
Multi-Humanoid World Modeling in
Standard Platform Robot Soccer

Brian Coltin, Somchaya Liemhetcharat, Çetin Meriçli, Junyun Tay, and Manuela Veloso

Abstract— In the RoboCup Standard Platform League (SPL),
the robot platform is the same humanoid NAO robot for all the
competing teams. The NAO humanoids are fully autonomous
with two onboard directional cameras, computation, multi-
joint body, and wireless communication among them. One
of the main opportunities of having a team of robots is to
have robots share information and coordinate. We address the
problem of each humanoid building a model of the world
in real-time, given a combination of its own limited sensing,
known models of actuation, and the communicated information
from its teammates. Such multi-humanoid world modeling is
challenging due to the biped motion, the limited perception,
and the tight coupling between behaviors, sensing, localization,
and communication. We describe the real-world opportunities,
constraints and limitations imposed by the NAO humanoid
robots. We contribute a modeling approach that differentiates
among the motion model of different objects, in terms of their
dynamics, namely the static landmarks (e.g., goal posts, lines,
corners), the passive moving ball, and the controlled moving
robots, both teammates and adversaries. We present exper-
imental results with the NAO humanoid robots to illustrate
the impact of our multi-humanoid world modeling approach.
The challenges and approaches we present are relevant to the
general problem of assessing and sharing information among
multiple humanoid robots acting in a world with multiple types
of objects.

I. INTRODUCTION

For several years, we have witnessed and experienced
the robot soccer challenge towards having a team of robots
autonomously perform a “scoring” task (pushing a ball into
a goal location) on a predefined space in the presence of
an opponent robot team. We are focused on the teams
of robots with onboard perception, control, actuation, and
communication capabilities. While many complete robot
soccer teams have been devised with varied levels of success,
one of the main challenges is still the “world modeling”
problem for such robot teams, where robots have limited,
directional perception. Each robot needs to build a model
of the state of the world, e.g., the positioning of all the
objects in the world, in order to be able to make decisions

The first author was partially sponsored by the Office of Naval
Research under grant number N00014-09-1-1031. The second author
was partially supported by Lockheed Martin, Inc. under subcontract
8100001629/1041062, and the Agency for Science, Technology, and Re-
search (A*STAR), Singapore. The third author was supported by The
Scientific and Technological Research Council of Turkey Programme 2214.
The views and conclusions contained in this document are those of the
authors only.

B. Coltin and S. Liemhetcharat are with The Robotics Institute,
Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA, USA
bcoltin@cs.cmu.edu, som@ri.cmu.edu

Ç. Meriçli, J. Tay, and M. Veloso are with Computer Science Depart-
ment, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA, USA
{cetin, junyunt}@cmu.edu, veloso@cs.cmu.edu

towards achieving its goals. World modeling is the result of
the robot’s own perception, the robot’s models of the objects,
and the communicated information from its teammates. This
world modeling problem is complicated by the fact we
consider that the robot relies only on visual perception of
the objects in the environment, which is typically noisy and
inaccurate. In addition, the robots have a limited field-of-
view which allows the robot to detect only a small subset
of objects at a particular time. Interestingly, we note that the
primary goal of the robots is not to track the multiple objects
in the world, but to accomplish some other task, e.g., scoring
a goal. However, effectively performing the task directly
depends on an accurate model of world objects. We view this
world modeling problem of a group of robots with limited
perception and communication capabilities relevant to a very
general future environment when robots will naturally need
to perform tasks involving identifying and manipulating
objects in a world with other moving robots and towards
achieving specific goals.

World modeling clearly includes object tracking and there
is extensive previous related work. Multi-model motion
trackers incorporate the robot’s actions as well as its team-
mates’ actions (e.g., [1]), to allow a robot to track an object
even if its view is obscured, and if teammates take actions
on the object. Rao-Blackwellised particle filters have been
extensively used to effectively track a ball in the robot
soccer domain (e.g., [2]). In the presence of multiple robots
communicating among themselves, a variety of approaches
have been developed to fuse the information from mul-
tiple sources, using subjective maps [3], in high-latency
scenarios [4], with heterogeneous robots [5], and using a
prioritizing function [6].

In this paper, we drive our presentation using the RoboCup
Standard Platform League [7] [8] with the Nao humanoid
robots [9] in detail, to carefully present the general world
modeling problem. We identify different classes of objects
in the world in terms of their motion models. We discuss
and contribute the world model updating approaches for
each of the identified object classes, and demonstrate the
effectiveness of these approaches experimentally.

II. PROBLEM STATEMENT

We are interested in modeling objects in the world, such
that the humanoid robot has an accurate estimate of the loca-
tion of the objects, even if the objects are not currently visible
to the humanoid. The world model maintains hypotheses of
the positions of the objects in the world, given the sensor
readings of the humanoid and the models of the objects.

2010 IEEE-RAS International Conference on Humanoid Robots
Nashville, TN, USA, December 6-8, 2010

978-1-4244-8690-8/10/$26.00 ©2010 IEEE 424

Definition 1: A World Model is a tuple {O, X , S, M ,
H , U}, where:
• O is the set of labels of objects that are modeled
• X is the set of possible object states, i.e., x ∈ X

is a tuple representing the state of an object, such
as its position in egocentric coordinates, velocity, and
confidence

• S is the set of possible sensor readings, i.e., s ∈ S is a
tuple representing all currently sensed objects, and the
internal state of the robot

• M is the set of models of the objects, where mo ∈M
is the model of object o

• H : M × O → X is a hypothesis function that returns
the state of an object given its model

• U : M × O × S → M is the model update function,
i.e., m′o = U(mo, o, s)

In multi-robot scenarios, such as RoboCup, communica-
tion between teammates, e.g., sharing of ball information,
can be viewed as a sensor reading of the receiving robot.
Also, at any point in time, there can be some objects that
are not sensed by the robot. As such, the update function U
must be capable of updating the models of objects that are
not currently sensed.

A. Objects in the World
There are multiple types of objects in the world, which

have been organized into static, passive, actively-controlled,
and foreign-controlled [10] (see Fig. 1). Static objects, as
their name implies, are stationary objects. Passive objects are
objects that do not move on their own, but can be actuated
by other objects, e.g., a ball in the RoboCup domain. Models
of passive objects include a motion model for tracking their
velocity and trajectory, as well as the effects of other robots’
actions on the object, for example, when a teammate kicks
the ball. Actively-controlled and foreign-controlled objects
are those that move on their own, and are differentiated
by whether we have full knowledge of the actions taken
by the objects. In the robot soccer domain, the robot’s
teammates are actively-controlled and the opponents are
foreign-controlled.

Fig. 1. Types of objects, as introduced by [10].

Definition 2: Let O be the set of all objects in the
world model. Os, Op, Oa, Of are static, passive, actively-
controlled, and foreign-controlled objects, respectively,
where Os, Op, Oa, Of ⊆ O.

In RoboCup domain, Os is comprised of the goals (yellow
and blue) and other fixed landmarks on the field, such as

field lines and corners. Op contains the ball, and Oa and Of

consist of teammates and opponent robots respectively.
For each object in the world model, we maintain a model

of its position in egocentric coordinates. The model of the
object is updated according to the category of that object.
For example, static objects are updated only based on visual
cues (e.g., a goal post is detected in the camera image), and
by the robot’s movement, as they do not move. The models
of such objects do not include velocity, since static objects
do not move in the environment. In contrast, passive objects
have an associated velocity model, which is updated based
on both visual cues and actions taken by the robot and its
teammates, e.g., kicking the ball.

B. Challenges in Modeling the World

Creating an accurate world model for the RoboCup do-
main is a challenging problem. Firstly, the Nao humanoid
robot used in the RoboCup Standard Platform League has
limited sensing capabilities (see Fig. 2). The internal sensors
of the Nao, i.e., accelerometers and gyroscopes, are useful to
determine the robot’s state, but are unable to sense external
objects in the world. Ultrasonic sensors are used to detect
obstacles in front of the robot, but the obstacle information is
not incorporated into the world model. Perception of external
objects is performed using computer vision on the images
from the on-board cameras located in the Nao’s head. Due
to the narrow field-of-view of the cameras, the robots are
only able to sense a subset of the objects in the world at any
one time, and must actively choose which objects to perceive.
Also, the field is 6m × 4m , while the robot is only 30cm
wide, and so the robot is typically unable to perceive some
objects in the world without moving around.

Fig. 2. Aldebaran Nao humanoid robot used in the Standard Platform
League of RoboCup, and its on-board sensors.

Secondly, the environment is highly dynamic and adver-
sarial. The position of the ball varies over time, as the
robots on the field interact with it. Furthermore, the robots
are constantly moving across the field, limiting line-of-sight
to the ball and other landmarks. The actions of teammates
are shared across the team, therefore modeling teammates
is relatively easier than modeling opponents, whose actions
are unknown and are difficult to track. The goal of the robot

425

team is to kick the ball into the opponent’s goal, and as such,
modeling objects is not the primary objective of the robots.
The robots typically maximize the amount of time perceiving
the ball (as it is the most important object in the domain),
but have to maintain an accurate model of other objects in
order to carry out the high-level goal of scoring.

Fig. 3. The field setup of RoboCup SPL 2009

Thirdly, landmarks in the environment are ambiguous.
Although goals are distinguished by their colors, blue and
yellow, it is difficult to differentiate between the left and
right goal posts of the same color, especially when the robot
is standing close to the goal. In addition, the soccer field is
marked by non-unique lines and corners (see Fig. 3), which
are impossible to differentiate based on a single camera
image, e.g., a straight line looks identical when the robot
stands on either side of it. Fig. 4 shows a yellow goal, an
ambiguous (left/right) yellow goal post, and an ambiguous
corner.

Fig. 4. a) A yellow goal. b) An ambiguous yellow goal post. c) An
ambiguous corner.

III. ROLE OF THE WORLD MODEL

The world model, which contains the positions of objects
in the environment, is only a part of a larger system. To
fully understand the design and function of the world model
in the RoboCup domain, a brief explanation of the other
components and their interactions with the world model is
necessary.

On a low level, the vision component processes images
from the camera and returns the positions of visible objects.
Since the objects on the field are color-coded (the field
is green, goals are yellow and blue, the ball is orange),
vision uses color segmentation and blob formation to identify
objects. All of the robot’s motions are controlled by a
motion component. The motion component receives mo-
tion commands such as walk forward, turn, or kick, and
executes them by manipulating the joint angles. A walk
algorithm based on the Zero Moment Point (ZMP) approach
is employed [11]. The motion component outputs odometry
information (i.e., the displacement of the robot).

The world model maintains the positions of objects in
egocentric coordinates. However, to make sense of the world
models of their teammates or execute cooperative behaviors,
they must communicate using global coordinates. The self-
localization algorithm takes the observations of goals, lines
and corners from vision along with odometry information
from motion as input, and estimates the robot’s global
position using a particle filter [12]. The localization problem
is especially challenging for humanoid robots due to noisy
odometry and a limited field of view. Ambiguous landmarks
also make localization difficult — for lines, we use an
algorithm presented in [13] to update the particle weights.

The referees communicate their rulings through a wireless
network with the robots. The information received from
referees is processed to determine the current state of the
game, such as when a goal is scored, when kickoff occurs,
or when a penalty is called.

At the highest level are the Nao’s behaviors, which decide
the robot’s actions. These include skills, tactics, and plays,
which model low-level abilities (such as kicking the ball),
the behavior of a single robot, and the behaviors of multiple
robots, respectively [14]. Behaviors issue motion commands
to the motion component. They retrieve information about
the environment from the world model, and the robot’s own
global position from localization.

In this architecture, the world model fills the essential role
of determining the positions of objects on the field, merging
observations from vision, messages from teammates, and
odometry information from the motion component. The
world model’s position estimates are then used by the
behaviors to decide the robot’s actions.

IV. MODELING THE WORLD

The algorithms for modeling objects vary widely de-
pending on the object category, yet several fundamental
algorithms are utilized by all object types.

Firstly, all objects are updated based on the robot’s odom-
etry. Odometry information is passed to the update function
U(m, o, s) as values ∆x, ∆y, and ∆θ in s. For all object
types, the function U first updates the estimated position with
an odometry function, i.e., (x′, y′) = odom(x, y, ∆x,
∆y,∆θ), where (x, y) and (x′, y′) are the original and
transformed coordinates of the object respectively.

Secondly, each observation of an object o in s from some
sensor includes the position and confidence of the obser-
vation. These observations are integrated into the position
estimate ~x of mo, via a filter, e.g., a Kalman filter. The
filter reduces the model’s sensitivity to noise, and weights
the observations according to their confidence.

Finally, the objects will not always be sensed. The world
model must track the objects’ positions even when they are
not currently sensed. It measures the confidence c ∈ [0, 1]
of its estimates so that the robot doesn’t act on outdated
or incorrect information. When the object is sensed (either
through a physical sensor or teammate communication), c is
set to the confidence given in s. Otherwise, the confidence

426

decays according to a function N(c, s) which is specific to
the object being modeled.

The updated confidence c in an object’s position is thresh-
olded into three states:
• Valid: The robot currently senses the object or sensed

it recently. The robot’s behaviors should assume the
position is correct.

• Suspicious: It has been some time since the object was
sensed. The robot’s behaviors should look at the object
before it becomes invalid.

• Invalid: The object’s position is unknown.

Fig. 5. Transitions between object confidence states.

The threshold levels lsuspicious and linvalid, specific to each
object type, are determined through experimentation. See
Fig. 5 for the transitions between confidence levels. The
suspicious state is an active feedback mechanism, which
serves as a request from the world model to look at the
object. The behaviors set a boolean flag in s when the robot
is currently looking at the object’s estimated position. N
will typically accelerate the decay of the confidence when
this flag is set. This active feedback mechanism ensures that
false positives from sensors and objects which have moved
are invalidated more quickly so that the robot does not act
on incorrect information.

Using these general algorithms applicable to all object
types, we will discuss how each category of object is
modeled, particularly in the RoboCup domain.

A. Static Landmarks

The RoboCup Standard Platform League (SPL) uses a field
setup closely resembling a real soccer field. The only unique
landmarks are two colored goals and the center circle (see
Fig. 3). The landmarks on the field (both unique and non-
unique) are categorized as static objects (Os) because their
positions on the field do not change.

1) Goal Posts: Due to the large size of the goal relative to
the field of view of the robot, the two goal posts are treated
separately. This raises the problem of uniquely identifying
the goal posts. One straightforward approach is to use spatial
relations between the left and right posts and the top goal
bar. However, this is especially difficult, if not impossible, in
cases where the robot looks at a post where the top goal bar is
not seen (see Fig. 4b for an example). Uncertainty associated
with the vision component, such as changes in the lighting
or misclassifications during the color segmentation phase,

might lead the goal post perception algorithm to incorrectly
identify a left or right goal post.

2) Field Lines: The SPL soccer field contains a set of
markings for visually emphasizing the special regions and
boundaries of the field. These are non-unique, and we do not
include them in the world model. However, they are used
in the robot’s self-localization process to compute its own
position.

3) Updating the Confidence of Static Objects: In addition
to partially visible goal posts, all of the field markings except
the center circle are non-unique landmarks. A landmark
should be identified uniquely before updating its confidence.
Different methods can be used to disambiguate non-unique
landmarks. Taking advantage of known global landmark
positions, constraints imposed by the relative positions of
landmarks with respect to each other can be used to associate
perceived landmarks with existing objects in the world
model. Another way of associating non-unique landmarks
with known ones is using the proximity of its global position
to the real positions of known landmarks.

The major distinction separating static landmarks from
other objects is that they are subjected to a decay function
based on the motion of the robot instead of time. The vision
component computes a confidence value c ∈ [0, 1] for each
visible static landmark. That value is used by the model
as long as the object is currently sensed by the robot. The
confidence value remains unchanged if the object is no longer
sensed but the robot is stationary. If the robot is moving, U
sets ct+1 ← N(ct) where N is a decay function dependent
on the rate of the robot’s motion.

B. Passive Objects

In RoboCup, the ball is the most important object and
therefore the world model needs an accurate position es-
timate for the ball at all times. The ball requires a more
complex model than static landmarks because it moves across
the field based on the actions of robots. It belongs to a more
general class of passive objects (Op), i.e., objects which do
not move of their own accord, but will move when acted on
by external forces. A passive object can be free, or controlled
by a robot— each state requires a different model. We will
specifically study the problem of modelling the ball, but the
techniques used are applicable to general passive objects.

Recall that mball ∈ M is the model of oball ∈ Op. This
model is updated based on the sensor readings s by an
update function U(mball, oball, s). The hypothesis function
H(mball, oball) returns an estimate of the ball state, xball.

1) Tracking the Ball: In every update of the ball’s model,
the position and confidence of the ball are updated according
to the odometry function odom and a filter f .

Since the ball is a passive object, unlike the goal posts,
we must model its motion. The ball has a velocity ~v (an
element of mball) which decays over time at a rate α, such
that ~xt+1 ← ~xt + ~vt∆t and ~vt+1 ← max(0, ~vt − α∆t).
The decay rate α depends on the properties of the surface
and the ball. Other motion models may be used in the more
general case of other types of passive objects.

427

~v = 0 unless a robot acts on it— the question is, then,
how can the actions of the other robots be modeled to predict
when the ball will be kicked. In [1], a probabilistic tracking
algorithm is introduced based on the actions of the robots.
The ball transitions between free and kicked states based
on the actions of the robot and its teammates, which are
communicated wirelessly (and listed in s). When the ball
transitions to a kicked state, the update function U sets
~v ← ~dvi, where ~d is a unit vector representing the direction
the robot is facing (communicated by the teammate) and vi
depends on the strength of the robot’s kick.

Modeling the actions of the opponents is more challeng-
ing. In this case, U resorts to estimating a velocity based on
the changes in the ball’s position over time. This velocity
estimation also serves to detect the unintentional actions on
the ball which are common in the Standard Platform League,
such as falling down on the ball or bumping into it.

2) Updating the Ball Confidence: All objects are modeled
with a confidence value c, which is thresholded to a valid,
suspicious, or invalid state. How this confidence is updated
varies with each type of object. In the case of the ball, when it
is visible, c is simply the confidence computed by the vision
component. If vision does not detect a ball, U updates the
confidence according to a decay function N . N is dependent
on the time elapsed and the movement of the robot. If
c is thresholded as suspicious, and the robot is looking
at the estimated ball position, N causes the confidence to
decay more rapidly. This increased decay rate is an active
feedback mechanism which ensures that false sightings and
balls which have moved are invalidated more quickly so that
the robot can begin to search for the ball.

3) Multiple Hypotheses: We have described an effective
model of the ball for a single robot, if the hypothesis function
simply returns the estimated ball position and its confidence
level. However, it does not incorporate information from
the robot’s teammates. To do this, we include a list of
hypotheses h in mball containing the ball position estimates
and confidence values from the robot and its teammates.

Each robot estimates the ball position in its own local coor-
dinate frame. To understand each other’s position estimates,
the robots must convert the positions to global coordinates,
using self-localization, to send to their teammates. The robots
receiving these global position estimates convert them to
their own local coordinate frame with self-localization. This
process introduces the error present in the self-localization
of both robots into the estimate of the ball’s position, so
we factor the localization error into the confidence level for
teammate ball estimates h in mball. This causes the robot to
favor its own estimates over those of its teammates.

The hypothesis function H returns the position estimate
with the highest confidence, and U decays the confidence
of the hypothesis with the highest confidence. Fig. 6 shows
how the ball confidence returned by H varies over time.

C. Controlled Objects

Along with static and passive objects, the third type
of object is controlled objects, which have the ability to

t1 t2 t3 t4 t5

Invalid

Suspicious

Valid

Fig. 6. An example scenario showing the ball confidence returned by
H . Initially the ball is visible, but at t1 it leaves the field of view. The
ball is seen again at t2, but lost once more at t3. At t4, the ball becomes
suspicious, and the behaviors look at where the ball is supposed to be. It
is not present, so the confidence decays more rapidly. At t5, after the ball
becomes invalid, a position estimate is received from a teammate.

move themselves without external forces. The world model
includes two types of controlled objects: Oa (actively-
controlled) and Of (foreign-controlled). We have full knowl-
edge of the actions of actively-controlled objects, while
foreign-controlled objects are controlled by others, i.e., their
actions are unknown. In RoboCup, each robot on our team is
an actively-controlled object, and the opposing team’s robots
are adversarial foreign-controlled objects.

The most essential actively-controlled object for the robot
to model is itself. In the egocentric coordinate frame, the
robot is always at the origin, so its position is not stored
explicitly in the world model. Instead, the relative positions
of the other objects are updated according to the robot’s
odometry by the update function U . The robot’s global
position on the field is determined by localization.

The other actively-controlled objects are the robot’s team-
mates. Each robot’s global position, computed using localiza-
tion, is shared wirelessly with teammates. This information is
used for team behaviors, such as passing to a robot upfield or
backing up an attacker. Although the localization information
is prone to error, communicating positions wirelessly has the
advantage of uniquely identifying the robots. Furthermore,
the robot will know the positions of teammates which are
occluded or not in the line of sight.

The opposing robots are detected visually and treated in
the world model as if they are static objects. So U and
H behave similarly for foreign-controlled and static objects.
This approximation is reasonable because the Nao’s motion
is slow, although bipedal motion algorithms are steadily
improving. The behaviors use the positions of opposing
robots to attempt to kick away from them, particularly when
shooting past the goalie and into the goal.

V. EXPERIMENTAL RESULTS

We ran experiments to test the effectiveness of the model-
ing of the ball’s position. Specifically, we tested the effect of
sharing information between teammates and adding hypothe-
ses for the ball’s position after a kick. We placed two robots
two and a half meters apart, one with a ball directly in front.

428

(a) Ball leaves field of view after
kick.

(b) Robot looks at teammate hy-
pothesis, sees ball.

(c) Ball leaves field of view after
kick.

(d) Robot looks at hypothesis from
kick, sees ball.

Fig. 7. The robot kicks the ball left, out of its field of view, and we measure
the time until it finds the ball again. In (a), the robot does not see the ball
after it is kicked, but the robot locates the ball in (b) through a hypothesis
from its teammate. In (c), the robot loses the ball after kicking, but locates
it again in (d) by searching where a hypothesis was placed based on the
properties of the kick.

Both robots tracked the ball with their cameras, performing
a scan when the ball was not visible. The robot near the
ball kicked the ball to its left towards the second robot.
After each kick, we measured the time it took for the ball
to enter the robot’s field of view again. We conducted this
experiment ten times each for three different world models:
one with only a single hypothesis for the ball position, one
which incorporated the hypotheses of the teammate, and a
third which only included hypotheses based on the predicted
strength and direction of the kick (see Fig. 7).

The results are shown in Table I. The robot generally loses
sight of the ball during a side kick because the ball moves
quickly and is partially obscured by the shoulder while
moving. The robot finds the ball again in approximately
6 seconds while performing a scan. Performing a scan is
a costly operation due to the limited field of view of the
camera, and the elevated position of the head in humanoids.

Using the position of the ball generated by the teammate
and a hypothesis based on the properties of the kick both
reduce the time spent search for a ball significantly. However,
using the kick hypothesis is faster than a teammate estimate.
This is partly due to a delay in communications, but mainly
occurs because kick hypotheses are proactive rather than
reactive — the robot anticipates the ball’s position and moves
its head before the ball arrives, rather than waiting for the
other robot to sense the ball at its new position.

VI. CONCLUSION

In the RoboCup Standard Platform League, a highly
dynamic and adversarial domain, the humanoid Nao robots
must know the positions of the objects on the field in order
to win the game. The main contributions of this paper are:

Scenario Time to See Ball (s)
No Teammate or Kick Hypotheses 6.13± 2.35

Teammate Hypothesis Only 3.99± 1.73
Kick Hypothesis Only 1.63± 0.38

TABLE I
MEAN TIME AND STD. DEV. TO SEE THE BALL AFTER A SIDE KICK

formalization of the general world modeling problem, and
a solution to the problem based on categorizing objects
as static, passive, actively-controlled, and foreign-controlled.
We classify the confidence of modeled objects as valid, sus-
picious and invalid. A suspicious object is an active feedback
mechanism, which serves as a request by the world model
to look at the object. Similarly, when the robot looks at an
object but is unable to sense it, the object’s confidence decays
quickly (making it invalid) to prevent inaccurate information
from being used in the robot’s behaviors. Predictions based
on a robot’s own actions and sensory input from teammates
are incorporated into the world model, and their effectiveness
is verified experimentally. Although the presented solution is
tailored to the RoboCup domain, it is applicable to general
world modeling problems.

REFERENCES

[1] Y. Gu and M. Veloso, “Effective Multi-Model Motion Tracking using
Action Models,” Int. Journal of Robotics Research, vol. 28, pp. 3–19,
2009.

[2] C. Kwok and D. Fox, “Map-based multiple model tracking of a moving
object,” in Proc. of RoboCup Symposium, 2005, pp. 18–23.

[3] N. Mitsunaga, T. Izumi, and M. Asada, “Cooperative Behavior based
on a Subjective Map with Shared Information in a Dynamic Envi-
ronment,” in Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, 2003, pp. 291–296.

[4] M. Roth, D. Vail, and M. Veloso, “A real-time world model for multi-
robot teams with high-latency communication,” in Proc. of IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems, 2003, pp. 2494–2499.

[5] H. Utz, F. Stulp, and A. Muhlenfeld, “Sharing Belief in Teams of
Heterogeneous Robots,” in Proc. of RoboCup Symposium, 2005, pp.
508–515.

[6] P. Rybski and M. Veloso, “Prioritized Multi-hypothesis Tracking by
a Robot with Limited Sensing,” EURASIP Journal on Advances in
Signal Processing, 2009.

[7] RoboCup, “RoboCup International Robot Soccer Competition,” 2010,
http://www.robocup.org.

[8] RoboCup SPL, “The RoboCup Standard Platform League,” 2010,
http://www.tzi.de/spl.

[9] Aldebaran, “Aldebaran Robotics - Nao Humanoid Robot,” 2010,
http://www.aldebaran-robotics.com/pageProjetsNao.php.

[10] S. Zickler and M. Veloso, “Efficient Physics-Based Planning: Sam-
pling Search Via Non-Deterministic Tactics and Skills,” in Proc. of
8th Int. Conf. on Autonomous Agents and Multiagent Systems, 2009,
pp. 27–34.

[11] J. Liu, X. Chen, and M. Veloso, “Simplified Walking: A New Way
to Generate Flexible Biped Patterns,” in Proc. of 12th Int. Conf on
Climbing and Walking Robots and the Support Technologies for Mobile
Machines, 2009.

[12] S. Lenser and M. Veloso, “Sensor resetting localization for poorly
modelled mobile robots,” in Proceedings of ICRA-2000, the Interna-
tional Conference on Robotics and Automation, April 2000.

[13] T. Hester and P. Stone, “Negative information and line observations
for monte carlo localization,” in Proceedings of ICRA-2008, the
International Conference on Robotics and Automation, May 2008.

[14] B. Browning, J. Bruce, M. Bowling, and M. Veloso, “STP: Skills,
tactics and plays for multi-robot control in adversarial environments,”
IEEE Journal of Controls and Systems Engineering, vol. 219, pp. 33–
52, 2005.

429

