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Abstract— This paper presents an approach to the evolution
of the cooperative behaviour of some bots inside the PC game
UnrealTM. We intend to create bots that cooperate as a team
trying to beat other teams (composed of human players or
bots). So, in addition to the improvement of the default artificial
intelligence (AI) of bots, we have performed an improvement of
the ’team AI’. We have applied an evolutionary algorithm which
optimizes the parameters considered in the hard-coded states
inside the bot AI code, mainly those related to the cooperation.
Two different approaches have been tested inside some different
battle arenas: one considering a different set of parameters for
every bot in the team, and the other one considering the same
set of parameters for all the teammates. The results show that
both methods yield better teams than the standard ones. The
teams which share the same behaviour parameters, get a higher
score than those with bots playing with different parameters.

I. INTRODUCTION

First Person Shooters (FPS) are action games, where the
player can only see the hands and the current weapon of his
character, and has to fight against enemies by shooting to
them. These games arose at the end of the eighties to PCs as
one of the new pseudo-3D games, evolving concepts previ-
ously seen in some others such as Maze Wars (1974). After
the first and famous WolfensteinTM and DOOMTM games,
the FPSs began to be played by (millions of) videogamers
in individual (or single) mode, until the appearance of the
new ones which included multiplayer modes. UnrealTM [1],
launched for PCs by Epic Games in 1998, had a great
success since it incorporates the best multiplayer mode to
date. In that mode, up to eight players (in the same PC
or connected through a network) fought among themselves,
trying to defeat as many of the others (enemies) as possible
(getting the so-called frag for each defeating), moving in
a limited scenario (or arena), where some weapons and
useful items appear frequently. The players can be human
or automatic and autonomous ones, known as bots.

In addition, almost all these games let the programmers
modify their source code to build new maps, weapons or
characters, and even change the enemies’ artificial intelli-
gence (AI) schemes, to get new autonomous bots.

Following these ideas, we implemented (and presented) in
a previous work [2], two approaches to evolve bots inside
UnrealTM : the first one was applied for tuning up a set of
parameters, corresponding to some hard-coded values inside
the bot AI code. The second method was implemented to
change and improve the default set of rules (or states) that
defines its behaviour.
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But these approaches were based on the improvement of
the individual bots’ behaviour, trying to get the maximum
profit for each of them.

In the last FPSs, a change in the confrontation has been
emerged: the team battles. There are plenty of team modes,
such as: death match, conquer the hill, capture the flag or
hunt and escape. The common aim in all of them is the coop-
eration of the individuals in each team to obtain a global gain.
That is, the main objective is to get a good team behaviour,
rather than an good individual conduct. But, in principle, it is
difficult to predict how an improvement in the individual AI
of a bot can profit the whole team. So, in the current paper,
we have focused our work on the implementation of two
approaches of team-based evolutionary methods (devoted to
optimize the behaviour of the whole team), in order to obtain
good results in a classical team battle (or death match): get
the maximum number of frags against other teams.

Both approaches are based on the evolution of parameters,
following the Genetic Algorithm based bot (G-Bot) method-
ology (introduced in [2]), so, an evolutionary algorithm is
applied to evolve chromosomes representing a combination
of values for these parameters, by playing a game and
evaluating the fitness for each of them. The main difference
between both methods is the consideration of a different
chromosome or the same, for each bot in the same team. As
stated, the objective is to get bots whose behaviour would
be good for the team profit.

The rest of the paper is structured as follows. Firstly, the
main features of the UnrealTM environment are introduced in
the next section. Then, the state of the art in this area and
topics is commented is Section III. The approaches to solve
the problem of improving the team bot’s AI are described
in Section IV. The experimental setup, runs and results are
presented in Section V. Finally, in Section VI the conclusions
and future work lines are exposed.

II. UNREALTM GAME FEATURES

As previously commented, UnrealTM was a very famous
FPS for PCs published in 1998. It presented a very good
single mode, but the multiplayer possibilities gave it (and still
give nowadays) a great success. Currently there are many
games which include multiplayer modes against human or
bots, but there are some features, which made UnrealTM the
best framework for developing our work:
• It includes bots with a high level AI, which was the

best for a long time, since it introduced some novel
techniques (such as predefined scripts or states and
events)

• It includes a proprietary programming language, called
UnrealScript, which combines the C and Java syntax,
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with some useful features, such as a garbage collector. It
is object-oriented and handles implicit references (every
object is represented by a pointer).

• This language includes the declaration and handling of
states, which are the most powerful feature of the Unreal
bots’ AI. They model one bot status and behaviour at
a time, and are defined as classes. During the game
(depending on the bot location and status), the current
state of the bot is changed, and the functions defined
in/for it are performed.

• In addition to the game, a programming environment,
named UnrealEditor is included. It makes it easy the
management of the hierarchy of classes, as well as the
creation of new classes which inherits from the existing
ones.

So, it is possible to change an existing class by creating
another one which inherits from it, and modifying the code
for the desired functions or methods. It is known as a mod
(since it is a modification in one of the components of the
original game). These way, what we have created in the
previous and the current works are some mods of the existing
class for bots.

On the other hand, UnrealScript has some drawbacks that
make it less powerful and flexible than would be desirable:
• It can handle one dimensional arrays only.
• The number of elements in each array is limited (just

around 60).
• It is very difficult to debug a running program, since

it is just possible to write some short messages in the
game screen or in a log file, which is usually written
once the game execution has ended.

• The number of iterations in a loop is limited too, so
if more than around 100000 iterations are performed,
the game crashes. This is a constraint included to avoid
infinite loops which can delay or freeze the game.

All these limitations have to be taken into account when
programming a native bot.

In the present work we have considered Unreal
TournamentTM (UT) as the environment to implement and
test our algorithms, since it is one of the games in this series
focused in the battlematch modes, being the teams one of the
most important factors in it. It preserves the excellent bot’s
AI (they even present a better one), and it is also possible to
use UnrealScript, with less flaws than in the original game.
In addition it has some improvements such as the possibility
to write in specific log files (but not read) or accelerate the
run, but this option change the results so, it should be applied
carefully.

In this game, the most traditional combat mode is “Death
Match”, in which the player must eliminate as many enemies
as possible before the match ends, avoiding being defeated
by other players. Depending on the combat mode, the player
would belong to a team or play alone.

Each player interacts with other players, trying to kill or
help them, if they are his teammates or not, respectively.
These players can be either humans or bots. Everyone have

a limited number of health points, which are decreased as he
gets hurt. If the health counter goes down to 0, the player is
defeated, and a frag is added to the last player who shot him.
After being killed, the player is then respawned (usually in
the same place or quite near) in the game, until his maximum
number of lives is reached.

In order to aid players to have success in the match,
some elements appear periodically in the arena: weapons
to defeat the enemies (with a limited ammunition, and an
associated power), and items, that provides the player with
some advantages (such as extra health, high jump, invisibility
or ammunition, for instance).

When there are some teams in the battle, the objectives can
be very diverse, but the typical one is to get the maximum
number of frags by adding the sums obtained by each
member of the team.

A match ends when the termination conditions (typically
a limit of frags or time) are reached.

With respect to the powerful bot’s AI implementation
which UnrealTM and UT present, it is based on a quite
complex Finite State Machine [3], where plenty of states
(including several substates) are present. Each of them,
models the behaviour of the bot when it has a specific status,
location in the map, or relationship with the other players
(enemies or teammates). The substates represent the different
’steps’ that the bot’s AI can follow inside a global state
(inside which they are), determining if the flow continues in
the state or changes to another one. They are implemented as
functions in the bot’s AI code, which are usually evaluated.

Figure 1 shows an example of the flow diagram of one of
the states. Specifically it is the Roammig State, one of the
main states which the bots follow when they are searching
for items or moving around the arena, deciding the next state
to pass to.

One bot, during a game, changes its current state de-
pending on some factors present in its surroundings and
depending on its own status and location. That is, the
states transitions strongly depend on a number of parameters
(considered in the functions to evaluate) which determine the
final behaviour of the bot, since most of them are thresholds
depending on which, the bot state changes (for instance,
the distance to an enemy or the bot’s health level). These
variables can be related to the individual behaviour, but some
of them are also devoted to model the behaviour of the bot
inside a team.

In addition, the thresholds are typically compared with
hard-coded values inside the source code of the bot’s AI.
This way, the state changing (and the power of the bot’s AI)
finally depends on some constant values.

So, the topic addressed in this work has been mainly the
improvement of these constants using a Genetic Algorithm
[4] (GA), following the idea presented in the previous study
[2], but focused this time in the team behaviour and profit.

Thus, we have implemented bots with an Evolutionary
Team AI, since they apply a Genetic Algorithm to improve
the UT AI team parameters and thresholds (and also some
other individual ones). We refer them as Genetic Team Bots
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Fig. 1. Flow diagram of bot’s Roaming state. The states are represented by stars, and the sub-states (or functions to evaluate) by circles.

(GT-Bots). Each of them improves its team AI by playing a
game, evolving its values and getting a better team behaviour
in time: defeating bots in other teams, being defeated as less
as possible, letting items, weapons and ammunition to its
teammates, and so on.

III. STATE OF THE ART

When they arose (became famous) in the last years of
the 80s (with WolfensteinTM in 1987), the FPS games were
devoted to single player modes. Later, most of them offered
multiplayer possibilities but always against other human
players, such as DOOMTM in 1988. The first known game
in including autonomous characters, the so-called bots (with
a simple AI) was QuakeTM in 1992. It presented not only
the option of playing against machine-controlled bots, but
also the possibility to modify them (just in appearance or
in other few aspects) or create new ones. In order to do
this, the programmers could use a programming language
named QuakeC, widely used in those years, but which
presented some troubles, since it was strictly limited and
hard-constrained. So, the bots created using it shown a
simple AI (based on fuzzy logic in the best case), and it
was not possible to implement more complex techniques as
evolutionary algorithms, for instance.

UnrealTM appeared some years later, being the first game
in including (in the same pack) an easily programming
environment and a more powerful language, so plenty of
bots were developed. But just a few of them applied meta-
heuristics or complex AI techniques, and most of these bots
were based on predefined hard-coded scripts.

Nowadays, there are many games that offer similar possi-
bilities, but almost all of them are devoted to the creation of
new maps (arenas, battlefields) or characters, being mainly
focused on the graphical aspect (such as modifications in
their topology or appearance respectively).

The studies involving computer games and the improve-
ment of some components of the characters’ AI appeared

some years ago [5], but the use of metaheuristics to study
(and improve) specifically the behaviour of the bots inside
FPSs, have arise in the last few years. We start our re-
searching in this field in 2001, publishing our results in
national conferences [6] (in Spain). We applied evolutionary
techniques to improve the parameters in the bots AI core,
and to change the way of controlling the bots.

Some other evolutionary approaches have been published,
such as [7], where evolution and co-evolution techniques
have been applied, or [8] in which an evolutionary rule-based
system has been applied, and which has also been developed
under the UnrealTM framework (Unreal TournamentTM 2004,
UT2004)

In the first years, some other studies arose, such as [9],
where the authors used self-organizing maps and multilayer
perceptrons, or as [10], which applied machine learning, to
achieve in both cases human-like behaviour and strategies,
in QuakeTM 2 and 3 games respectively.

Recent studies related to computational intelligence, are
based on bots controlled by neural networks (NNs). For
instance, the authors in [11], [12] train NNs by reinforcement
learning, and Schrum et al. [13] evolve NNs searching for
multimodal behaviour in bots.

With respect to the evolution of cooperative bots, or team
behaviour improvements, there are some studies such as
the one by Bakkes et al [14], which presents TEAM, an
evolutionary approach to improve the profit in the “Capture
the Flag” mode in QuakeTM3. The key idea is that bots don’t
evolve by themselves, but as a team with a centralized agent
control mechanism. Priesterjahn et al. [15] performed a study
considering a team improvement in routing (or pathfinding),
considering a communication mechanism using the scenery
(simulating a stigmergic communication, like ants do).

Two years ago, Doherty et al. [16] explore the effects of
communication on the improvement of team behaviour. They
shown that using communication in difficult environments
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increases the effectiveness of the team.
Our work is devoted to study a different idea. The objective

is to improve the team behaviour as a whole, by evolving the
set of parameters which determines the behaviour of every
team of bots in the FPS.

With respect to the possibilities of programing bots in
Unreal, recently has appeared a project called Pogamut [17]
which defines an interface to program these bots using
Java. It is based on GameBots (GB) 2004 which is a mod
for the game UT2004, written in UnrealScript and which
provides a network text protocol for connecting to UT2004
and controlling in-game avatars (bots). So, with GB, the user
can control bots with text commands and at the same time,
receive information about the game environment (also in text
format).

In the present work we have chosen the UT game, since
it has a simple environment, being also presented in the first
Unreal, but with some better features and less flaws than the
previous game, so it is easier for us to improve our previous
research inside the same scope.

IV. GENETIC TEAM BOTS

As previously stated, the objective in this work is to
improve the behaviour of the standard bots in UT when they
belongs to a team, that is, improve the whole team behaviour
to get a higher profit. To do this, their default AI algorithm
should be improved. It can be done by making better the
values considered in the conditions assessed to change the
current state (the thresholds which determine the movement
to another state in the FSM that models the bot’s AI).

Following the GA-Bot approach presented in our previous
work [2], the idea is to perform a Genetic Algorithm which
evolves (and optimizes) the values of a set of parameters,
which represent some of the hard-coded constants included
in the bot’s AI code. These parameters determine the final
behaviour of the bot, since most of them are probabilities,
weights or thresholds considered in the behaviour functions
(substates) of the bot; or depending on which, the bot state
changes (for instance, the distance to an enemy or the bot’s
health level).

The first step is the selection of the set of parameters,
which is quite different to the one considered in the previous
work, since there are a lot of new values to consider in the
UT AI core (the previous study was performed in the first
UnrealTM). In addition, this set should be focused on the
improvement of the bot’s AI (as previously), but taking into
account the benefit of the team to which the bot belongs.
Again, and due to the UnrealScript flaw related to the arrays
maximum size and to the high amount of generations needed
to evolve a big array, a set of 40 parameters has been chosen
(instead of the ideal 60-80 set). After a deep analysis of
the code, some of them where redefined as a function of
others, and the less relevant ones did not have been taken
into account.

The set of considered parameters is shown in Table I.
They model the behaviour of the bots, and can be classified
as devoted to an exclusive team profit, a both team and

individual benefit (those devoted to move to or to attack the
enemies in offensive states), or just an individual profit.

The GA-Bot defines each individual in the population as
an array with a set of values, corresponding each of them
to one of these parameters. This models, in such a way, one
approach to the bot’s AI. So, the GA evolves ’the behaviour
of the bot’ (optimizing the trigger values to change between
states).

Thus, each chromosome in the population is composed by
40 genes represented by normalized floating point values (it
is a real-coded GA). This way, each parameter moves in a
different range, depending on its meaning, magnitude and
significance in the game. The limits of the range have been
estimated, conforming a width interval if the parameter is just
a modifier (it is added or subtracted), and a narrow one if
it is considered as an important factor in the bot’s decision
scheme. But previously to the evolutionary process, all of
them are normalized to the [0,1] range.

The two-point crossover and the simple gene mutation
(change the value of a random gene (or none) by adding
or subtracting a random quantity in [0,1]) have been applied
as genetic operators (see [18] for details). The GA follows
the generational + elitism scheme, and apply the lineal order
selection method to calculate the selection probability (SP)
for every individual.

So, this value is calculated considering its rank in the
population (ordered depending on the fitness values), instead
of calculating it directly considering the value of the fit-
ness function. This way, the domination by superindividuals
(those with a very high fitness value) is avoided in the next
population, to prevent a premature convergence. Once all the
SPs have been calculated, a probability roulette wheel is used
to choose the parents in each crossover operation. The elitism
has been implemented by replacing a random individual in
the next population with the global best at the moment. The
worst is not replaced in order to preserve the diversity in the
population.

In the previous work, the evaluation of one individual was
performed by assigning the correspondent set of values in the
chromosome as the parameters for a bot’s AI, and placing the
bot inside a scenario to fight against other bots (and/or human
players). This bot was fighting until a number of global frags
was reached, since it was not possible to set a time play for
a bot in UnrealTM.

In the present study, two different approaches related
to the chromosome and bot’s AI relationship have been
implemented, since the goal is the whole team behaviour
improvement:

• one chromosome per bot (cr-Bot), where every bot in
the team has associated a different chromosome in the
algorithm, it is a ’different behaviour’. When a bot
finishes its playing, the next available chromosome in
the population is assigned to the bot. It’s a kind of co-
evolution.

• one chromosome per team (cr-Team), where there is
just one chromosome which is shared (is the same) by
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TABLE I
PARAMETERS TO CONSIDER IN THE BOT’S AI, GROUPED DEPENDING ON THEIR INFLUENCE ON THE TEAM OR INDIVIDUAL BEHAVIOUR

Parameter Description Type

WeaponAIhelp Power of the current weapon to decide if can help a teammate Team
BestWWeightHelp Maximum distance to help a teammate Team
RoamFollowDist2 Maximum distance to follow a teammate Team
MaxShareLocation Maximum distance to share an item (let it go) with a teammate Team
DiffHealthShare Health points difference with a teammate to decide let him a health recovery pack Team

pondSkill1 Used to weight the state changing, considering the bot’s skills Team/Indiv.
WeaponAI2 Used to decide if the current weapon is enough powerful or the bot needs another one Team/Indiv.
HealthPickDest Considered to decide if the bot has enough health to attack Team/Indiv.
NumHuntPathPickDest Considered in the state Hunting to decide if attack an enemy Team/Indiv.
MaxDistAttack In the state Attacking, maximum distance to attack an enemy Team/Indiv.
distItemRetreat1 In the state Retreating, minimum distance to pick up an item Team/Indiv.
probAttRetreat1 Probability of attack in the state Retreating Team/Indiv.
BestWeightAttack Weights the best moment to attack Team/Indiv.
pondSkillCharg1 Probability to move from the state Charging to RangedAttack Team/Indiv.
probRangedAttackPro Probability to move from the state TacticalMove to RangedAttack Team/Indiv.
SkillAdvancedTactics Weight of the bot’s skill, considered to decide if the bot can apply advanced tactics Team/Indiv.
LocationKeepingAttack Distance to enemy, considered to decide if attack him and move to state Hunting,

to Tactical Move or nothing Team/Indiv.
WeightTacMov1 Weights the value of an item to decide if go to pick it in the state TacticalMove Team/Indiv.
probTMTacMov1 Considered to decide if in the state TacticalMove, the bot perform a ’StrafeMove’ or a ’DirectMove’ Team/Indiv.
pondSkillTacMovPickDest Considered to decide what TacticalMove do, according to the time passed since it took the last item Team/Indiv.
MaxDistTacMov1 Maximum distance to enemy, considered to decide the movement in the state TacticalMove Team/Indiv.
pondSkillTacMovPickRegDest Weights the skills to consider in the decision of the tactical move Team/Indiv.
probSkillTacMovPickRegDest Probability to consider in the decision of the tactical move Team/Indiv.
distEnemyTacMov Distance to enemy to consider in the decision of the tactical move Team/Indiv.
pondAgressionTacMov1 Weights the type of aggression to an enemy Team/Indiv.
pondCombatStyleTacMov1 Weights the combat style to fight with an enemy Team/Indiv.

pondLocRoWaChTMH Distance to have fear from an enemy or concrete area Individual
probPickWandering Probability to move from state Roaming to Wandering Individual
probChargTacMov1 Probability to move from state Tactical Move to Charging Individual
LastTimeInvPickDestAttack Used in the state Hunting to note the last time it takes an item Individual
pondCollisionRadiusRoam1 Weights the collision radius Individual
pondWHuntAttack1 Weights the distance considered to move from the state Attacking to Hunting Individual
probWarnRetreat1 In the state Retreating, it is considered to dodge shots Individual
pondLocationFallB1 Weights the changing of enemy when the bot is in the state Falling Individual
VSizeAttackStakeout Distance to enemy to change the state Hunting to Stakeout Individual
lastSeenTimePickDestAttack Time stamp marking the last time the bot saw an enemy (to decide if the bot tries to attack him) Individual
probAdvancedTacticsCharg Probability of perform an advanced tactic in the state Charging Individual
distFindNewStakeOut Maximum distance to a point to be watched over by the bot in the state StakeOut Individual
pondFindNewStakeout Weights the time stamp of the last time an enemy was seen

to decide a change in the watching over point in the state StakeOut Individual
probChangTacMov1 Probability to move from the state TacticalMove to Charging Individual

all the bots in the team, so all of them have the ’same
behaviour’. The assignment is made as a time in order
to ensure that all the bots share the same chromosome.

In addition, in UT it is possible to define a time limit for
playing each bot, so they compete for a similar number of
seconds. It is not strictly the same because once the time
limit has been reached, the bot can play until it is defeated
again, which means they can stay for a different additional
time, but they compete for a similar amount of seconds.

The fitness function has been defined considering the main
factors to score the played game by a bot, and also by a
team. These factors have been obtained through experimental
observation, and are:

• frags, the number of defeated enemies by the bot
• W, the number of weapons the bot has picked up
• P, the associated power to these weapons
• I, the number of items the bot has collected
• d, the number of times the bot has been defeated
• t, game time the bot has been playing

So, the fitness function equation for a bot i is:

Fi =
fragsi + [Pi

di
+ (Wi·10

di
)−1] + Ii

10 − di

10

ti
(1)

where the constant values are used to decrease the relative
importance of each term. So, frags is the most important
term in the formula. The next factor (inside square brackets)
is related to the weapons and is composed by two terms: the
first one considers the importance of the associated power of
the picked up weapons, on average, since a player loses all
the weapons once it is defeated; the second term weighs the
number of weapons collected by the bot, but it is again an
average. This term is inverted since it should take low values
when the bot has collected lots of weapons in a life. The
objective of this whole factor is to assign a higher weight to
a bot which has picked up less but powerful weapons, since
searching for them is a risky task, and takes some extra time.
The other two factors are devoted to weigh the collected
items and the number of times the bot has been defeated
(with a negative weight). All the terms are divided by the
time the bot has been playing to normalise the fitness of all
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the chromosomes (they play for a different time).
The fitness function associated to a team is obtained by

adding the fitness of every bot in that team, following this
equation:

FT =
∑

i∈1..NT

Fi (2)

where NT is the number of bots in the team T .

V. EXPERIMENTS AND RESULTS

We have performed several experiments to test the GT-
Bots. Each of them consists in launching a game match in the
Death Match mode for eight to sixteen players, grouped into
a different number of teams, having teams with two players,
or teams with four players. The players are all of them bots1.
The bots in one (or more) of the teams are GT-Bots, so its
AI is modelled using a chromosome, that can be the same
or different for all the bots in the team (depending on the
method which is being tested). The experiments considered
(in all the runs for the GA) the parameters showed in Table II,
which have been defined starting from the standard GA ones,
and tuning up them through systematic experimentation.

TABLE II
PARAMETERS OF GA (USED IN GT-BOTS).

Number of individuals 27
Mutation probability 0.01
Crossing probability 0.6
Number of generations 27
Time limit per chromosome 90 seconds

Each run takes around 20 hours, since every individual in
the algorithm is playing for 90 seconds (plus the remaining
time of the last life). The match is played in ’pseudo’ real-
time, since it is possible to increase the run speed in a game.
The time limit is an advantage with regard to the number
of defeats limit considered in the previous work, since the
runtime also depended very much on the map where the bots
were fighting so, if it was a big map, it took longer to reach
this number (and change to the next individual).

In this study, several experiments have been performed, as
a summary:
• cr-Bot based team of two: one team of two GT-Bots,

considering a different chromosome per bot, versus
three standard teams of two bots.

• cr-Team based team of two: one team of two GT-
Bots, considering the same chromosome for all the bots,
versus three standard teams of two bots.

• cr-Bot based team versus cr-Team based team of two:
One team of each type fighting in the same battlefield
as another two teams of two standard bots.

• cr-Team based team of four: one team of four GT-
Bots, considering the same chromosome for all the bots,
versus three standard teams of four bots.

We have performed three runs per experiment, and con-
sidered four maps (battlefields) in order to test the value of
the results.

1although it is possible to include also human players

Firstly, Figure 2 shows the team fitness function evolution
during the running of the GT-Bots, considering the cr-
Bot approach. Both plots (Best and Mean) in every case,
correspond to the average value of the fitness yielded in the
three runs. There is a two GT-Bots team, fighting against
three teams of two standard bots, in each one of the maps.

Fig. 2. Team fitness evolution with cr-Bot approach in three different maps.
Both fitness plots are the average (of best and mean) of three runs. There
are four teams of two bots (one including GT-Bots).

In this figure, a clear evolution in the best and mean
team fitness are shown in all cases. The best fitness function
follows a clear progression, while the mean fitness function
fluctuates due to the stochastic component present in the
genetic algorithms, which let to yield a worse team fitness
value in any individual (and generation), expecting to get
better results in the following searches. It leads to include
diversity in the population. This evolution is as good as
expected, which means the algorithm behaves as it is desired
in all the runs and all the maps. It can be noticed a very
’soft’ progression in the best fitness function due to the bots
cooperation to evolve (and improve) it; since each of them
consider a different chromosome in a generation, and all of
them are devoted to improve the team profit (modelled with
the fitness function), there is an implicit co-evolution, which
makes the fitness better in every generation.

The team fitness function evolution considering the cr-
Team approach is presented in the Figure 3. Again, both plots
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(Best and Mean) in every case, correspond to the average
value of the correspondent fitness in the three runs. The
experiment performed in the DECK16 map includes a four
GT-Bots team, and three standard bot teams with four bots
in each one. In the rest of the maps, there is a two GT-Bots
team, fighting against three teams of two standard bots.

Fig. 3. Team fitness evolution with cr-Team approach in three different
maps. Both fitness plots are the average (of best and mean) of three runs.
There are four teams of two bots in the first two maps and four teams of
four bots in the last one. In every case, one of the teams includes GT-Bots.

Looking at this figure, it can be noticed again the pro-
gression in both team fitness functions, but it is less ’soft’
this time. The reason is that all the bots share the same
chromosome at a time, so the evolution (and improvement)
is slower than in the previous case (there is no co-evolution).
Even so, the changes in the fitness functions are the expected,
showing again some fluctuations in the mean fitness, due to
the classical diversification in the evolutionary algorithms.

At the end of the run of every experiment, the best indi-
vidual is considered as the set of parameters which models
the final behaviour for the bot which has been evolving in
the team. It continues playing until the game is stopped (by
the user), since there is no stop criteria in the match.

In the next tables (III and IV), the final scores (number
of frags) of one run for each of the performed experiments
are presented, to show the teams value. In can be seen the

number of frags got by every bot in the teams, in addition,
the global score and the mean per team is showed.

So, in the Table III, the final scores yielded by the cr-Bot
based teams in three maps, are displayed.

TABLE III
FINAL SCORES (NUMBER OF FRAGS) FOR THE THREE STANDARD AND

THE cr-Bot BASED TEAMS IN THREE DIFFERENT MAPS.

ARCANE Map
Team1 Team2 Team3 Team GT-Bots

Bot1 1615 1725 1787 1901
Bot2 1573 1682 1755 1858
total 3188 3407 3542 3759
mean 1594.00 1703.50 1771.00 1879.50

CONVEYOR Map
Team1 Team2 Team3 Team GT-Bots

Bot1 1074 1236 1162 1308
Bot2 965 1196 1052 1242
total 2039 2432 2214 2550
mean 1019.50 1216.00 1107.00 1275.00

CYBROSIS Map
Team1 Team2 Team3 Team GT-Bots

Bot1 1402 1388 1432 1575
Bot2 993 1198 1267 1555
total 2395 2586 2699 3130
mean 1197.50 1293.00 1349.50 1565.00

As can be seen in the table, the GT-Bots always beat their
rivals, both at a bot level comparison, and at a team level
comparison.

In the Table IV, the scores for the cr-Team based teams
are presented, showing again a clear supremacy of the GT-
Bots, even in the case of having four bots per team, where
the best bot (with respect to the score) belongs to a standard
team, but the best global score is again for the evolutionary
team.

TABLE IV
FINAL SCORES (NUMBER OF FRAGS) FOR THE THREE STANDARD AND

THE cr-Team BASED TEAMS IN THREE DIFFERENT MAPS.

ARCANE Map
Team1 Team2 Team3 Team GT-Bots

Bot1 2831 2783 2931 3147
Bot2 2298 2526 2904 3064
total 5129 5309 5835 6211
mean 2564.50 2654.50 2917.50 3105.50

CYBROSIS Map
Team1 Team2 Team3 Team GT-Bots

Bot1 1448 1616 1557 1723
Bot2 1267 1356 1412 1650
total 2715 2972 2969 3373
mean 1357.50 1486.00 1484.50 1686.50

DECK16 Map
Team1 Team2 Team3 Team GT-Bots

Bot1 1898 2054 1962 2036
Bot2 1813 1857 1866 2013
Bot3 1776 1804 1854 2009
Bot4 1680 1769 1834 1927
total 7167 7484 7516 7985
mean 1791.75 1871.00 1879.00 1996.25

Finally, Table V shows a comparison between the final
scores of both approaches (cr-Bot and cr-Team).

Looking at this table, it can be noticed that the cr-Team
based team yields much more better results than the cr-Bot
based team. It is just a slight comparison (just in one map),
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TABLE V
COMPARISON OF THE FINAL SCORES (NUMBER OF FRAGS) BETWEEN

THE cr-Bot AND THE cr-Team BASED TEAMS IN ONE MAP.

CYBROSIS Map
Team1 Team2 Team cr-Bot Team cr-Team

Bot1 4530 4573 5251 5612
Bot2 3997 4243 5102 5513
total 8527 8816 10353 11125
mean 4263.50 4408.00 5176.50 5562.50

but the high differences in the results show that cr-Team
is a better approach, as was expected, since it evolves a
whole team, while the cr-Bot evolves individual bots (which
belongs to a team). These results have been checked long
time after the algorithms runs have finished, since cr-Bot
evolves faster (as showed in the previous figures) and get
better scores in less time, so a comparison in the first steps
of the algorithms, or even just when they have finished their
process, would be different.

VI. CONCLUSIONS AND FUTURE WORK

In this work, an evolutionary algorithm has been imple-
mented to improve the team AI of the default bots in a PC
game named Unreal TournamentTM. It is a genetic algorithm,
applied to optimize the decision parameters in the bots, and
mainly focused in those related with the team behaviour and
performance. Two different approaches have been studied:
the first one (named cr-Bot) considers a different set of
parameters (chromosome) for each bot in the team; the
second one (called cr-Team) works with the same set of
values for all the bots in the team.

Looking at the results, both approaches work as expected,
reaching a clear improvement, and yielding final team bot’s
AI configurations which get the best scores in the matches
against the teams of standard bots.

The cr-Bot method application implies a co-evolution in
the search for the best team fitness function, while the cr-
Team one has demonstrated to be a better option to improve
a team AI, since it evolves the team as a whole.

This is our first approach to the team improvement prob-
lem, so there are many future lines of work starting from this
point. The first one is the implementation of some different
methods to evolve the team AI bots, in order to compare the
results with those yielded by the presented approaches.

In addition we have to perform some studies to find the
best parameter setting for the genetic algorithm, in order to
improve its performance.

Another task to address is the implementation of these
approaches (and some other previous) inside a newer engine
or using different tools, in order to avoid the constraints
which obstruct a better problem definition and solving (such
as limited arrays and number of iterations in loops). This way
would be possible to study some other team level problems,
such as communication and coordination of bots.

The third line of improvement is related to the fitness func-
tion which is currently an aggregative function, so it could (or
should) be separated into different functions, transforming

the problem into a multi-objective one, closer to the real
problem to address for getting a good bot’s and team AI.

The last idea is related to the performance study of a ’pure’
co-evolutionary approach, rather than a co-evolution based
on teams with different individuals. The consideration of a
team level co-evolution, including for instance heterogeneous
teams would be also fruitful.
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