
Constraint Optimization Coordination Architecture
for Search and Rescue Robotics

Mary Koes, Illah Nourbakhsh, and Katia Sycara
Carnegie Mellon Robotics Institute

Pittsburgh, PA
{mberna, illah, katia}@cs.cmu.edu

Abstract— The dangerous and time sensitive nature of a
disaster area makes it an ideal application for robotic exploration.
Our long term goal is to enable humans, software agents, and
autonomous robots to work together to save lives. Existing work
in coordination for search and rescue does not address the variety
of constraints that apply to the problem. This paper provides an
expressive language for specifying system constraints. We also
describe a coordination architecture capable of quickly finding
an optimal or near optimal solution to the combined problems of
task allocation, scheduling, and path planning subject to system
constraints. We address a perceived lack of benchmarks for this
research area by establishing a repository open to the research
community which includes a set of benchmarks we designed to
illustrate some of the complexities of the problem space. Finally,
we evaluate various algorithms on these benchmarks.

Following a natural or man made disaster, rescue workers
risk their lives searching for survivors in a race against time.
The search and rescue domain has the potential to benefit
greatly from robotic technology. Our vision is that robots could
use a rough map of the environment, perhaps obtained from
a blueprint or city map, and search areas specified by human
rescue workers.

This problem not only has significant humanitarian benefits
but poses a difficult research challenge. Robot teams in chal-
lenging environments such as disaster sites will necessarily
be heterogeneous as cost limitations, power consumption,
and size constraints require tradeoffs between mobility and
capabilities. Large scale disasters need to include robots with
diverse modalities (e.g. ground, air, water). Multiple robots are
often required to work together on a joint goal. Coordination
on a joint goal involves simultaneously solving two NP-hard
problems, task allocation and scheduling, as well as the path
planning problem [1].

Since each passing minute reduces the chance of success-
fully rescuing victims, the quality of the solution is very
important. Furthermore, the system must accommodate a wide
variety of system constraints on goals, robots, and resources. A
problem formulation that does not allow for these constraints
is, for example, unable to handle the simple constraint, turn
off the circuit breakers before completing any other goals.

These four aspects of the problem–heterogeneity, joint tasks,
emphasis on optimality, and additional system constraints–
distinguish the problem from other multirobot planning prob-
lems. Research in market-based algorithms for coordination
[2] and token based coordination algorithms [3] cannot effi-
ciently reason about joint goals.

The contributions of this paper are fourfold. In section

I, we establish the objective for the team planning problem
and present a first order logic constraint language for the
search and rescue domain. In section II, we present COCOA,
a Constraint Optimization Coordination Architecture, which
implements the team objective and constraint language while
enabling us to employ state-of-the-art optimization engines
like CPLEX [4] to solve the team planning problem. Since
the problem is NP-hard, finding an optimal solution may take
too long, particularly as robots must interleave planning and
execution due to the uncertainty in a disaster environment.
In section III, we present a progressive algorithm that finds
close to optimal solutions very quickly and elegantly degrades
solution quality with available time. Our fourth contribution
is a set of benchmarks designed to illustrate some of the
complexities of the problem space which we make available
to the research community. We discuss our conclusions and
future work in section V.

I. TEAM PLANNING PROBLEM FOR SEARCH AND RESCUE

The coordination problem for search and rescue is part of
the broader class of multi-agent planning problems. Within
multi-agent planning, the search and rescue problem falls into
the class of team planning problems since robots do not have
independent goals but share the team’s goals. The coordination
itself is tightly coupled in that robots must frequently work
together on a joint goal as no single robot working on the
goal is capable of achieving the goal by itself.

A search and rescue problem consists of an environment, a
set of robots, R, a set of goals, G, and a set of additional
system constraints, C. We assume that robots have some
initial representation of the environment, such as a blueprint
of a collapsed building, but that there may be considerable
uncertainty in the model.

The set of robots on the team is defined as R :=
{R1, R2, ..., RN} where N is the number of robots on the
team. The set of goals is G := {G1, G2, ..., GM}, where M
is the number of goals in the system. Each goal, Gm, has an
associated location in the environment, amount of time it takes
to accomplish the goal or duration, dm, and reward, Qm(t).

Internal to this problem representation is the assumption
that there are a number of relevant capabilities; capabilities
might include the ability to map the environment, check for
heat signatures, manipulate objects, or extinguish fires. Each
robot has a binary capability vector indicating whether or not



robot n has a relevant capability and each goal has a binary
requirement vector indicating which capabilities are needed.

The last problem component is the set of system constraints,
C. The expressiveness of the constraint language for the system
constraints determines the scope of problems that can be
solved. Goal, robot, and resource constraints form the building
blocks for this constraint language.

A. Goal constraints

Allen’s 13 temporal relationships [5] (before, equal, meets,
overlaps, during, starts, finishes and their inverses) form the
basis for temporal goal constraints. Goal constraints are de-
fined to hold if and only if both goals are scheduled, allowing
for a trivial solution of not scheduling either goal. In addition
to the temporal relationships, the do constraint is necessary
for cases where one or more goals must be accomplished. Do
Gm forces the goal to be scheduled at some time but does not
restrict when it is scheduled.

B. Robot constraints

It is frequently convenient to specify additional constraints
on the actions of individual robots. Rescue workers may wish
to specify which robots should work on a goal or exclude
a certain set of robots from high risk goals. This can all be
effected with the participantIn constraint which operates on a
robot and a goal. The robot constraint Rn participantIn Gm

forces robot n to participate in goal m if the goal is scheduled.
Another important constraint is that a robot should return to

base when finished with other goals. We model this with the
endAt constraint: Rn endAt L means that robot n must return
to location L at the end of its mission.

C. Resource constraints

Consumable resources are an important part of the search
and rescue domain. Therefore, resource constraints are a
necessary part of the problem formulation. We do not consider
renewable resources for this domain. In general, we assume
that resource constraints apply to some subteam of robots,
Rs ⊆ R and that the resource consumption for each robot is
independent.

• Rs limitFuelTo F indicates that the robots in Rs may
collectively travel no farther than F which is the amount
of fuel that they possess. By setting Rs = Rn, we can
limit the amount of fuel an individual robot consumes.

• Rs limitResourcesOf 〈f(Rn, Gm), ρ〉 indicates that the
robots in Rs may collectively consume no more than ρ of
a particular resource. The limitResourcesOf constraint
applies to resources that are only consumed when a robot
works on a goal. The function, f(Rn, Gm), represents
the amount of the resource robot, Rn, would consume
working on goal, Gm. It must be defined for all goals in
the problem, Gm ∈ G, and for all robots in the subteam,
Rn ∈ Rs.

D. Expressive constraint language

In order to cover the full range of possible system con-
straints needed for search and rescue, we must be able to
combine goal, robot, and resource constraints. We establish
a constraint language that implements first order logic for the
system constraints in C.

DEFINITION 1.1. A system constraint is an element in C and
is denoted as ci. A system constraint may either be a simple
constraint or a complex constraint.

DEFINITION 1.2. A simple constraint is either a goal con-
straint (before, equal, meets, overlaps, during, starts, finishes,
do), robot constraint (participantIn, endAt), or resource con-
straint (limitFuelTo, limitResourcesOf).

DEFINITION 1.3. A complex constraint consists of the com-
position of simple and complex constraints according to the
operators listed below.

Before defining the logical operators and quantifiers, we
first need to explain how constraints, which we are generally
defined to always be true, can be terms in boolean logic. At
the top level, the general definition of a constraint still holds;
the outer most clause of a complex constraint expression must
always be true. However, each nested constraint is conditional
upon the value of the clause above it. If this clause is true,
the nested constraint must be satisfied. If this clause is false,
the nested constraint must be false. The exceptions to this
are resource constraints and the endAt constraint which we
define such that if the clause is false, the nested constraint
is not required to be true. Logical operators and quantifiers
include the logical not, conditional statement, if and only if,
or, and, xor, forall, and exists.

II. COCOA

We have developed COCOA, a Constraint Optimization
Coordination Architecture, to handle the coordination chal-
lenges posed by the search and rescue problem. The key
idea behind COCOA is to preserve the semantics of the
original problem by formulating it as a constraint optimization
problem. COCOA uses a goal oriented representation (Figure
1) to generate a schedule that can be executed by a robot with
some level of abstraction. The schedule is broken down into
the necessary components of achieving a goal: traveling to the
goal location, waiting for teammates who are assisting on the
goal, and actually doing the goal. The maximum number of
goals planned for any robot is the planning horizon, ω. Though
all robots in the example in figure 1 have the same number of
goals, this is not true in general; one or more robots may be
idle for some or all of their planning horizon.

By modeling goal rewards as decreasing linearly with
time, the problem can be modeled as a mixed integer linear
programming problem (MILP) as described in [1].

A. Background MILP Problem formulation

There is the potential for confusion when discussing con-
straints in the MILP problem formulation. System constraints
are defined in section I and refer to semantically meaningful



Fig. 1. COCOA uses a goal oriented representation that captures the important components of achieving a goal–traveling to the goal location, waiting for
teammates who are assisting on the goal, and actually doing the goal. The maximum number of goals planned for any robot is the planning horizon, ω,
(ω = 3 in this example)

constraints. Problem constraints refer to constraints in the
MILP problem formulation that implement system constraints
or make the problem formulation legal.

The details of a basic problem formulation which uses both
binary and real valued variables are discussed in [1]. The
MILP problem formulation includes goal variables, schedule
variables, and linking variables. The goal variables are of pri-
mary interest since they are used to implement the constraint
language in section I.

Goals and robots are denoted with superscripts while sub-
scripts denote a variable in the MILP problem formulation
that points to the goal or robot. Therefore, Gm is the binary
variable used to denote whether or not goal Gm is scheduled
and RnGm is the binary variable that indicates whether or
not robot Rn works on goal Gm. Gm start is the real valued
variable corresponding to the time at which goal Gm starts and
Gm start = 0 if Gm is 0. The MILP problem formulation
also has antivariables, Gm start∗ = Gm start, if Gm = 1,
or Gm start∗ = Tmax if Gm = 0.

The real valued schedule variable, RnOi travel, is also
important as it is used to implement the resource constraint
limitFuelT o. It represents the time robot spends traveling on
its way to its ith goal (blue line in figure 1, “Time traveling
to goal”).

B. Modeling constraints in COCOA

In general, goal constraints are defined to hold only if the
goals are scheduled, allowing a trivial solution of not schedul-
ing either goal. This is achieved by carefully combining goal
variables and antivariables in the goal constraints. With the
exception of the before constraint, goal constraints are also
defined so that scheduling one of the constrained goals forces
the other constrained goal to be likewise scheduled. We assume
that the duration, dm, of goal Gm is greater than 0 and less
than Tmax for all goals. The simple constraints can be directly
translated into problem shown in table I.

While simple constraints can be modeled with variables
in the problem formulation, complex constraints require the
addition of new binary constraint variables, denoted Cx.

Complex constraints can be modeled by applying the fol-
lowing process beginning with the outer most expression and
continuing in to the nested expressions.

GOAL CONSTRAINTS

Gxbefore Gy Gx start + dxGx < Gy start∗
Gx start∗ ≤ Gy start∗

Gx equal Gy Gx start = Gy start
Gxdx = Gydy

Gxmeets Gy Gx start + dxGx = Gy start
Gxoverlaps Gy Gx start < Gy start∗

Gx start + dxGx < Gy start∗ + dyGy

Gx start∗ + dx > Gy start
Gx = Gy

Gxduring Gy Gx start∗ > Gy start
Gx start + dxGx < Gy start∗ + dyGy

Gx = Gy

Gxstarts Gy Gx start = Gy start
Gx start + dxGx < Gy start∗ + dyGy

Gxfinishes Gy Gx start + dxGx = Gy start + dyGy

Gx start∗ > Gy start
Gx = Gy

do Gx Gx = 1

ROBOT CONSTRAINTS

Rn participantIn Gm RnGm = Gm

Rn endAt L We create a new goal GendL

RnGendi
= 1

RESOURCE CONSTRAINTS

Rs limitFuelTo F
P

n s.t. Rn∈Rs

P

i<ω
RnOi travel ≤ F

Rs limitResourcesOf
〈f(Rn, Gm), ρ〉 P

Rn∈Rs

P

Gm∈G
f(Rn, Gm)RnGm ≤ ρ

TABLE I

COCOA IMPLEMENTATION OF SIMPLE CONSTRAINTS

1) If the constraint is a complex constraint introduce new
binary constraint variables, denoted Cx, and constraints
according to the rules for each complex expression:

• Logical not: ¬c1: Cnot = 1 − C1

• Conditional statement: c1 → c2:
Cif ≤ C2 − C1 + 1; Cif ≥ C2−C1+1

2
• IF AND ONLY IF: c1 ↔ c2:

Ciff ≤ C2 − C1 + 1; Ciff ≥ C2−C1+1
2 ;

Ciff ≤ C1 − C2 + 1; Ciff ≥ C1−C2+1
2

• OR expression: c1 ∨ c2

Cor ≤ C1 + C2; Cor ≥ C1; Cor ≥ C2

• AND expression:c1 ∧ c2

Cand ≥ C1+C2−1
2 ; Cand ≤ C1; Cand ≤ C2

• XOR expression: c1 ⊕ c2

Cxor ≥ C1 + C2; Cxor ≥ C1; Cxor ≥ C2



• FORALL quantifier: This quantifier operates with
robots or goals as variables.
We create a binary constraint variable, C∀i , for
each system constraint, cRn or cGm . These system
constraints must be formulated using this process
like any other complex constraint. Additionally, we
have the following problem constraint where n is

the number of robots or goals: C∀ ≥
1−n+

P

i

C∀i

n
• EXISTS quantifier: This quantifier also operates with

robots as variables.
For each system constraint, cRn or cGm , we cre-
ate a binary constraint variable, C∃i , and require
C∃ ≥ C∃i , so that the exists constraint evaluates as
true if any of the individual system constraints are
true. Additionally, we add the following problem
constraint so that the exists constraint does not
evaluate to true unless one or more of the individual
constraints is true: C∃ ≤ ∑

i

C∃i .

2) For each constraint clause, ci, continue to apply the rules
for modeling complex expressions.

3) Simple constraints that are nested inside a complex
constraint cannot be directly incorporated into the MILP
as non-nested simple constraints but must be formulated
as dependent upon the constraint variable, Cx, of the
expression in which they are nested. Algorithm 1 de-
scribes how to generate the problem constraints so that
Cx → ci. Note that LHS and RHS refer to the Left (or
Right) Hand Side of the inequality.

Algorithm 1 Generate problem constraints for Cx → ci

Use the constraints from table I that correspond to ci.
Turn all equalities, x = y, into inequalities: x ≤ y and x ≥ y.
Rearrange each inequality so that the RHS = 0
if LHS ≤ 0 or LHS < 0 then

RHS = (1 − Cx)Tmax

else
RHS = (Cx − 1)Tmax

end if

4) Force ¬Cx → ¬ci by applying DeMorgan’s law (¬(A∧
B) = ¬A ∨ ¬B) and following algorithm 2.

5) Set the top level constraint variable Cx = 1.

We can quickly verify that the process for establishing Cx →
ci is valid: if Cx = 0, we have the left hand side of the
expression, LHS {>,≥}− Tmax or LHS {<,≤}Tmax. Since
all times are bounded by Tmax, this is a trivial constraint. On
the other hand, if Cx = 1, the right hand side is 0 which is
simply a restatement of the original constraint. The check for
¬Cx → ¬ci is similar, though slightly longer.

C. Solving the MILP with CPLEX

By modeling the problem as an MILP as described in
section I, we can leverage a vast amount of work in solving
these problems including the commercially available solver,
CPLEX [4]. The standard approach for solving an MILP is
to relax the constraint that certain variables be integer and

Algorithm 2 Generate problem constraints for ¬Cx → ¬ci

Use the constraints from table I that correspond to ci.
Turn all equalities, x = y, into inequalities: x ≤ y and x ≥ y.
Rearrange each inequality so that the RHS = 0
for all resulting inequality problem constraints do

Create a new binary variable Cxi .
if LHS ≤ 0 or LHS < 0 then

RHS = (1 − Cxi)Tmax

else
RHS = (Cxi − 1)Tmax

end if
end for
Add problem constraint:

P

i

Cxi +
P

Gm∈ci

(1 − Gm) ≥ (1 − Cx)

solve the resulting linear program (LP) using LP algorithms
such as the simplex or dual simplex algorithm. This noninteger
solution is known as the relaxed solution and provides an
upper bound on system performance. In the case that the
relaxed solution is integral, this optimal solution is returned.

Since the problem is NP-hard, generally the system must
employ the branch and bound algorithm to search for the
optimal integer solution. Without additional information, the
search for the integer solution begins near the relaxed solution.
Depending on the structure of the search space, finding a
feasible solution can take a long time (hours to find a feasible
solution to a large search and rescue problem and days or
weeks to find the optimal solution). This is unacceptable for
the search and rescue domain since planning delays the onset
of execution.

III. REAL TIME ALGORITHMS

Particularly for problems with few or no constraints, it is
possible to use heuristics to find solutions in polynomial time.
In fact, the search and rescue problem has elements, specifi-
cally rewards that decrease over time, that suggest that greedy
heuristics would perform reasonably well. Conveniently, we
can combine heuristics and MILP solution techniques resulting
in an algorithm superior to either individual approach.

As described in the previous section, solving an MILP in-
volves branch and bound search. By default, this search begins
around the relaxed solution. It is possible to generate an initial
solution using a heuristic and use this as the starting point for
the search. This enables the system to find a feasible solution
quickly and then improve the solution with available time.
Furthermore, the bounds in the branch and bound algorithm
provide error bounds on a given solution so that it is possible
to stop when the solution is within some bounds of the optimal
or estimate distance of an arbitrary solution from optimal. We
exploit this symbiosis between heuristic and optimal solver in
our anytime algorithm (Algorithm 3).

A. Anytime Algorithm

The key idea in the anytime algorithm is to make the
interaction between the optimization algorithm (CPLEX) and
heuristic (any number of heuristics can be used–we describe
two below) an iterative process by starting with a small
subproblem and expanding this until it includes the entire



Algorithm 3 Anytime Scheduling using MILP Solver

1: oldSoln = {}
2: for ω = 1 to # Goals do
3: milp ⇐ CreateMILP(ω)
4: start ⇐ HeuristicScheduler(oldSoln, ω)
5: optimalSolnForPH ⇐ Optimize(milp, start)
6: oldSoln = optimalSolnForPH
7: end for
8: return optimalSolnForPH

problem. At each iteration, a heuristic is used to generate a
solution for the subproblem. This heuristic solution is used
as a starting point for search in the optimization step. Since
the resulting optimized solution to this subproblem is at least
as good as the heuristic solution to the same subproblem, the
heuristic uses this optimized solution as its starting point and
only finds a solution for the expanded portion of the problem.

B. Heuristics

Since goal rewards decrease over time, it is reasonable
to expect greedy heuristics to perform well. Two greedy
heuristics arise naturally from the problem variables–robots
and goals. In the first heuristic, which we call the myopic
heuristic, robots recursively schedule goals over an increasing
planning horizon. The heuristic attempts to find the best
solution for a planning horizon of 1. We use our MILP problem
formulation and CPLEX to find this solution as shown in
algorithm 4. Empirically, this is very fast–well under a second–
even for large problems. This is because problem size grows
exponentially with the length of the planning horizon so this
subproblem is much smaller than the original problem.

The second heuristic, or greedy goal heuristic, is inspired
by market based task allocation algorithms which have been
shown to work well in a variety of domains [2]. Since the
goals are known in advance, they are sorted and auctioned off
in decreasing order of reward. For each required capability
of each goal, robots bid their costs to provide that capability
based on their current schedules. The lowest bidder is assigned
to that goal capability. The greedy goal heuristic is less
sophisticated than many market based systems as it does not
allow robots to reauction their goals.

C. Myopic heuristic limitations

Each of these heuristics has its limitations and can lead
to inefficient behavior if not combined with an optimization
algorithm. The myopic heuristic performs poorly if it is best
but not required for one robot to assume more goals than
its teammates. For example, if there are two goals with the
same requirements in the same room and two identical robots,
one already in the room and one in a different building, the
myopic heuristic will assign one goal to each robot although
the optimal solution is clearly to assign both goals to the close
robot.

D. Greedy goal heuristic limitations

The greedy goal heuristic but may perform poorly if the
problem requires careful resource management. Consider a

Algorithm 4 Myopic heuristic

1: ω = 1; unsatGoals = Goals; currSchedule = {}
2: while (ω ≤ # Goals) && !isEmpty(unsatGoals) do
3: prob ⇐ CreateMILP(1, unsatGoals)
4: partialSoln ⇐ Optimize(prob)
5: currSchedule ⇐ Schedule(partialSoln)
6: unsatGoals ⇐ unsatGoals−satGoals(currSchedule)
7: ω = ω + 1
8: end while
9: return currSchedule

disaster site with two flooded rooms and a dry room and a
team of two robots. However, only robot 1 is waterproof and
able to explore the flooded rooms. If robot 1 starts slightly
closer to the dry room and the goal of exploring the dry room
is allocated first, the greedy goal heuristic will assign all three
goals to robot 1 although it would be more efficient to assign
the dry room to robot 2 to explore.

IV. BENCHMARKS AND RESULTS

The lack of benchmarks for heterogeneous multirobot coor-
dination with joint tasks is an obstacle to rigorously comparing
algorithms and heuristics. We have developed a collection of
benchmarks designed to illustrate some of the challenges of a
complex domain such as search and rescue including the limi-
tations of the heuristics as described in the previous section. As
a service to the research community, we have set up a repos-
itory to allow researchers to access our benchmarks and con-
tribute their own: http://www.cs.cmu.edu/˜mberna/research/.

Although the system constraints from section I add an
important degree of expressiveness to the system, a baseline
analysis without constraints must first be performed to better
understand the problem space. Therefore, although we are
able to automatically generate benchmarks with constraints
which are included in the repository, this analysis limits itself
to problems without additional system constraints. This also
allows us to compare algorithms and heuristics that lack the
expressiveness to represent and reason about these constraints.

A. Benchmarks

We implemented a program to automatically generate ran-
dom environments according to certain specification which we
used to generate 5 environments with 3 and 15 robots and
5 and 15 goals for a total of 20 problems in each of the
following classes of benchmarks. All the benchmarks have
three relevant capabilities but the profiles of robot capabilities
and goal requirements distinguish the various benchmarks.
The benchmark classes are described in table II. In order to
limit the variations between benchmarks, all environments are
randomly generated 10x10 grids with randomly assigned 4
point connectivity between nodes.

B. Results

We compared five solution techniques on these benchmarks:
the myopic heuristic (Algorithm 4), the greedy goal heuristic
described in section III, the anytime algorithm (Algorithm 3)
with the myopic heuristic as the heuristic solver on line 4



Benchmark Robot Goal Goal
Capabilities Requirements Location

Homogeneous All All Random
Tight Single All Random
Easy Clustered All All Clustered
Difficult Clustered Single All Clustered
Precious Super and Easy and Random
Resources weak robots hard goals
Random Random Random Random

TABLE II

BENCHMARK CHARACTERISTICS (SUPER ROBOTS CAN DO ANY GOAL

WHILE WEAK ROBOTS ARE ONLY ABLE TO DO EASY GOALS)

of Algorithm 3, the anytime algorithm with the greedy goal
heuristic as the heuristic solver, and the anytime algorithm with
the “best” heuristic in which the heuristic solver compares the
myopic and greedy heuristics and returns the solution with the
highest utility. The optimization step (line 5 of Algorithm 3)
was limited to 90 seconds. We compared the results for three
different levels of time pressure, Tmax = 100, 1000, and 2000.
The results for Tmax = 100 are shown in figure 2.

C. Analysis

In general, we observed that the greedy goal heuristic per-
formed well on the homogeneous and clustered benchmarks.
This matches what we know about these benchmarks and the
workings of the greedy goal heuristic. The homogeneous and
easy clustered benchmarks have no joint goals so the problem
reduces to the optimal assignment problem on which greedy
market task allocation has been demonstrated to perform well
[2]. The greedy goal heuristic performs the worst on the
precious resource benchmarks which matches our analysis of
the limitations of the greedy goal heuristic in section III-D.

The myopic heuristic performed at least as well as the
greedy goal heuristic on all benchmarks except the easy
clustered benchmarks on which it performed slightly worse.
This matches our analysis of the limitations of the myopic
heuristic (section III-C). The performance is only slightly
worse because the tasks are clustered together so that even
if the tasks are allocated suboptimally for a planning horizon
of 1, this is outweighed by the goals accomplished over the
remainder of the planning horizon. In this sense, the clustered
goal benchmarks were less successful than we had hoped in
illustrating the limitations of the myopic heuristic.

The anytime algorithm was able to significantly improve
performance on a number of benchmarks with a maximum
improvement of over 50%. This indicates that the heuristics
benefit significantly from the relatively small amount of time
spent in optimization. Without using the heuristic starting
solution, CPLEX is often unable to find a feasible solution
in 90 seconds which illustrates the benefits of the heuristic
starting solution to the MILP solver.

We found that the results from the other values of Tmax

are nearly identical to figure 2 (and so are not included here)
except in scale. The utility gains when Tmax = 2000 are half
the utility gains for Tmax = 1000. Since utility is defined as a
linear function of Tmax, we would expect a linear relationship
between Tmax and utility gain. However, the utility gains when
Tmax = 100 are 15 times the utility gains of Tmax = 1000.

Fig. 2. Benchmark results using greedy goal heuristic as baseline averaged
over 3 and 15 robots and 5 and 15 goals.

The reason for this is that as Tmax decreases, suboptimal
solutions are not able to accomplish as many goals which
magnifies differences in solution quality. This illustrates the
importance of optimality in the search and rescue domain
where there is often significant time pressure.

V. CONCLUSIONS AND FUTURE WORK

In this paper we presented a language for modeling con-
straints in first order logic, an architecture based on well
known mixed integer linear programming work capable of
finding optimal team plans subject to these constraints, and
an anytime algorithm and various heuristics to solve these
problems quickly. We evaluated these solution techniques on
a set of multirobot team planning benchmarks. The bench-
marks analyzed here are only a beginning. We hope other
researchers will contribute test cases and will continue to add
benchmarks to the repository ourselves including test cases
with semantically meaningful constraints. Finding optimal or
near optimal team plans in the presence of system constraints
is an open problem that requires the development of new
algorithms. Although this paper was motivated by the search
and rescue domain, the general problem formulation and
solution techniques discussed are applicable to a wide range
of domains such as integrated manufacturing, reconnaissance,
or space exploration.

ACKNOWLEDGEMENTS

This work is supported by NSF Award IIS-0205526. The
authors would also like to thank the ILOG corporation for
their generous support.

REFERENCES

[1] M. Koes, I. R. Nourbakhsh, and K. P. Sycara, “Heterogeneous multirobot
coordination with spatial and temporal constraints,” in Proceedings,
The Twentieth National Conference on Artificial Intelligence and the
Seventeenth Innovative Applications of Artificial Intelligence Conference.
AAAI Press AAAI Press / The MIT Press, 2005, pp. 1292–1297.

[2] M. B. Dias, R. M. Zlot, N. Kalra, and A. T. Stentz, “Market-based
multirobot coordination: A survey and analysis,” Robotics Institute,
Carnegie Mellon University, Pittsburgh, PA, Tech. Rep. CMU-RI-TR-05-
13, April 2005.

[3] Y. Xu, P. Scerri, B. Yu, S. Okamoto, M. Lewis, and K. Sycara, “An inte-
grated token-based algorithm for scalable coordination,” in AAMAS ’05:
Proceedings of the fourth international joint conference on Autonomous
agents and multiagent systems. New York, NY, USA: ACM Press, 2005,
pp. 407–414.

[4] ILOG CPLEX 9.0 User’s Manual, ILOG, 2004.
[5] J. F. Allen, “Maintaining knowledge about temporal intervals.” Commun.

ACM, vol. 26, no. 11, pp. 832–843, 1983.


