
Fast and Complete Symbolic Plan Recognition

Dorit Avrahami-Zilberbrand and Gal A. Kaminka
Computer Science Department

Bar Ilan University, Israel
{avrahad1,galk}@cs.biu.ac.il

Abstract

Recent applications of plan recognition face sev-
eral open challenges: (i) matching observations
to the plan library is costly, especially with com-
plex multi-featured observations; (ii) computing
recognition hypotheses is expensive. We present
techniques for addressing these challenges. First,
we show a novel application of machine-learning
decision-tree to efficiently map multi-featured ob-
servations to matching plan steps. Second, we pro-
vide efficient lazy-commitment recognition algo-
rithms that avoid enumerating hypotheses with ev-
ery observation, instead only carrying out book-
keeping incrementally. The algorithms answer
queries as to the current state of the agent, as well as
its history of selected states. We provide empirical
results demonstrating their efficiency and capabili-
ties.

1 Introduction
Plan recognition is the process of inferring another agent’s
plans, based on observations of its interaction with its en-
vironment. Recent applications of plan recognition require
observing agents whose behavior is reactive[Rao, 1994], in
that the observed agent may interrupt plan execution, switch
to a different plan, etc. Such applications include intrusion
detection applications[Geib and Harp, 2004], virtual train-
ing environments[Tambe and Rosenbloom, 1995], and visual
monitoring[Bui, 2003].

In general, plan recognition relies on aplan library of plans
potentially executed by the observed agent. Typically, the
plan library is composed of top-level plans that are hierar-
chically decomposed. The recognizer matches observations
to specific plan steps in the library. It may then infer an-
swers to plan recognition queries, such as the currently se-
lected top-level plans (current statequery), or the ordered
sequence of (completed or interrupted) selected plans (state
historyquery).

Existing work leaves several challenges open (see Section
2 for details). First, most existing work assumes observations
to be of atomic instantaneous actions. However, observa-
tions in recent applications are often complex multi-featured
tuples, involving symbolic, discrete, and continuous compo-
nents (e.g., multiple actuators of the agent). Moreover, obser-

vations may be of continuous actions, maintained over time.
For instance, an observation of a soccer player may include
its team name, uniform number, current position, velocity,
etc. The computational cost of matching such observations
against all possible plan-steps is non-trivial, and grows in the
complexity of the observation tuple. However, existing inves-
tigations ignore this cost. Second, with few exceptions, exist-
ing algorithms focus on the current state query (e.g.,[Tambe
and Rosenbloom, 1995; Bui, 2003]). Some go as far as to
ignore all[Tambe and Rosenbloom, 1995] or portions[Wærn
and Stenborg, 1995] of the observation history, and are un-
able to utilize negative evidence (where an expected action
wasnot observed).

This paper focuses on a set of efficient algorithms that
tackle these challenges: First, we develop a method for auto-
matically generating a matching decision-tree that efficiently
matches multi-feature observations, to the plan library. Sec-
ond, we provide algorithms for efficiently answering the cur-
rent state and state history queries. These lazy-commitment
algorithms avoid computation of hypotheses on every step (as
other algorithms do[Geib and Harp, 2004]). Instead, they use
linear-time (current state) and polynomial-time (state-history)
bookkeeping with every observation, which allows extraction
of hypotheses only as needed. Our algorithms arecomplete,
in that they admit all recognition hypotheses consistent with
the history of observations; they aresymbolicin that they pro-
vide hypotheses with no ranking (probabilistic or otherwise).

We explore the performance of the recognition algorithms
with simulated data, and show that they are significantly
faster than previous techniques. Their efficiency and com-
pleteness make them particularly suited for hybrid plan recog-
nition approaches (e.g.,[Geib and Harp, 2004]) in which a
symbolic recognizer filters inconsistent hypotheses, passing
them to a probabilistic inference engine.

2 Background and Related Work
We focus this brief discussion on closely related work, partic-
ularly allowing recognition of interruptible plans. See[Car-
rbery, 2001] for a recent survey of general plan recognition.

Several investigations have utilized multi-featured obser-
vations (also of continuous actions), but did not address the
efficiency of matching observations to the plan library, in con-
trast to our work: RESC[Tambe and Rosenbloom, 1995] and
RESL [Kaminka and Tambe, 2000] use a hierarchical rep-
resentation (similar to what we use) to maintain a single hy-

pothesis (RESC) or multiple hypotheses (RESL) as to the cur-
rent state of an observed agent. Both algorithms ignore ob-
servation history in the current state hypotheses, and do not
address state history, in contrast to our algorithms.

Geib et al.[Geib and Harp, 2004] developed PHATT, a hy-
brid recognizer, where a symbolic algorithm filters inconsis-
tent hypotheses before they are considered probabilistically.
PHATT assumes instantaneous, atomic actions, and takes a
generate-and-test approach: With each observation, the sym-
bolic algorithm generates apending setof possible expected
observations, which are matched against the next observation
to maintain correct state history hypotheses. The size of the
pending set may grow exponentially[Geib, 2004]. In con-
trast, our work decouples the current state and state history
queries, and incrementally maintains hypotheses implicitly,
without predicting impending observations. The hypotheses
are thus computed only when needed (when hopefully, many
of them have been ruled out).

Other investigations assume atomic observations, and do
not consider the cost of matching.[Wærn and Stenborg,
1995] explores plan-recognition with limited observation his-
tory, to facilitate recognition of reactive behavior.[Retz-
Schmidt, 1991] develops an approach based on matching sub-
graphs of the plan library. However, the approach does not
allow for interruptions of plans.

Our work differs significantly from probabilistic ap-
proaches, though it complements them in principle (as
demonstrated by Geib et al.).[Bui, 2003] explores proba-
bilistic reactive recognition extending hidden Markov mod-
els, focusing on current state query.[Pynadath and Wellman,
2000] explores a probabilistic grammar representation for ef-
ficient plan-recognition. None of these considers the cost of
matching observations, nor separation of state history from
current state queries.

3 Matching Observations to the Plan Library
As commonly done in plan recognition work (e.g.,[Bui,
2003]), we utilize a hierarchical representation of the plan
library (Section 3.1). We present a method for efficiently
matching multi-feature observations to the library (3.2).

3.1 The Plan Library
We represent the plan library as a single-root directed acyclic
connected graph, where vertices denoteplan steps, and edges
can be of two types: vertical edges decompose plan steps into
sub-steps, and sequential edges specify the expected tempo-
ral order of execution. For the discussion, we refer to the
children of the root node astop-level plans, and to all other
nodes simply asplans. However, we use the term plan here in
its general sense, inclusive of reaction plans, behaviors, and
recipes. Indeed, to represent behavior-based agents (where
typically behaviors execute over a number of time-steps),
plans may have a sequential self-cycle, to allow them to be
re-selected. However, no cycles are allowed hierarchically.

Each plan has an associated set of conditions on observable
features of the agent and its actions. When these conditions
hold, the observations are said to match the plan. For exam-
ple, a kick-ball-to-goal plan (of a robotic soccer player) may
have the following features: The ball must be visible, the dis-
tance to the ball is within a given range, and the opponent goal

root

attackdefend score

position

clear

turn

Approach
ball

position

without
ball

position turn pass position turn kick

with
ball

without
ball

With
ball

with
ball

without
ball

2

1

3

1

1 1 2

2

2

22

2

222

2

2

31 1

Figure 1:Example plan library. Circled numbers denote times-
tamps (Section 4).
is visible within shooting distance. If all the above conditions
are satisfied, the plan matches the observation.

At any given time, the observed agent is assumed to be ex-
ecuting aplan decomposition path, root-to-leaf through de-
composition edges. Figure 1 shows an example portion of a
plan library, inspired by the behavior hierarchies of RoboCup
soccer teams (e.g.[Kaminka and Tambe, 2000]). The fig-
ure shows decomposition edges (solid arrows) and sequen-
tial edges (dashed arrows). The top level plans aredefend,
attack, and score. The figure does not show the observa-
tion conditions associated with plan steps. For presentation
clarity, we show the decomposition edges only to the first
(in temporal order) child plans. Thus in the figure, the path
root → defend → turn → with ball can be an hypothe-
sis as to the current plan of an observed player. In realistic
settings, likely more than one path will match an observa-
tion tuple, and this may result in a set of such decomposition
paths, i.e., a set of hypotheses as to the current state of the
observed agent (answering a current state query).

An observed agent is assumed to change its internal state
in two ways. First, it may follow a sequential edge to the
next plan step. Second, it may reactively interrupt plan ex-
ecution at any time, and select a new (first) plan. For in-
stance, suppose the agent was executingroot → defend →
turn → with ball, and then interrupted execution of this
plan. It may now chooseroot → attack → pass, but not
root → attack → turn → withball.

3.2 Efficient Matching
The first phase of recognition, common to all recognition ap-
proaches, matches the observations made by the recognizer
to plans in the plan library. In contrast with previous work,
we consider complex observations, that consist of a tuple of
observed features, including states of the world that pertain
to the agent (e.g.,a soccer player’s uniform number), actions
taken (e.g.,kick), and execution conditions maintained (e.g.,
speed = 200). Matching such observations to plans can be
expensive, if we go over all plans and for each plan check all
observed features. This, in fact, is what previous work essen-
tially proposes (e.g.,[Kaminka and Tambe, 2000]).

To speed this process, we augment the plan library with
a Feature Decision Tree(FDT), which efficiently maps ob-
servations to matching nodes in the plan library. An FDT

is a decision tree, where nodes correspond to features, and
branches to conditions on their values. Determining the plans
that match a set of observation features is efficiently achieved
by traversing the FDT top-down, taking branches that corre-
spond to the observed values of features, until a leaf node is
reached. Each leaf node points at the plans that match the
conjunctive set of observations along the top-down path. Ide-
ally, each leaf nodes points to only one plan, though this may
not be possible due to inherent ambiguity in the plan library.

An FDT can be automatically constructed, similarly to a
machine learning (ML) decision tree[Ross, 1992] but with
important differences (see below). We map the plan library
into a set of training examples, and then use a modified tree
construction algorithm to construct the FDT. Each plan step
becomes an example, where the observation conditions be-
come attribute values, and the class is the plan step. Features
not tested by a plan step are treated as all attribute values. Af-
ter generating the training set, the construction of the FDT is
done similar to that of a decision tree with missing attribute
values (for lack of space, see[Ross, 1992] for details).

There are important differences with ML tree construction
processes. The goal is to construct an FDT that is specialized
to the "training examples". Every plan step example appears
exactly once, and no pruning step is taken (as is commonly
done in ML decision trees).

The use of the FDT to efficiently match multi-featured ob-
servations to plans is a novel application of methods from
machine learning to plan recognition. The benefits to plan
recognition are significant: The matching time is dictated by
the height of the FDT, rather than the size of the library (L).
Let F be the number of distinct observable features. In a the-
oretical worst case, plans test all possible features, and thus
the height of the FDT isO(F). In the worst-case, the leaf
in the FDT would point toO(l) plans, wherel is the maxi-
mum number of plans that are ambiguously consistent with a
single observation (l << L). Thus the complexity of match-
ing observations to plans would be at worstO(F + l). This
should be contrasted with aO(FL) used in previous work
([Kaminka and Tambe, 2000]). As with any decision tree,
there is a one-time cost of constructing the FDT, and storage
overhead in using it. However, these costs were not found to
be a hindrance in the experiments we conducted (see Section
5).

4 Recognition Algorithms
We now present algorithms for answering the current state
query (Section 4.1), and the state history query (4.2).

4.1 Current State Query Algorithms
An important query in reactive plan recognition is with re-
spect to the current plan step selected by the observed agent.
In most hierarchical plan-libraries—as in ours—this query
translates to determining the decomposition paths (root-to-
leaves) that are consistent with the observations, and poten-
tially are being executed by the observed agent. Each such
path is acurrent-state hypothesis.

CSQ(Algorithm 1) is an efficient algorithm for answering
the current state query. CSQ’s inputs include the plan library
and pointers to the plan-steps matching the current observa-
tion (e.g., as stored in an FDT leaf). It then works in two

Algorithm 1 CSQ(Matching resultsM , Library g, Time-stampt)

1: for all v ∈ M do
2: PropagateUp(v, g, t)
3: for all v ∈ M do
4: while tagged(v, t) ∧ ¬∃ChildTagged(t) do
5: delete_tag(v, t)
6: v ← parent(v)

phases. First, it calls thePropagateUp algorithm (Algorithm
2), to tag complete paths in the plan-library that match the
current observation, but taking into account previous observa-
tion. The set of matching plansM is assumed to be ordered
by depth, parents before children (see below). Then (lines
3–6) it goes over the resulting tags to eliminate any that are
hierarchically inconsistent, i.e., where a parent is tagged, but
none of its children is tagged. CSQ is meant to be called with
every new observation. The tags made on the plan-library are
used to save information from one run to the next.

The PropagateUpalgorithm (Algorithm 2) uses time-
stamps to tag nodes in the plan library that are consistent
with the current and previous observations. To do this, it
propagates tags up along decomposition edges. However, the
propagation process is not a simple matter of following from
child to parent. A plan may match the current observation, yet
be temporally inconsistent, when a history of observations is
considered. For instance, suppose that the first observation
matches theposition plans (Figure 1). The FDT would point
the propagation algorithm to the four instances ofposition
(marked with a circled 1), underdefend (twice),attack, and
score. However, two of the instances are temporally incon-
sistent (crossed out in the figure): The second instance of po-
sition (underdefend) cannot be a first observation, since we
should have observed eitherclear or approachball before
it. Similarly, position underscore is inconsistent because
its parent had to have followedattack, which was not yet
observed. This reasoning about hypothesis consistency over
time is a key novelty compared to[Tambe and Rosenbloom,
1995; Kaminka and Tambe, 2000].

To disqualify hypotheses that are temporally inconsistent,
PropagateUpexploits the sequential edges and the time-
stamps. It assumes that the calls to it have been made in order
of increasing depth (as discussed above). This allows an as-
sumption (line 5) that matching parents are already tagged or
do not have any associated observable features (and are thus
compatible with all observations). Line 6 checks for temporal
consistency. Time stampt is temporally consistent if one of
three cases holds: (a) the node in question was tagged at time
t − 1 (i.e., it is continuing in a self-cycle); or (b) the node
follows a sequential edge from a plan that was successfully
tagged at timet − 1; or (c) the node is a first child (there is
no sequential edge leading into it). A first child may be se-
lected at any time (e.g., if another plan was interrupted). If
neither of these cases is applicable, then the node is not part
of a temporally-consistent hypothesis (lines 11–12), and its
tag should be deleted, along with all tags that it has caused in
climbing up the graph. This final deletion of all failing tags
takes place in lines 15–17.

Figure 1 shows the process in action (the circled numbers

Algorithm 2 PropagateUp(Nodew, Plan Libraryg, Time-stampt)

1: Tagged ← ∅
2: propagateUpSuccess ← true
3: v ← w
4: while v 6= root(g) ∧ propagateUpSuccess ∧ ¬tagged(v, t)

do
5: if tagged(parent(v), t) ∨ features(parent(v)) = ∅ then
6: if tagged(v, t − 1) ∨

∃PreviousSeqEdgeTaggedWith(v, t − 1) ∨
NoSeqEdges(v) then

7: tag(v, t)
8: Tagged ← Tagged ∪ {v}
9: v ← parent(v)

10: propagateUpSuccess ← true
11: else
12: propagateUpSuccess ← false
13: else
14: propagateUpSuccess ← false
15: if ¬propagateUpSuccess then
16: for all a ∈ Tagged do
17: delete_tag(a, t)

in the figure denote the time-stamps). Assume that after the
matching algorithm returns (at timet = 1), the Propagate be-
gins with the fourposition instances. It immediately fails to
tag the instance that followsclear andapproachball, since
these were not tagged att = 0. Theposition instance un-
der score is initially tagged, but in propagating the tag up,
the parentscore fails, because it followsattack, andattack
is not taggedt = 0. Therefore, all tagst = 1 will be
removed fromscore and its childposition. The two re-
maining instances successfully tag up and down, and result
in possible hypothesesroot → defend → position and
root → attack → position.
Complexity Analysis. For each plan instance that matches
the observations, the propagation traverses the height of the
plan library, expected to beO(log L). Note that previous
works (e.g.,[Kaminka and Tambe, 2000]) have the same prop-
agation complexity, but do not filter temporal-inconsistency.
Also, CSQ utilizes time-stamps on the plan library, rather
than external data structures (e.g.,[Geib and Harp, 2004]).

4.2 History of States Query Algorithms
The time stamps used by the CSQ algorithm can be used to
also answer queries aboutsequenceof plan steps taken by
the agent from timet = 0 until now, given the history of
observations. Answering this query, however, is not a trivial
collection of all possible current state hypotheses as gener-
ated at timest = 0, . . . , now, since observations (and lack
thereof—negative evidence) at timetk may rule out current-
state hypotheses that were consistent at timetk−1.

An example may serve to illustrate. Continuing the exam-
ple above, suppose the observation at timet = 2 matches
the turn plan (three instances). The tagt = 2 propagates
successfully and there are six possible current-state hypothe-
ses for timet = 2 (we omit the commonroot prefix):
defend → turn → without ball, defend → turn →
with ball, attack → turn → without ball, attack →
turn → with ball, score → turn → without ball,
score → turn → with ball.

Suppose we now make observations at timet = 3 that
match kick. The score plan is the only plan consistent
with t = 3, though bothdefend and attack are tagged
for times t = {1, 2}. However, after having made the ob-
servation att = 3, we can safely rule out the possibility
that defend was ever selected by the agent, becausescore
can only follow attack, and the lack of evidence for ei-
ther clear or approach ball at time t = 3 (which would
have madedefend a possibility at this time) can be used to
rule it out. Thus we infer that the sequence of plan paths
that was selected by the robot isattack → position (at
t = 1), attack → turn at t = 2 (though we cannot be
sure which one ofturn’s children was selected), and finally
score → kick. If we had only wanted the current-state hy-
potheses for timet = 3, we would not need to modify hy-
potheses for timet = 2. However, generating the state history
hypotheses requires us to do so.

We use an incrementally-maintained structure, theHy-
potheses Graph(described below), that holds hypotheses ac-
cording to time stamps. With every time stampt, we can use
the structure to eliminate hypotheses that were tagged at time
t − 1, that have become invalid. This also allows separation
of the current-state hypotheses from the state history hypothe-
ses, something not addressed with previous work (e.g.,[Geib
and Harp, 2004; Bui, 2003]).

1

2

3

defend-position attack-position

defend-
turn-
without
ball

Defend-

turn-

with ball

attack-
turn-
without
ball

score-
turn-
without
ball

attack-
turn-
with ball

score-
turn-
with ball

score-kick

Time
stamp

Figure 2:An example extracting graphG′.

The hypotheses graph is a connected graphG′, whose ver-
tices correspond to successfully-tagged paths in the plan li-
brary (i.e., hypotheses). Edges inG′ connect hypothesis ver-
tices tagged with time stampt to hypothesis vertices tagged
with time stampt + 1. G′ is therefore constructed in levels,
where each level represents hypotheses that hold at the cor-
responding time stamp. For each set of observations made
at timeti, we add toG′ a levelti, with nodes for all current
state hypotheses that were successfully taggedt = t0. We
then create edges between verticesx1, . . . , xn in level ti to
verticesy1, . . . , ym in level ti−1 in the following manner: If
xi is not part of a sequence (i.e., it is a first child), then we
connectxi to each vertexyj , (j = 1...m); otherwise, ifxi is
part of a sequence, we connectxi to yj if any of the plans in
yj has a sequential edge to a plan inxi. Finally, if xi is equal
to yj , we connect them to allow for the self-cycles.

To generate all sequences of plan paths that are consistent
with the observations, we traverseG′ from the last levelti
backwards, to levelti−1, and on to the first level. Paths that
connect levelti to levelt = 1 denote valid state histories. To
illustrate, Figure 2 showsG′ for the example above,t = 3.

Complexity Analysis. Let L be the worst-case number of
plans that match a single observation. For each node inG′
with time stampt (of which there could be at mostO(L)), we
check all nodes in time stampt−1 (again,O(L)), thus a factor
of L2 for each additional level. Thus overN observations, the
worst-case runtime isO(NL2).

5 Experiments
We show results of experiments evaluating these techniques
with simulated plan libraries and observation sequences. We
controlled key parameters, such as the library sizeL, and the
number of features used by each single planf (f ≤ 10), and
the structure of temporal edges. In the experiments below,L
was set by modifying the number of top-level plans (children
of the root node), and the depth of the library. The branching
factor was fixed at 3. The maximum length of observation
sequence was 10.

We generated valid sequences of observations by simulat-
ing execution and selection of plan steps. The process ran-
domly chose a path in the library and used all the features in
this path to generate observations. Based on existence of se-
quential edges, the process chose to either continue execution
along a sequential edge, or jump to a new first child. In all
experiments, we contrasted the results with RESL[Kaminka
and Tambe, 2000], the most relevant of the related works.

5.1 Matching Experiments
A first set of experiments compares matching run-time using
FDT and RESL, as the plan library grows in size. We gen-
erated different-sized libraries by varying the library depth,
and number of top-level plans. To demonstrate the scale-up
offered by the FDT as the observation complexity grows, we
also varyf (1,3,5,7). For each of these values, we generated
180 random observations sets based on the plan-libraries, and
averaged the run-time for matching these using RESL and us-
ing an automatically constructed FDT.

The average matching runtime is shown in Figure 3. The
figures are arranged in a3 × 3 matrix. The rows correspond
to the number of top-level plans (5, 50, and 100, respectively,
top-down). The columns correspond to library depths of 3,4
and 5. Thus the bottom right figure shows the results for the
largest library, approximately 12,101 nodes. The FDTs for
these included 200–2000 nodes, depending on the number of
features associated with each plan (f). In all figures, the hor-
izontal (X) axis showsf , and the vertical axis shows the av-
erage matching time in seconds. Each point in a figure is the
average of 180 runs.

Clearly, the use of the FDT leads to very significant im-
provements in the matching time, compared to RESL—and
even when each plan is associated with a single atomic ob-
servation. Furthermore, its growth curve indicates that its
benefits are maintained even as the observations increase in
complexity.

5.2 Query Answering Algorithms
We now turn to evaluate the algorithms answering the current-
state and state-history queries. These answers depend criti-
cally on the temporal structure of the plan library, in terms of
sequential edges. We follow[Geib and Harp, 2004] in vary-
ing temporal structure in several ways (Fig. 4): (a)Totally

1 3 5 7
0

2

4

6
x 10

−4 Depth 3

1 3 5 7
0

0.5

1

1.5
x 10

−3 Depth 4

1 3 5 7
0

2

4
x 10

−3 Depth 5

1 3 5 7
0

2

4

6
x 10

−3

A
ve

ra
ge

 r
un

tim
e

in
 s

ec

1 3 5 7
0

0.005

0.01

0.015

1 3 5 7
0

0.02

0.04

1 3 5 7
0

0.005

0.01

1 3 5 7
0

0.01

0.02

0.03

Number of actions in each node
1 3 5 7

0

0.05

0.1

Figure 3:Runtime of FDT (solid line) and RESL (dashed).
Totally
Ordered One Last Unordered

Figure 4:Sequential Links types.

ordered: all children of same parent form a single chain; (b)
First: first child has sequential edge to all its siblings; (c)
Last: siblings have sequential edges leading to the last sib-
ling; (d) Unordered: no ordering constraints between nodes.
Top-level plans are always unordered.
Propagation Accuracy.A key advantage of CSQ over RESL
is its ability to use sequential edges and the history of obser-
vations to rule out hypotheses that are temporally inconsistent
(Section 4.1). Given a sequence of observations, we expect to
see fewer current state hypotheses in comparison with RESL.

We again varied the library size through the number of top-
level plans (10,50,100) and the depth of the plan library (3–
6). We vary the temporal structure of the library as described
above. Trials were conducted with sequences of 10–40 obser-
vations. We recorded the number of hypotheses maintained
after each observation was propagated.

Figure 5 shows the effect of sequential edges types on the
number of hypotheses. There are four figures, each for dif-
ferent depth (3–6). The X axis shows the number of top-level
plans, while the Y axis measures the average number of hy-
potheses across all trials of the same configuration. Each data
point reflects the average number of hypotheses over 3000 in-
dividual observations, organized as 120 random observation
sequences (each 10–40 observations in length), based on the
generated libraries.

The figures show thattotally-orderedlibraries allow CSQ
to maximally use past observations, and thus result in less
hypotheses. In contrast,unorderedlibraries have no sequen-
tial edges, and thus do not gain information from a history
of observations. Thus the number of hypotheses generated in
this case is exactly the same as generated by RESL—which

10 50 100
0

5

10

15

A
ve

ra
ge

 N
um

be
r

of
 H

yp
ot

he
se

s
af

te
r

pr
op

ag
at

in
g Depth 3

10 50 100
0

5

10

15

20

25
Depth 4

10 50 100
0

10

20

30

40

50

Top Level Branching Factor

Depth 5

10 50 100
0

50

100

150
Depth 6

RESL
Totaly
First
Last
Unordered

Figure 5:Average number of hypotheses after propagation.

 0

 50

 100

 150

 200

 1 2 3 4 5 6 7 8 9 10

Total
First
Last

Unordered

Figure 6: Average number of state history hypotheses with
progress in observation.

ignores such history in any case (and thus its results for all
library types are the same, shown in a single solid line). On
average, more than 50% of the current state hypotheses gen-
erated by RESL were ruled out by the CSQ propagation.

We also show the results of evaluating the state history al-
gorithm. Figure 6 shows how incoming observations affect
the number of state history hypotheses. The X axis shows the
progression of 10 observations with time. The Y axis shows
the number of state history hypotheses generated by travers-
ing the hypotheses graphG′. The totally ordered libraries
have very few hypotheses, while the number of hypotheses
for unordered libraries grows exponentially, since all combi-
nations of current-state hypotheses are valid.
Propagation Runtime. Given the significant improvement
in accuracy, one may expect an associated significant com-
putational cost in CSQ, compared to RESL. We have argued
analytically that this is not the case, and this is supported em-
pirically. Figure 7 shows the average run-time of CSQ in the
above experiments, in comparison to RESL’s. The X axis
shows the number of top-level plans, while the Y shows run-
time in seconds. RESL is only slightly faster than CSQ. In-
deed, the difference in propagating between CSQ and RESL
amounts to a few additional checks (for incoming edges).

6 Summary and Future Work
This paper presents methods for efficient, complete, sym-
bolic plan recognition that can answer a variety of recognition
queries, with increased accuracy. The algorithms depart from
previous approaches in that they take a lazy-commitment ap-

10 50 100
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−3

Top Level Branching Factor

A
ve

ra
ge

 R
un

tim
e

in
 s

ec

RESL
SBR

Figure 7:Average runtime of propagating RESL versus CSQ

proach, separating the current state and state history queries,
and implicit representation of hypotheses, until required. In
addition, we presented a novel application of decision tree
construction for efficiently matching observations to the plan
library—a step common to all plan recognition methods. We
plan to further explore the use of symbolic algorithms in ad-
ditional queries.
Acknowledgments. This research was supported in part by
the Israeli Ministry of Commerce, and by ISF grant #1211/04.
Special thanks to Nadav Zilberbrand and K.Ushi.

References
[Bui, 2003] H. Bui. A general model for online probabilistic plan

recognition. InIJCAI-03, 2003.

[Carrbery, 2001] S. Carrbery. Techniques for plan recognition.
User Modeling and User-Adapted Interaction, 11:31–48, 2001.

[Geib and Harp, 2004] Christopher W. Geib and Steven A. Harp.
Empirical analysis of a probalistic task tracking algorithm. In
AAMAS workshop on Modeling Other agents from Observations
(MOO-04), 2004.

[Geib, 2004] Christopher W. Geib. Assessing the complexity of
plan recognition. 2004.

[Kaminka and Tambe, 2000] Gal A. Kaminka and Milind Tambe.
Robust multi-agent teams via socially-attentive monitoring.
JAIR, 12:105–147, 2000.

[Pynadath and Wellman, 2000] David V. Pynadath and Michael P.
Wellman. Probabilistic state-dependent grammars for plan recog-
nition. In UAI-2000, pages 507–514, 2000.

[Rao, 1994] Anand S. Rao. Means-end plan recognition – towards
a theory of reactive recognition. InProceedings of the Interna-
tional Conference on Knowledge Representation and Reasoning
(KR-94), pages 497–508, 1994.

[Retz-Schmidt, 1991] G. Retz-Schmidt. Recognizing intentions,
interactions, and causes of plan failures.User Modeling and
User-Adapted Interaction, 2:173–202, 1991.

[Ross, 1992] Quinlan J. Ross.C4.5 Programs for machine learn-
ing. Morgan Kaufmann Publishers,Inc, 1992.

[Tambe and Rosenbloom, 1995] M. Tambe and P. S. Rosenbloom.
RESC: An approach to agent tracking in a real-time, dynamic
environment. InIJCAI-95, August 1995.

[Wærn and Stenborg, 1995] Annika Wærn and Ola Stenborg. Rec-
ognizing the plans of a replanning user. InProceedings of the
IJCAI-95 workshop on plan recognition, pages 119–123, Mon-
treal, Canada, 1995.

