
To appear in Proceedings of the Ninth International Conference on Autonomous Agents and Multiagent Systems (AAMAS 10),
Toronto, Canada, May 2010.

TacTex09: A Champion Bidding Agent for Ad Auctions

David Pardoe, Doran Chakraborty, and Peter Stone
Department of Computer Science
The University of Texas at Austin

{dpardoe, chakrado, pstone}@cs.utexas.edu

ABSTRACT

In the Trading Agent Competition Ad Auctions Game, agents
compete to sell products by bidding to have their ads shown
in a search engine’s sponsored search results. We report on
the winning agent from the first (2009) competition, TacTex.
TacTex operates by estimating the full game state from lim-
ited information, using these estimates to make predictions,
and then optimizing its actions (daily bids, ads, and spend-
ing limits) with respect to these predictions. We present a
full description of TacTex along with analysis of its perfor-
mance in both the competition and controlled experiments.

Categories and Subject Descriptors

I.2 [Computing Methods]: Artificial Intelligence

General Terms

Algorithms, Experimentation, Economics

Keywords

trading agents, sponsored search, ad auctions

1. INTRODUCTION
Sponsored search [4] is one of the most important forms of

Internet advertising available to businesses today. In spon-
sored search, an advertiser pays to have its advertisement
displayed alongside search engine results whenever a user
searches for a specific keyword or set of keywords. An ad-
vertiser can thereby target only those users who might be
interested in the advertiser’s products. Each of the major
search engines (Google, Yahoo, and Microsoft) implements
sponsored search in a slightly different way, but the overall
idea is the same. For each keyword, a keyword auction [5] is
run in which advertisers bid an amount that they are willing
to pay each time their ad is clicked, and the order in which
the ads are displayed is determined by the ranking of the
bids (and possibly other factors).

Running a successful keyword advertising campaign can
be difficult. An advertiser must choose the keywords of in-
terest and its bids for each one based on an understanding
of customer behavior, competitors’ bidding patterns, and
its own advertising constraints and needs, all of which can
change over time. As a result, much effort has gone into

Cite as: TacTex09: A Champion Bidding Agent for Ad Auctions, David
Pardoe, Doran Chakraborty, and Peter Stone, Proc. of 9th Int. Conf.
on Autonomous Agents and Multiagent Systems (AAMAS
2010), van der Hoek, Kaminka, Lespérance, Luck and Sen (eds.), May,
10–14, 2010, Toronto, Canada, pp. XXX-XXX.
Copyright c© 2010, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

developing automated strategies that can bid intelligently.
A number of companies offer software for such a purpose,
and the problem has also attracted a growing number of re-
searchers. One barrier to effective research is that it can be
difficult to benchmark automated strategies in a live busi-
ness environment, both due to the proprietary nature of the
systems and due to the high cost of errors. Research in
simulation, on the other hand, suffers from the need to real-
istically model other bidders and the difficulty of comparing
results from different simulated environments. The Trading
Agent Competition Ad Auctions Game (TAC/AA) aims to
address these issues by providing a competitive environment
in which independently created agents can be tested against
each other over the course of many simulations.

In this paper, we report on TacTex, the winning agent
in the first TAC/AA competition. TacTex operates by esti-
mating the full game state from limited information, using
these estimates to make predictions, and then optimizing its
actions with respect to these predictions. After summariz-
ing the TAC/AA rules, we describe the full TacTex agent,
and then we present an analysis of its performance in both
the competition and controlled experiments. In this paper
we have chosen to offer limited details on some agent com-
ponents and emphasize the integration of these components
into a complete, practical system. A more detailed agent
description is available as a technical report [6].

2. GAME DESCRIPTION
In this section, we provide a summary of those parts of the

TAC/AA game that are most important for understanding
the design of TacTex. For full details, see the game specifi-
cation [2].

Overview: In each TAC/AA game, eight autonomous
agents compete as advertisers to see who can make the most
profit from selling a limited range of home entertainment
products over 60 simulated game days, each lasting 10 sec-
onds. Products are classified by manufacturer (flat, pg, and
lioneer) and by component (tv, dvd, and audio) for a total
of nine products. Search engine users, the potential cus-
tomers, submit queries consisting of a manufacturer and a
component, although either or both may be null, i.e. missing.
There are thus 16 total query types, divided into three focus
levels: F0 (the query with both manufacturer and compo-
nent null), F1 (the six queries with one null and one spec-
ified), and F2 (the nine queries with both specified). Each
day, for each of the 16 query types, a keyword auction is
run. For each auction, an advertiser submits i) a (real, non-
negative) bid indicating the amount it is willing to pay per
click, ii) an ad, and iii) a spending limit (optional). Ads can
be either targeted (specifying both a manufacturer and prod-

Agent actions Results

Advertiser Bid Sq. bid Ad Sp. limit CPC Imps Clicks Convs Impression range Avg pos

MetroClick 0.315 0.109 generic 50.93 0.310 426 164 16 r r 1.000

QuakTAC 0.266 0.107 lioneer:dvd - 0.194 718 156 6 r r 1.593

TacTex 0.235 0.091 generic 0.236 0.201 77 1 0 r r 3.000

UMTac09 0.216 0.078 generic 7.583 0.209 700 36 6 r r 2.719

munsey 0.190 0.075 generic - 0.174 718 16 2 r r 3.675

epflagent 0.214 0.068 generic - 0.184 641 3 0 r r 4.510

AstonTAC 0.158 0.059 generic 500.0 0.133 292 1 0 r r 4.938
Schlemazl 0.062 0.020 flat:dvd 5.617 - 0 0 0 -

Table 1: Results for the query null:dvd from one game day of the 2009 TAC/AA finals

uct) or generic (specifying neither). (The set of 16 (bid, ad,
spending limit) tuples can be said to be an advertiser’s ac-
tion space, and sections 3-8 essentially describe how TacTex
maps its observations into this space each day.) The top five
bidders have their ads shown in order, but if an advertiser
hits its spending limit (as a result of having its ad clicked
enough times), its ad is not shown for the rest of the day,
and all advertisers with lower bids have their ads move up
one position. Bids must exceed a small reserve price.

Users: There is a fixed pool of users, each of which re-
mains interested in a specific product throughout the game
and only submits queries corresponding to this product.
However, users cycle through states corresponding to the
focus levels according to a specified transition model. Users
begin in a non-searching (NS) state, and can then transition
through a searching (IS) state (which may submit a query of
any focus level but will not make a purchase) to one of three
buying states (F0, F1, or F2, each of which submits a query
of the corresponding focus level and makes a purchase with
a probability that increases with the focus), and eventually
back to the non-searching state. For each product, the total
number of users in any state can vary widely and rapidly.

Click model: Every searching or buying user submits
one query per day and then proceeds through the resulting
ads in order of advertiser ranking. When an advertiser’s
ad is shown, it is said to receive an impression, but not all
impressions result in clicks. The default user behavior is
as follows. If a user submitting query q reaches the ad of
advertiser a, the probability of a click is ea

q , a hidden param-
eter drawn randomly at the start of each game. If the user
clicks, it will then convert (make a purchase) with a proba-
bility dependent on the user’s focus level. For each conver-
sion, the advertiser receives $10. (This amount is technically
the sales profit before considering advertising costs, but we
will simply refer to it as the agent’s revenue). If the user
does not convert, it proceeds to the next ad with probabil-
ity γq, another randomly drawn, hidden game parameter.
Thus, the higher the position of the ad, the more likely it
is to be clicked. A number of factors can modify this de-
fault behavior. First, if an advertiser’s ad is targeted, the
click probability is raised or lowered depending on whether
the ad matches the product desired by the user. Second,
each advertiser has a component and manufacturer specialty.
If the product desired by the user matches the component
specialty, the conversion probability is increased, and if it
matches the manufacturer specialty, the advertiser’s revenue
is increased. Finally, the conversion probability decreases if
the advertiser has exceeded its capacity, as described below.

Auctions: Ads are ranked using a generalized second
price auction. Rather than ranking ads solely by bids, the
search engine also considers click probability. If for query
type q an advertiser’s bid is bq and its default click proba-
bility is ea

q , then its squashed bid is defined as (ea
q)χbq, where

χ is a random but known game parameter. Ads are ranked
by squashed bid, and each time an advertiser’s ad is clicked,
it pays the minimum amount it could have bid while still
beating the squashed bid of the advertiser ranked below it.

Capacity: Each advertiser is assigned a capacity c which
serves as a soft constraint on how many products it can sell
(of any type) over a five day period. Whenever an adver-
tiser’s ad is clicked, if the number of products n sold over
five days (including those sold so far on the current day)
exceeds c, then the conversion probability is multiplied by a
distribution constraint equal to 0.995n−c. Note that the dis-
tribution constraint changes during the day as the advertiser
sells more products.

Information: Advertisers must operate in the face of
limited information about customers and competitors. For
each query type, the advertiser receives a daily report stating
how many impressions, clicks, and conversions the advertiser
received and the average cost per click (CPC). The only
other information available is a report on the ad used by
each advertiser and the average position of that ad. An
advertiser that wishes to increase its number of clicks would
therefore have little information about how much it would
cost to increase the position of its ad or how many clicks
it might expect in the new position. Advertisers are also
unaware of the types (specialties and capacities) of other
advertisers.

Example: Table 1 shows the results for the query null:dvd
from a sample game day. The eight advertisers are shown
in order of their squashed bids, which differs from the or-
der of the true bids due to differing ea

q values. The ads and
spending limits (where used) of each agent are also shown.
The results of these actions are shown on the right side of
the table: the cost per click, impressions, clicks, and con-
versions. In addition, the impression range column shows a
graphical representation of the period for which each adver-
tiser’s ad was shown, with the day progressing from left to
right. On this day, 718 users submitted the query null:dvd,
but due to spending limits, only two agents, QuakTAC and
munsey, received the full 718 impressions. TacTex was the
first agent to hit its spending limit (after a single click - this
was a probe, as described later). At that point, all lower
advertisers increased by one position, and since epflagent
reached the fifth position, its ad began to be shown. Hence,
the impression range column shows epflagent starting where
TacTex stopped. Although Schlemazl reaches the fifth po-
sition at the end of the day, its ad is not shown because its
bid is below the reserve. Finally, the average position for
each advertiser is shown. Note that the average positions
are not in the same order as the squashed bids, and that the
average is only for the period in which the ad was shown
(thus never above 5). From this table, the only information
available to TacTex was its own row (except for the squashed
bid) and the ad and average position columns. Much of Tac-

−predicted users in each state−total impressions (Q)

−bid ranks (AQ)

−ads (AQ)

−cost per click (TQ)

−clicks (TQ)

−impression ranges (AQ)Analyzer

Position

Game Server

Prediction
Estimation and

Model
Parameter

Model
Advertiser

Model
User

Other advertisers

−predicted ads (AQ)

−predicted impressions (AQ)

−predicted bids (AQ)

−conversions (TQ)

−parameter estimates (Q)

− TacTex’s daily bids, ads, and spending limits for all queries

−avg. positions (AQ)

−impressions (TQ)

Analyzer

Query

Optimizer
Single−day

Optimizer
Multi−day

OptimizationTacTex

Figure 1: Flow of information in TacTex. T = TacTex only, A = all advertisers, Q = all queries.

Tex’s computational effort is devoted to estimating the rest
of this information so that its decisions can be based on as
much information as possible.

3. TACTEX OVERVIEW
At a high level, TacTex operates by making predictions

or estimates concerning various factors (such as unknown
game parameters, user populations, and competitor bids)
and then by finding the optimal actions given this informa-
tion. These tasks are divided among a number of modules
that we describe in detail in the following sections. Here,
we give an overview of these modules. Figure 1 depicts the
relationship between the modules, including the inputs and
outputs of each.

At the start of each new day, the game server sends Tac-
Tex a report on the results of the previous day. The first
module to be called is the Position Analyzer, a preprocessor
that converts some of this information into a more useful
format. The goal of the Position Analyzer is essentially to
reconstruct the impression range column of Table 1 for each
query type.

TacTex then performs all necessary prediction and esti-
mation using three modules. The User Model uses the total
number of queries for each query type to estimate the com-
position of each of the nine user populations. From these
estimates, predictions about future user populations can be
made. The Advertiser Model takes information relating to
the actions of other advertisers and predicts the actions these
advertisers will take in the future. The Parameter Model
maintains estimates of unknown game parameters by finding
those parameters that best fit the known auction outcomes.

Finally, TacTex must use these predictions and estimates
to choose the optimal bids, ads, and spending limits to sub-
mit to the game server for the next day. The Query Ana-
lyzer uses the information received to compute the expected
outcomes of actions, such as how many clicks and conver-
sions would occur for a given query type. If there were
no distribution constraint, then TacTex could optimize for
each query type independently, but instead it must choose
how to allocate its available capacity among query types and
even among multiple days. The Multi-day Optimizer is re-
sponsible for dividing capacity among the remainder of the
game days, and it calls the Single-day Optimizer to divide
each day’s capacity among query types using the informa-
tion provided by the Query Analyzer.

4. POSITION ANALYZER
For each query type, the Position Analyzer takes the aver-

age advertiser positions and attempts to extract i) the rank-
ing of the squashed bids, and ii) the first and last impression
for each advertiser. Each advertiser’s average position can
be expressed as a function of the bid rankings and first and
last impressions of all other advertisers, and while this sys-
tem of equations cannot be solved directly, it is possible to
efficiently search the space of unknown values to find a cor-
rect or nearly correct solution. We leave the details of the
search algorithm to the technical report.

5. USER MODEL
The User Model maintains estimates of the user popu-

lation states by using a particle filter for each of the nine
populations. Each of the 1000 particles used per filter rep-
resents a distribution of the population’s 10, 000 users among
the user states (NS, IS, F0, F1, and F2). At the start of the
game, the initial particles reflect the possible populations
resulting from the game server’s initialization process. Each
succeeding day, a new set of particles is generated from the
old. For each new particle to be generated, an old particle is
selected at random based on weight, and the new particle’s
user distribution is randomly generated from the old particle
based on the user transition dynamics.

Although many observations depend on the user popu-
lations, the most informative are the total impressions for
each of the nine F2 queries. Recall that all F2 users sub-
mit an F2 query, and each IS user has a 1/3 probability of
doing so. The number of F2 impressions resulting from a
given user population thus follows a binomial distribution,
and the User Model uses this fact to weight each particle
according to its relative likelihood.

The resulting set of particles represents the estimated
probability distribution over the user population state on
the previous day. To obtain the expected user population
n days in the future, the User Model updates each particle
n + 1 times according to the user transition dynamics and
takes the weighted average of the particles.

6. ADVERTISER MODEL
The Advertiser Model makes three types of predictions

about the actions of the competing advertisers.

6.1 Impression predictions
For each query type, the Advertiser Model predicts the

maximum number of impressions that each advertiser could
receive before hitting its spending limit. In cases in which
an advertiser did not hit its spending limit by the previous
day’s final impression, the Advertiser Model assumes that
the advertiser effectively had no spending limit and will also
not hit its spending limit on the coming day. Otherwise, the
prediction is set to the number of impressions received by
the advertiser on the previous day.

6.2 Ad predictions
The Advertiser Model also predicts the ads (targeted or

generic) that other advertisers will choose. For each query
type, the Advertiser Model maintains a count for all the ads
it has seen so far from each advertiser. The predicted ad for
that query is then the majority ad, i.e., the ad having the
highest count amongst all posted ads for that query type.

6.3 Advertiser bid estimation
The third task performed by the Advertiser Model is to

maintain estimates of the bids submitted by each advertiser
for each query and then to predict what future bids will be.
Advertiser bid estimation is a hard problem because the bid-
ding dynamics of other advertisers are unknown – while bids
often change only gradually, it is not uncommon for large
jumps to occur. In addition, the Advertiser Model receives
only partial information about the bids of other advertisers
(the bid ranks and TacTex’s CPC). During the development
of TacTex, we created two very different and independently
designed bid estimators. Our preliminary testing did not
show either approach to be superior; however, we found that
an ensemble approach that averaged the output of the two
estimators outperformed either one alone, and so the Ad-
vertiser Model uses both estimators in this fashion. Here we
present both bid estimators in limited detail. The primary
difference between the two is that the first estimator mod-
els all advertisers’ bids jointly, while the second models bids
independently.

First bid estimator : The first approach uses particle
filtering to estimate the bids of other advertisers. We use
one particle filter for each of the 16 query types. Each of
the 1000 particles per filter represents one set of bids for
all other advertisers for that query type. Associated with
the particles is a probability distribution that gives the like-
lihood of each particle representing the current state. On
each new day, each particle filter samples from the under-
lying distribution to obtain the next set of particles. Then
it updates each particle based on the observations received
that day, i.e., the cost per click and bid rankings. Once
the particles have been updated, the filter recomputes the
probability distribution for the new set of particles.

The sampling step is straightforward. The next step in
particle filtering is to update each particle using the known
dynamics. In the absence of such known dynamics, we pro-
pose a departure from the traditional vanilla particle filter
and use a part of the observation to do the update. Let
cpct+1 and rt+1 be the cost per click and ranking for that
query seen on day t+1. We use these values to reset some of
the bids made by other advertisers in some particles (where
necessary) in an attempt to improve the respective particle.
On each iteration of the update, the bid, bx

t+1, of an adver-
tiser x is adjusted while holding the bids of the other adver-
tisers fixed. The bids are adjusted for only those cases where
the order of a bid is incorrect with respect to the known bid
ranking. The two cases where the order is correct and there

is no need for bid adjustment are:

r
x
t+1 > (rTacTex

t+1 + 1) ∧ b
x
t+1 < cpct+1

r
x
t+1 < r

TacTex
t+1 ∧ b

x
t+1 > b

TacTex
t+1 (1)

The conditions when bx
t+1 needs to be updated, and how

these updates are made, are mentioned below. rand(a, b)
denotes a random draw from the range (a, b). z denotes the
particle and z(r) denotes the bid of the advertiser ranked r

in z.

b
x
t+1 =

8

>

<

>

:

cpct+1 if rx
t+1 = rTacTex

t+1 +1

rand(0, least bid value in z) if rx
t+1 = undefined

rand(z(rx
t+1+1), z(rx

t+1-1)) otherwise

Note that the “otherwise” case excludes the conditions men-
tioned in 1. The whole process is repeated a fixed number
of times, holding one advertiser fixed each time, with each
iteration improving upon the former (20 iterations is suffi-
cient). At the end of this update step, we have a better
particle having closer predictions of other advertiser bids.

Next comes the step of recomputing the probability distri-
bution of the sampled particles. Although the true likelihood
of a particle whose ranking does not match the true ranking
rt is zero, there may be few particles with the correct rank-
ing, and so we instead use a likelihood function designed to
give some weight to all particles. We compute the differ-
ence of ranking for each advertiser from the two available
sources, i.e., rt and the rank from z. For a distance δ, we

define κ(δ) = exp(− δ2

4.9
). The likelihood of each particle is

set to the product of these κ(δ) values over all advertisers,
and thus the particles whose predicted rankings are closer to
rt get assigned higher values. These values are normalized
over all 1000 particles to give the true probability distribu-
tion captured by the particles.

Second bid estimator: The second approach tries
to compute each advertiser’s bid separately. The bids are
represented as discretized values rather than a changing set
of particles. The bid space [0, 3.75] is discretized into values

v1 through v100 by setting vi = 2i/25−2 − 0.25 (thus v50 =
0.75). Discretizing the bid space in this way allows better
coverage of low bids, which are most common, while still
maintaining the ability to represent very high bids.

On day t + 1, for each advertiser x, we wish to estimate
the distribution of the new bid, bx

t+1, over these discrete v

values, conditional on the observed ranking rt+1, previous
bids bx

1 ... bx
t , and the bids of other advertisers, B−x

t+1. We
make the simplifying assumptions that rt+1 and bx

1 ... bx
t are

conditionally independent given bx
t+1, and that B−x

t+1 and bx
1

... bx
t+1 are independent. Applying Bayes’ rule twice and

rearranging, we derive:

Pr(bx
t+1 = vi|rt+1, B

−x
t+1, b

x
1 ...b

x
t) ∝

Pr(rt+1|B
−x
t+1, b

x
t+1 = vi)Pr(bx

t+1 = vi|b
x
1 ...b

x
t) (2)

The first term in the R.H.S of Equation 2 is the probability
of the observation while the second term is the transition
model of bids for x, both unknown.

We model bid transitions by assuming that bids change in
one of 3 ways. First, with 0.1 probability, bx

t+1 jumps uni-
formly randomly to one of the vi values. This case covers
sudden jumps that are difficult to model. Next, with 0.5
probability, bx

t+1 changes only slightly from bx
t . We assume

that the probability of changing from vi to vj is propor-
tional to φ0,6(|i − j|), where φ0,6 is the density function of
the zero-mean normal distribution with variance 6. Finally,

we assume that with 0.4 probability, the bid changes accord-
ing to a similar distribution, but the change is with respect
to the bid 5 days ago, bx

t−4. This case captures the fact that
bids often follow 5 day cycles due to the 5 day capacity win-
dow. Let tr(j, i) denote the the resulting probability of the
bid transitioning to vi from vj using the above normal dis-
tribution and normalizing. Then, summing the three cases
gives us the following: Pr(bx

t+1 = vi|b
x
t = vj , b

x
t−4 = vk) =

0.001+0.5tr(j, i)+0.4tr(k, i). Our estimate for bx
1 is initial-

ized to a distribution consistent with observed game data,
and when t < 5, we substitute bx

1 for bx
t−4. The probabilities

for the three cases were chosen to provide robustness to a
variety of agent behaviors in pre-competition experiments.

The observation probabilities are now conditioned on a
single advertiser’s bid, rather than a set of bids as in the
first bid filter. Let y be another advertiser in the game apart
from x. If advertiser y is TacTex, then we know the bid;
otherwise we have a distribution representing our estimate
of the bid for y. Thus the conditional probability of the set
of rankings rt+1 given a fixed bx

t+1 = vi and a fixed value of
the distribution B−x

t+1 is :

P = Π∀y 6=x

8

>

<

>

:

Pr(by
t+1 > vi) if rx

t+1 > r
y
t+1,

Pr(by
t+1 < vi) if rx

t+1 < r
y
t+1,

1 otherwise

(3)

where P denotes Pr(rt+1|b
x
t+1 = vi, B

−x
t+1). Note that ranks

will only be equal if neither advertiser had any impressions;
in this case we have no information about the relative bids.
Also, whenever y is TacTex, the R.H.S will be 1 or 0 since we
know our own bid. Finally, we have been treating B−x

t+1 as
if it were known, but in fact these are the other advertisers’
bids that we are trying to estimate simultaneously. We ad-
dress this problem by applying Equation 2 for 10 iterations,
using the latest estimates for each bid distribution, as this
resulted in sufficient convergence in testing.

7. PARAMETER MODEL
Recall that for each query type q, the parameter γq rep-

resents the probability that a user will progress from one ad
to the next, while each advertiser a has a parameter ea

q that
affects the probability of a user clicking its ad. Given the
bid rankings and impression ranges computed by the Po-
sition Analyzer and the User Model’s population estimate,
we can determine the distribution over the number of clicks
that TacTex would receive for any set of these parameter
values. The Parameter Model maintains a joint distribution
over (γq, eTacTex

q) pairs by discretizing the possible space of
values uniformly and setting the likelihood of each pair to
be proportional to the product of the probabilities of each
day’s number of clicks. There is insufficient information to
effectively estimate ea

q values of other advertisers, and so we
assume they equal the mean possible value.

8. OPTIMIZATION
To this point, we have described those modules that esti-

mate the game state and make predictions about the future.
We now turn to the challenge of using this information to
select actions. In particular, each day TacTex must choose
bids, ads, and spending limits for each query. The key fac-
tor in the optimization process is the distribution constraint.
Recall that while there is no hard cap on capacity, exceeding
a certain number of conversions results in a reduced conver-
sion rate. Beyond some point, marginal returns per conver-

sion can become negative. As a result, TacTex performs op-
timization by reasoning about conversions and then choosing
actions expected to result in those conversions, rather than
reasoning directly in the space of possible actions.

The optimization process consists of three levels: a Multi-
day Optimizer (MDO), a Single-day Optimizer (SDO), and
a Query Analyzer (QA). Because we want to maximize profit
for the entire game, not a single game day, the top-level de-
cision that must be made is how many conversions to target
on each remaining game day, and this decision is made by
the MDO. Computing the expected profit for a given day
and conversion target requires deciding how to divide the
conversions among the 16 query types, and the MDO calls
the SDO to perform this task. Finally, the SDO calls the
QA to i) determine the bid, ad, and spending limit that are
expected to result in a given number of conversions, and ii)
compute the expected cost and revenue from those conver-
sions. We describe these three levels from the bottom up.

8.1 Query Analyzer
For any given bid, ad, and spending limit, it is fairly

straightforward to determine the expected cost, revenue, and
conversions from a specific query type. The QA does this
by taking the expected user population, iterating through
all impressions, computing our position and CPC, and then
computing the probability that the user i) reaches our ad,
ii) clicks on it, and iii) converts. (Note that at this level we
are not considering the distribution constraint, which may
lower the conversion rate.) However, the problem we face is
essentially the reverse: the QA is given a conversion target
and needs to determine the bid, ad, and spending limit that
will produce those conversions in the most profitable way.
Up to a certain point, raising either the bid or the spending
limit will increase the number of conversions, while the effect
of ad choice depends on the user population, so there may
be a number of ways to reach a given number of conversions.

We simplify matters by using no spending limits. Dur-
ing the course of a day, the expected profit per impression
can only increase as other agents hit their spending limits,
and so it is desirable to receive all possible impressions in a
day. Also, the cost paid per conversion tends to be higher
at smaller positions – the slightly higher conversion rate at
small positions is usually not enough to compensate for the
higher CPC. It is therefore usually preferable to control con-
versions using the bid rather than the spending limit.1

For any given bid, we can evaluate each of the relevant
ads and pick the one that gives the highest profit per con-
version. As a result, the QA’s primary task is to determine
the bid that will result in the desired number of conver-
sions. There is one difficulty remaining, however: because
our prediction for each advertiser’s bid is a point estimate,
any bid between the nth and n+1st predicted bids will result
in the same position, n+1, and the function mapping bids
to conversions will be a step function. In reality, there is un-
certainty about the bids of other advertisers, and we would
expect this function to be continuous and monotonically in-
creasing. We create such a function by linearly interpolating
between the expected results for each position. In particu-
lar, we assume that the number of conversions expected for

1During the 2009 TAC/AA competition, TacTex used high
spending limits as a precaution, but our experiments have
shown that this was unnecessary, and so we omit them from
the agent described here.

the nth position will result from bidding the average of the
n-1st and nth bid. For n = 1, we use a bid 10% above the
predicted highest bid, and for n = 8, we use a bid 10% below
the predicted lowest bid. We generate functions for cost and
revenue in the same way.

The complete procedure followed by the QA for each query
type q is therefore as follows. First, we find the eight bids
(along with corresponding optimal ads) that correspond to
the eight possible positions, and determine the expected con-
versions, cost, and revenue for each. Next, we use linear in-
terpolation to create functions mapping bids to conversions,
cost, and revenue. Finally, for a conversion target c, we can
find the bid resulting in the target from the conversions func-
tion and determine the resulting cost (costq(c)) and revenue
(revenueq(c)) from the corresponding functions. The ad to
use is the ad corresponding to the closest of the eight bids.

8.2 Single-day Optimizer
Using this information about each query type, the SDO

can now determine the optimal number of conversions to tar-
get for each query type given a total daily conversion target
c and the initial capacity used u. The initial capacity used
(the sum from the past four days) is important because it,
along with the total conversion target, determines the dis-
tribution constraint, which can in turn have a large impact
on the profit from each conversion and the optimal solution.

Computing the precise impact of the distribution con-
straint is difficult because it decreases after each conversion,
meaning that we would need to know when a conversion
occurred to compute its profit. We solve this problem by
making the simplifying assumption that the day’s average
distribution constraint applies to each conversion. We de-
note this value d̄(u, c) because it can be computed from the
initial capacity used and the total conversion target; in fact,
we precompute all possible d̄(u, c) values before the game
begins. The goal of the SDO is thus to find values of cq

maximizing
P

q[d̄(u, c)revenueq(cq) − costq(cq)], where the
cq values correspond to the query types and sum to c. It is
important to note that although we are targeting c conver-
sions, we would actually only expect d̄(u, c)c conversions. In
general we reason in terms of conversions before adjusting
for the distribution constraint, and so for clarity we will use
the term adjusted conversions when referring to the actual
number of resulting conversions. Note that u is expressed in
terms of adjusted conversions, while c is not.

We are now left with a fairly straightforward optimiza-
tion problem: allocating the total conversion target among
the queries so as to maximize profit. The SDO solves this
problem using a nearly-optimal greedy solution that repeat-
edly adds conversions from the most profitable query type.
For each query type, we determine the number of additional
conversions (bounded above by the number of conversions
remaining before we hit our target) that maximizes the aver-
age profit per additional conversion. (Note that this number
may be more than one, as the marginal profit per conversion
is not necessarily monotonically decreasing.) We then add
the conversions from the query type with the highest average
profit. This greedy approach is not guaranteed to be opti-
mal, but tests show that the resulting expected profit differs
from the results of an optimal (but much slower) dynamic
programming approach by less than 0.1% on average.

8.3 Multi-day Optimizer
The SDO determines bids for any given conversion target

and amount of capacity already used. Determining the bids
to submit for the next day therefore requires only that we
choose the conversion target. Because the bids submitted
today affect not only tomorrow’s profit but also the capac-
ity remaining on future days, we cannot simply choose the
conversion target myopically. In order to maximize expected
profit over the remainder of the game, we must consider the
actions to be taken over all remaining days.

The MDO operates by finding the optimal set of conver-
sion targets for the remainder of the game. The expected
profit from any set of conversion targets can be determined
by successively applying the SDO to each remaining game
day. The goal of the MDO on day d is is therefore to find
the conversion targets ct maximizing

P

59

t=d+1
SDOt(ct, ut),

where SDOt returns the expected profit from applying the
SDO on day t, and ut represents the total adjusted conver-
sions over four days preceding t (which can be computed
from the ct values). Note that planning for the entire game
requires calling the QA (and thus predicting the bids of other
agents) for all remaining game days, not only the next day.
Currently, TacTex simply assumes that the bids predicted
for the next day persist for the rest of the game, but improv-
ing these predictions is an important focus of future work.

The MDO uses a form of hill climbing search to solve this
optimization problem. We begin by setting each ct value to
be one-fifth of TacTex’s capacity. Then for all t, we consider
increasing or decreasing ct by one and compute the expected
profit in each case. We then choose the most profitable de-
viation over all t. This process repeats until no deviation is
profitable. Again, the performance of this approach is com-
parable to that of an optimal but slow dynamic program-
ming approach. In fact, the greedy approach finds slightly
better solutions due to the need to use a somewhat coarse
degree of granularity (increments of five conversions) when
implementing the dynamic programming approach because
of memory limitations.

Once the optimal set of conversion targets is found, the
MDO takes tomorrow’s conversion target and submits the
bids determined by the SDO. Essentially, we plan for the
rest of the game and take the first step of this plan. On the
next day, we repeat this process using updated information.

There is one remaining special case. It will often be the
case that we are not interested in bidding on a particular
query. When this happens, TacTex submits a probe bid
designed to provide information about the bids of other ad-
vertisers. The bid chosen is one that we expect to be the
nth ranked bid, where n is the rank between 2 and 6 that
we have hit least recently. We set a spending limit equal to
the bid so that we will likely only receive a single click.

9. AGENT PERFORMANCE
Having completed the description of TacTex, we now ana-

lyze its performance. First, we present competition results.
We then give the results of a number of controlled experi-
ments designed to measure the importance of the different
components of TacTex.

9.1 2009 Competition
The first annual TAC/AA competition was held over two

days at IJCAI 2009. All 15 qualifying agents participated
in a round-robin style semifinal round, and then the top
eight agents advanced to a final round where each agent
participated in all 80 games.

Agent Score

TacTex 79.9
AstonTAC 76.2
Schlemazl 75.4
QuakTAC 74.5
munsey 71.8
EPFLAgent 71.7
MetroClick 70.6
UMTac09 66.9

4

3

2

1

0

-1

-2

-3
 0 10 20 30 40 50 60

B
a
la

n
c
e
 D

if
fe

re
n
c
e

Day

Average balance - 1.293*day

TacTex
AstonTAC
Schlemazl
QuakTAC

Figure 2: 2009 final round scores (in thousands)

TacTex finished first in both rounds. The scores (i.e., av-
erage ending balances) from the final round are shown in the
table in Figure 2. A Wilcoxon two-sample test shows that
the difference in score between TacTex and each other agent
is statistically significant (p < .05 in each case). The plot
in Figure 2 shows the average daily balance of the top four
agents. Here we have subtracted 1293 per day (the average
daily profit of the second place agent) from each balance
to improve visibility – otherwise the plot would appear as
nearly diagonal lines, as shown in the inset. Two things are
apparent from this plot. First, scores tend to oscillate rather
than increase smoothly. This oscillation is a consequence of
the 5-day capacity window – if an agent has a large number
of conversions on one day (frequently the very first day), it
will have reduced capacity for four days, and then the heavy
day will slide out of the window. There is a similar end game
effect, as there is no benefit to saving capacity beyond the
last day. TacTex is especially effective at ending on an up-
swing due to the Multi-day Optimizer. Second, TacTex does
not pull away from the other agents until the second half of
the game. One possible explanation is that bidding behav-
iors converge to some degree over the course of a game, and
so TacTex’s ability to make accurate predictions improves.

Although it is difficult to identify a main reason for Tac-
Tex’s success, analysis of the game results from the finals
does provide a few clues. Compared to other agents, Tac-
Tex typically had fewer conversions but had a higher profit
per conversion (at least 6% higher than any other agent).
AstonTAC and Schlemazl focused on selling those products
that matched their manufacturer specialty, which gives a
revenue bonus. As a result, their average revenue per con-
version was slightly higher that TacTex’s, but their clicks
tended to come from higher positions and thus their CPCs
were much higher than TacTex’s. The reverse was true for
all other agents: they had lower CPCs, but much lower av-
erage revenue per conversion. It appears that TacTex struck
the right balance between targeting high revenue conversions
and taking advantage of other sales opportunities.

9.2 Experiments
Although our competition victory suggests that the over-

all design of TacTex is sound, it gives us little information
about the relative importance of the individual components.
For instance, we cannot look at the results and determine
how much the User Model contributed to the overall perfor-
mance. Fortunately, after the competition, most teams sub-
mitted agent binaries to the TAC Agent Repository2. Using
these binaries, we can experiment by changing certain por-
tions of TacTex and observing the effect on performance.
We now report on a number of these experiments.

2http://www.sics.se/tac/showagents.php

Description Diff. p

Advertiser Model

1 bid estimator 1 -284 .150
2 bid estimator 2 -306 .113
3 bids * 0.9 -536 .077
4 bids * 1.1 -678 .010
5 bids * r(0.9,1.1) -501 .046
6 all impressions -3438 .000
7 impressions * .9 -772 .008

Other

8 no User Model -896 .001
9 no Par. Model -254 .133
10 no probing -812 .004

Description Diff. p

Optimization

11 maintain cap. -4257 .000
12 constant conv. -7362 .000
13 conv. * 0.9 -287 .174
14 conv. * 1.1 +62 .596
15 conv. * 1.2 -1024 .000
16 bids * 0.9 -453 .039
17 bids * 1.1 -704 .000
18 bids * r(0.9,1.1) -425 .038
19 all generic ads -2351 .000
20 all targeted ads -87 .992

Table 2: Experimental results

We measure the impact of a change to TacTex by running
two sets of 50 games: one with the original TacTex, and one
with a modified version. The other seven agents are the best
available agents from the repository. To improve our ability
to evaluate the statistical significance of the results, we have
modified the game server so that the main random factors
(game parameters, advertiser capacities and specialties, and
the random draws primarily responsible for determining user
population transitions) are identical between corresponding
pairs of games. This allows us to use the Wilcoxon matched-
pairs signed-ranks test instead of an unpaired test. Table 2
shows the results of our experiments. For each experiment,
we give a reference number, a brief description, the differ-
ence in score (a ‘-’ means the score of the modified agent
was lower), and the p-value indicating the significance. Ex-
periments are divided into groups corresponding to different
parts of TacTex.

The first group of experiments concerns the Advertiser
Model. In experiments 1 and 2, we use only one of the bid
estimators instead of averaging the two. Although both es-
timators appear to perform reasonably well on their own, we
do see a small increase in score from combining them. In ex-
periments 3-5, we multiply the Advertiser Model’s predicted
bids for each advertiser by 0.9, 1.1, or a random number cho-
sen uniformly from the range [0.9, 1.1], respectively. Again,
we see a small decrease in score from each change. We know
from comparison with the true results that our predictions
are not always highly accurate, but these experiments show
that our predictions are helpful enough that small changes
can impact performance negatively. It certainly does not ap-
pear to be the case that our predictions are consistently too
high or too low. Finally, we look at the Advertiser Model’s
predictions of the number of impressions advertisers will re-
ceive. In experiment 6, we assume that advertisers use no
spending limits (i.e., they receive all possible impressions).
In experiment 7, when predicting that an advertiser will use
a spending limit, we multiply the predicted impressions by
0.9. Both changes result in a large drop in score, showing
that impression predictions are very important.

The next group of experiments do not fit a specific cat-
egory. In experiment 8, we replace the predictions of the
User Model with the average user populations expected and
see a fairly large drop in score. Similarly, in experiment 9
we replace the estimates from the Parameter Model with
the expected values and see a smaller score reduction. In
experiment 10, we replace all probe bids with zero bids, and
again we see that this is detrimental to performance. The
information lost from these changes appears to be important
to TacTex, and the last experiment shows that a query type
that does not attract attention from TacTex on one day may

still become a source of profit in the future.
The last group of experiments concerns optimization. Ex-

periments 11 and 12 show the importance of planning over
multiple days. In experiment 11, we choose the next day’s
conversion target so that the total conversions over the last
five days will be 1.4 times our capacity (the average amount
used by the unaltered TacTex). Then in experiment 12, we
simply set each day’s conversion target to be 1/5 of 1.4 times
the capacity. Both changes cause an extremely large drop
in score despite the fact that TacTex has roughly the same
number of conversions. In experiments 13-15, we multiply
the next day’s conversion target by 0.9, 1.1, and 1.2, respec-
tively. Experiments 13 and 15 result in score reductions as
expected; however, multiplying the conversion target by 1.1
actually results in an increase in score, although not a sig-
nificant one. This result would make sense if TacTex were
consistently receiving fewer conversions than expected, but
that is not the case. Another possibility is that it may be less
harmful to sell too much than too little, and because Tac-
Tex will rarely hit its conversion target exactly, it would be
safer to target a few extra conversions. In any case, experi-
ments 11-15 suggest that the Multi-day Optimizer is highly
effective in choosing conversion targets. Experiments 16-18
concern the bids generated by the Query Analyzer at the
end of the optimization process. Again, we multiply these
bids by 0.9, 1.1, or a random number chosen uniformly from
the range [0.9, 1.1], respectively. In each case there is a mod-
erately large score reduction, and so the Query Analyzer ap-
pears to be successful at providing useful information about
bid selection. Finally, experiments 19 and 20 concern ad
selection. In experiment 19, we use only generic ads, and
in experiment 20 we use only targeted ads, where the man-
ufacturer and component match the query when present or
TacTex’s specialty when null. The results clearly show that
ad selection can impact score, but it does not appear that
choosing optimal ads (which are usually targeted) is signifi-
cantly better than simply always using targeted ads.

The main message from these experiments is that nearly
all components of TacTex make at least a small contribution
to the overall performance of the agent. Some parts, such as
the Multi-day Optimizer and impression prediction, appear
to be especially important. In addition, from extra exper-
iments not described here we have observed that changing
multiple agent components tends to compound the impact
on performance. For example, while using only the first bid
estimator or multiplying our conversion targets by 0.9 both
reduce the score by under 300, doing both at the same time
reduces the score by 1238. The true value of some compo-
nents may therefore be even greater than the experiments
shown here suggest.

10. RELATED WORK
While keyword auctions have received considerable atten-

tion in recent years, there have been few published reports
of complete agents that solve bidding problems of the scope
faced in TAC/AA. One exception is an agent designed by
Kitts and LeBlanc [3] to bid on a family of keywords in live
Overture auctions. The agent bears a strong resemblance
to TacTex at a high level and performs many of the same
tasks, such as predicting the position and resulting profit for
a given bid and optimizing bids over a time horizon.

Within the TAC/AA domain, there is currently limited in-
formation about the approaches taken by the other agents,

but we are aware that they include decision-theoretic op-
timization similar to TacTex, rule-based systems, and ge-
netic algorithms. Optimization-based approaches appeared
to fare the best in general, and we believe that what sets Tac-
Tex apart in this area is its ability to estimate the full game
state. This observation is consistent with past TAC com-
petitions in the areas of travel arrangement [7] and supply
chain management [1]. Successful agents tend to have sim-
ilar optimization routines at their core, and the top agents
are those that are best able to model their environment, with
increasingly complex modeling approaches developed as the
competitions mature.

11. CONCLUSION AND FUTURE WORK
In this paper we described TacTex, an agent for bidding

in keyword auctions that is able to effectively estimate the
full game state (including the actions of other advertisers)
and optimize its actions. Competition results showed Tac-
Tex to be significantly more profitable than other competing
agents, and our controlled experiments show that all compo-
nents of TacTex played an important role in its performance.

Despite this success, there is still room for improvement
in parts of TacTex. Our primary research agenda at this
time is to apply machine learning to improve the Advertiser
Model. By using the game data that is now available, we
hope to be able to develop specific models of each advertiser,
which will improve our bid estimators and allow us to better
predict the actions that will be taken by other advertisers.

12. ACKNOWLEDGEMENTS
This work has taken place in the Learning Agents Re-

search Group (LARG) at the Artificial Intelligence Labora-
tory, The University of Texas at Austin. LARG research is
supported in part by grants from the National Science Foun-
dation (CNS-0615104 and IIS-0917122), ONR (N00014-09-1-
0658), DARPA (FA8650-08-C-7812), and the Federal High-
way Administration (DTFH61-07-H-00030).

13. REFERENCES
[1] J. Eriksson, N. Finne, and S. Janson. Evolution of a

supply chain management game for the Trading Agent
Competition. AI Communications, 19:1–12, 2006.

[2] P. Jordan, B. Cassell, L. Callender, and M. Wellman.
The Ad Auctions Game for the 2009 Trading Agent
Competition. Technical report, 2009.

[3] B. Kitts and B. Leblanc. Optimal bidding on keyword
auctions. Electronic Markets, 14:186–201, 2004.

[4] S. Lahaie, D. Pennock, A. Saberi, and R. Vohra.
Sponsored search auctions. In T. Roughgarden, N.
Nisan , E. Tardos, and V. Vazirani, editors, Algorithmic
Game Theory. Cambridge University Press, 2007.

[5] D. Liu, J. Chen, and A. Whinston. Current issues in
keyword auctions. In G. Adomavicius and A. Gupta,
editors, Handbooks in Information Systems: Business
Computing. Emerald, 2009.

[6] D. Pardoe, D. Chakraborty, and P. Stone. TacTex09:
Champion of the first Trading Agent Competition on
AdAuctions. Technical Report AI-10-01, Department of
Computer Science, The University of Texas, 2010.

[7] M. P. Wellman, A. Greenwald, and P. Stone.
Autonomous Bidding Agents: Strategies and Lessons
from the Trading Agent Competition. MIT Press, 2007.

