better align the fidelity of our unit micro-
management search with an environment in which exact data
is not available. This can possibly be achieved by mea-
suring (average) action times in controlled experiments or
by using a two-step search procedure in which a high-level
search considers sequences of low-level macro actions that
are restricted to those that can be efficiently executed with-
out slowing down attacks and unit motion. The promising
experimental results we presented make us feel confident
that in time for the 2012 AIIDE StarCraft AI competition
our unit micro-management will generally outperform the
built-in combat scripts and — hopefully — most of the com-
petitors.

References
Churchill, D., and Buro, M. 2011. Build order optimization in
StarCraft. In Proceedings of AIIDE.
Churchill, D.; Saffidine, A.; and Buro, M. Fast heuristic search for
RTS game combat scenarios. In Proceedings of AIIDE, (pre-print
available at www.cs.ualberta.ca/˜mburo/ps/aiide12-combat.pdf.
Furtak, T., and Buro, M. 2010. On the complexity of two-player
attrition games played on graphs. In Youngblood, G. M., and
Bulitko, V., eds., Proceedings of AIIDE.
Jaidee, U.; Muoz-Avila, H.; and Aha, D. W. 2011. Case-based
learning in goal-driven autonomy agents for real-time strategy
combat tasks. In Proceedings of the ICCBR Workshop on Com-
puter Games, 43–52.
McCoy, J., and Mateas, M. 2008. An integrated agent for playing
real-time strategy games. In Proceedings of the AAAI Conference
on Artificial Intelligence. Chicago, Illinois: AAAI Press, 1313–
1318.
ORTS. 2010. ORTS - A Free Software RTS Game Engine.
http://www.cs.ualberta.ca/˜mburo/orts/.
Wintermute, S.; Xu, J.; and Laird, J. E. 2007. Sorts: A human-
level approach to real-time strategy ai. In Proceedings of the Third
AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment, AIIDE 2007.

6


