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Abstract— An important building block for intelligent mobile
robots is the ability to track people moving around in the environ-
ment. Algorithms for person-tracking often incorporate motion
models, which can improve tracking accuracy by predicting how
people will move. More accurate motion models produce better
tracking because they allow us to average together multiple
predictions of the person’s location rather than depending
entirely on the most recent observation. Many implemented
systems, however, use simple conservative motion models such
as Brownian motion (in which the person’s direction of motion
is independent on each time step). We present an improved
motion model based on the intuition that people tend to follow
efficient trajectories through their environments rather than
random paths. Our motion model learns common destinations
within the environment by clustering training examples of actual
trajectories, then uses a path planner to predict how a person
would move along routes from his or her present location
to these destinations. We have integrated this motion model
into a particle-filter-based person-tracker, and we demonstrate
experimentally that our new motion model performs significantly
better than simpler models, especially in situations in which there
are extended periods of occlusion during tracking.

I. INTRODUCTION

Accurately tracking moving people is of critical importance
to robots. Knowing a person’s current position or being able to
anticipate a person’s future position is useful for navigation in
populated areas. Many tracking methods perform well when
it is possible to observe the person being tracked at each time
step. However, in realistic environments, people’s trajectories
are often partially occluded. Long periods of occlusion can
lead to a person becoming lost by the tracker and falsely
identified as a different person when they return to view. We
assert that in many situations, this problem can be avoided by
using an improved motion model which gives the tracker a
better idea of where to look for the person when they return
to view.

When people move through familiar environments, they do
not wander according to brownian motion or always continue
to move in the direction that they are currently moving. Yet
many trackers naively make these assumptions in their motion
models. Typically, people in public buildings walk between a
finite number of points of interest (e.g., doors, corridors), often
following set paths that are determined by a combination of
practicality and unwritten social rules. Their motion is goal-
oriented, and if we use that information in our motion model,
we are more likely to successfully track a person despite

periods of occlusion.
Information about the location of goals can be obtained by

clustering a set of recorded trajectories. We take advantage of
the goal-directed nature of this motion and use the goals as a
concise representation of the trajectories. Motion updates are
obtained planning a path from a person’s location to the set
of goals.

The method we propose consists of two steps. In the training
phase, given a set of previously collected trajectories, the
goal locations are fit using an algorithm that approximately
maximizes their likelihood. In the tracking phase, a planner
plans paths from the person’s last observed position to these
goals, and the resulting paths are used in the motion model
of our tracker. We will explain the details of this approach,
suggest when the assumptions on which it relies may and may
not hold, and present results which show improved tracking
performance for an experiment in which a physical robot
tracks real people using a particle filter.

II. RELATED WORK

Most work using Bayes filters for people tracking assumes
a Brownian motion model [1], or a first order motion model
such as would be used with a Kalman filter [2]. Both of
these simple models have limitations. The Brownian model
is extremely conservative and does not attempt to model
the dynamics of human motion. Because all of the motion
is represented as dispersion, the hypotheses become equally
spread out over a broad area when there are no observations.
This is often a poor estimate of the actual distribution over
a person’s possible position because people do not move
randomly. Additionally, the expected distance travelled by a
particle under the Brownian motion model increases as
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is the number of timesteps. This means that the
longer a moving person is unobserved, the less likely the
displacement predicted by Brownian motion is to be accurate.
A first order model of a person’s dynamics is less conservative,
and therefore often more accurate. But it assumes that a
person will continue to move in the direction that they were
last observed moving in. People often turn corners and avoid
obstacles. There is no way to represent those kinds of actions
with a first order model.

More sophisticated models of human motion for tracking
have been proposed. A piecewise-linear gaussian mixture has
been used as the motion model for a person-tracking task using



Wavelan signal strength as the sensor [3]. The model uses a
gaussian to represent the probability of each possible action
in a cell (go forward, go backward, go left, go right, stop)
of a coarse grid over the map of the environment. While this
approach works for Wavelan-based tracking because the high
error in localization necessitates a coarse discretization of the
space, it would be difficult to collect enough data to learn an
accurate model at the fine discretization needed to be useful
for tracking with a more accurate sensor. Also, this motion
model treats future actions as only dependent on the current
location, rather than viewing both as part of a path that is
moving a person towards a chosen destination many steps in
the future.

Another learned motion model is described by Liao et al [4].
They track people using a particle filter with a motion model
that is constrained to move only along the voronoi graph of the
environment. The parameters of this motion model are trained
using the EM algorithm. The voronoi constraint works well
in this case because their goal is to recover high-level motion
behavior (e.g., which rooms a person has visited) using sparse
and noisy sensors rather than to recover a person’s location
with a much metric accuracy. One thing that differentiates
both this approach and the one described above from ours
is that the movements represented in these motion models are
fixed and constrained to a coarse set of possible directions.
By using high level goals and a path planner in the motion
model, the major axes of motion are dependent on a person’s
current location. This allows a greater range of possible motion
directions, which makes the motion model more likely to make
accurate proposals from a variety of locations.

Learning a model of common paths through through a
space was first proposed for service robots by (Bennewitz,
2002). The model used for paths in that paper was a closely-
spaced sequence of waypoints with Gaussian errors. This
model was used to classify which group of trajectories a
tracked trajectory belonged to, but it was not used to improve
the performance of the underlying tracker. Additionally, the
sequence-of-waypoints model is less expressive than the model
we propose here: taking into account the goal-directed nature
of human motion means that each cluster needs far fewer
parameters while predicting motion accurately over a wider
area.

While there is a considerable amount of work on
appearance-based people-tracking, we will not discuss it be-
cause the issues involved are significantly different from the
range-sensor based tracking that is used for our application.

III. TRACKING USING BAYES FILTERS

A. Bayes Filters

The use of Bayes filters (Kalman filters, particle filters,
etc.) for tracking is common. These approaches combine
prior information about the state history with observations to
come to a new estimate of the state. The Markov assumption
allows the current state to represent the entire history, reducing
computational cost.
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normalization constant is a good measure of accuracy for a
bayes filter because it is proportional to the probability of the
next observation given the last state.

The two modeling choices that determine the characteristics
of the filter are the choice of the measurement model, ���#	 � � � � 
 ,
and the motion model, ����� � � � ����� 
 .

While some filters control the complexity of the posterior
distribution by making simplifying assumptions about the
form of the motion and observation models, particle filters
instead approximately represent arbitrarily complex posterior
distributions with sets of state samples, or particles [5]. Particle
filters are especially useful for our application because they
can be used to represent distributions that cannot be expressed
in closed form.

B. Tracking

The primary contribution of our approach is the proposal of
a complex motion model that is trained on prior examples of
people’s movements in an area. Our approach is based on the
assumption that people’s movements through a space can be
represented at a high level as progress towards one of a finite
set of goal locations. Paths from a person’s current location
to these goals (such as can be obtained by a planner) give use
information about that person’s possible future position. Each
sample, or particle, in our filter represents a hypothesis about
the person’s current state. The state is made up of the person’s
location and which goal they are moving towards. We assume
that a particle’s goal is static and cannot change as long as
that hypothesis exists.

The likelihood that a person will approach a particular goal
location can be easily estimated from the data during the
training phase. This prior distribution over possible goals is
represented by the percentage of particles that have each goal
in their state when the filter is initialized.

The motion update propagates a hypothesis along the path
returned by the planner to its goal. First, the line segment
of the plan that is closest to the location of the hypothesis,(*)�+-,/.�+-021

, is determined, and the direction of that line segment
is found. The hypothesis is then displaced in that direction
by a distance randomly sampled from a gaussian,

�
, and then

a small amount of gaussian noise is added to that location,��354 ��6
. In our implementation, 7�89 was 64 times greater than7�8: .



Fig. 1. Tracking a person during the occluded part of their path using
the Brownian motion model (left) and the plan-based motion model (right).
From top to bottom: just after losing sight of the person; the Brownian filter’s
variance starts to grow; the Brownian filter fails to predict that the person is
about to emerge from occlusion; the Brownian filter’s variance remains higher
for several steps after reacquiring the person.
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There are a couple of issues to note when implementing
the plan-based motion model. The model will only perform
well when the set of goals provide a reasonable “coverage”

Fig. 2. The optimization process. The large circles are the current best
goals and the small circles represent proposed goals. The clusters of training
trajectories are shown with lines drawn between points at which the person
was observable. A plan is shown as a series of line segments with x’s at their
endpoints. Obstacles in the map are shown in black.

of the paths people follow in the space. This motion model
makes stronger assumptions about a person’s dynamics than
a Brownian motion model. If these assumptions are incorrect,
tracking performance could be worse rather than better, though
the effects might not be apparent unless there are periods of
occlusion of the person being tracked. It is therefore reasonable
to expect the motion model to perform well only in areas
for which training examples are available. Also, because a
path planner is used, we implicitly assume that people follow
reasonably efficient paths to their goals. If this is not the case
(for example, if people change direction to avoid an obstacle
that cannot be detected by the laser scanner), the motion model
will yield poor predictions.

IV. LEARNING GOALS

In order to learn the goals, it is necessary to collect training
data. The training data consists of trajectories of people mov-
ing through the area that the robot will be tracking in. These
trajectories are a series of point estimates of a person’s location
at the time of each laser scan. We obtained the trajectories
by using the Brownian motion model tracker on pre-recorded
laser data. These trajectories are then clustered into groups,
with each group following roughly the same path. For the
purposes of our experiment the trajectories were clustered by
hand, but clusters could also be obtained using the method
described in [6]. We also require an occupancy grid map of the
area, which is used by the tracker to recognize expected laser
readings and by the path planner to determine what locations
are impassable.

The goal locations are initialized randomly. The planner
returns a plan from the start of a trajectory to the proposed goal
location for its cluster. We used an MDP planner (described in



[7]), but the choice of path planner is not of great importance.
Each trajectory in a cluster is scored according to the distance
between each of its points and the nearest line segment of the
path returned by the planner. The constraint is added that it is
not possible to “go backwards” along the path returned by the
plan: a point cannot be compared to any line segments earlier
in the plan than the segment that the point before it in the
trajectory was compared to. Figure 2 shows a snapshot of the
learning process using the training data from our experiment.

The score for the trajectory is the sum of the squared
distances between the points and the plan, normalized by
the number of points. The distance is normalized so that
trajectories which contain more sample points (because the
person was moving more slowly) will not be weighed more
heavily than other trajectories. The score of a cluster is the sum
of the scores of its trajectories. Because it is difficult to find
the gradient of the plan with respect to changes in the goal,
the optimization proceeds by hillclimbing. New goal positions
are proposed by adding a 2D gaussian offset to the best cluster
goal found so far. Each time that the score is improved, the
new goal location is accepted and the variance of the next
proposed offset is reduced.

Computing the likelihood of a particular goal location
exactly would involve integrating the position of the points
along the path out of the posterior. However, this computation
is difficult to do, and we don’t believe that it would change the
solution enough to significantly improve the performance of
our tracking algorithm. So, we perform three approximations
which greatly simplify our computation. First, we make a
most-likely-point approximation to the integral: instead of
optimizing
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where � : are all the data points of the n trajectories in the
training set,

� :
are the points along the planned path that each

data point corresponds to, and � is the set of goal locations.
Second, because the maximization over hidden variables

would be time-consuming to solve exactly, we make a simple
myopic approximation to the most likely path: we project
each observation onto the path, then move it forward if it
falls behind the previous one. Finally, after setting the hidden
variables we neglect the term

� � � : ��� : 
 since it is usually
nearly constant. These approximations lead to a optimization
procedure that quickly and cheaply finds goal locations that
are adequate for our purposes.

V. EXPERIMENT

To verify the quality of our approach, we constructed a
simple yet realistic test case. We set up an environment in
which people start from one location and then choose to pass
through one of two doors. A robot observes their movements
using a laser scanner, but the part of the room immediately

before the doors is blocked from its view (Figure 2). Seventeen
trajectories of were collected, with eight trajectories passing
through the left door and nine through the right. They were
divided into eleven training examples that were used to learn
the goal locations and six examples (three left, three right) that
were used as the test set. We compared the performance of a
particle filter with a Brownian motion model to our plan-based
motion model. Each particle filter used 600 particles to track a
person. Our motion model performed well with fewer particles,
but that number was necessary to ensure good coverage of the
unobservable areas by the Brownian motion model when the
view of the person was occluded.

A. Computational Considerations

The learning process for the goals converges quickly for our
experiment, usually within around 200 iterations, which takes
under a minute to run with a visualization of the optimization
process on a 700 megahertz Pentium III. We determined the
convergence of the optimization manually by inspection. But it
would be simple to stop the process automatically by setting a
threshold on the number of iterations without improvement or
on a value of the score for goal locations that is an acceptable
amount of error. The speed of the optimization we achieved by
making simplifying assumptions is likely to be more beneficial
for more complex environments with a larger number of goals
and trajectories. In these situations, an EM-based optimization
algorithm would become very computationally expensive. We
also expect that random restarts might be needed to achieve
good solution quality with more complex training data, though
they were unnecessary for our experiment.

Both versions of the particle filter implemented for the
experiment in this paper run in real time with laser updates
occurring at the rate of 12 Hz. The plan-based motion update
runs approximately twice as slow as the Brownian motion
update on a filter with the same number of particles. But it is
important to note that its error (as described in Section VI) is
much smaller. In order to obtain the same error rate as with
the Brownian motion model, the tracker using the plan-based
model could use fewer particles. In fact, using half as many
particles with the plan-based tracker yields lower error than
the Brownian motion based tracker with 600 particles, so the
plan-based motion model is faster for the same performance
because it can track with fewer particles.

Considering only the time needed for the motion update
ignores an aspect of the plan-based motion model that also
adds to its execution time, the time it takes to plan. In our
implementation of the algorithm, we were able to replan to
all the goals each time a person was observed. However, this
may not be possible as the number of goals or the complexity
of paths increases. In this case, plans could be updated less
frequently, or a plan or representative set of plans could be
computed and cached prior to tracking.

VI. RESULTS

In Figure III-B, the filters are shown at various stages of
tracking a person going through the right doorway. The figures
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Fig. 3. The particle filter normalization constants at each timestep of a
trajectory. The part of the graph in the middle with zero weight is the period
of time when the person was occluded by the wall.
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Fig. 4. The particle filter normalization constants. The first group of bars is
the average over all timesteps when the person was observed, except the
first 2 time steps after the person was reacquired. The second group is
the average over the 2 time steps after reacquisition. Higher normalization
constants correspond to smaller tracking error.

show how the plan-based motion model focuses the particles
in the more likely parts of the space. In the pictures of the
plan-based filter, the shade of a particle indicates which goal
its motion is determined by.

On average, our motion model performed better overall than
the Brownian motion model. The advantage of our approach is
most pronounced for the first two timesteps when a person is
observed again after the period of occlusion. This is because
the motion models have had many timesteps to project the
particles forward in time without being “corrected” by the
perception update. It can be seen in Figure 1 that our motion
model focuses the particles in the locations where the person
is most likely to actually be while they are occluded, unlike
the Brownian motion model, which just disperses its particles
evenly over the space.

We measured the performance by analyzing the differences
between the normalization constants, described in Section III-
A, for each filter at each timestep. The normalization constant
was Figure VI shows the normalization constants of each filter
plotted over the duration of a single example trajectory. These
weights are a measure of the performance of the filter: they

are estimates of the probability of the most recent observation
given the previous state, so filters that do better at predicting
actual observations will produce larger weights.

The results of the experiment are summarized in Figure 4.
The first group of bars shows the average normalization
constant for the plan-based and Brownian motion model and
the average difference between the normalization constants
of the two filters. The averages were computed over each
timestep that a person was observed, except for the first two
timesteps when he or she was reacquired after the period of
occlusion. The second group of bars shows the same averages
for only the first two timesteps when a person had been
reaccquired. A matched t-test was performed on the averages
for each group. The differences in the means of both groups
were determined to be significant, at ������� � � ����� for the
first group and ���
	 � � ��� for the second group. A 95%
confidence interval on the difference of the means is shown
on the graph. These results show that the plan-based motion
model performs significantly better than the brownian motion
model, both overall and immediately after reacquisition. The
results suggest that the benefit in performance is larger right
after reacquisition, but this comparison is not statistically
significant.

VII. CONCLUSION

In this paper, we proposed a motion model for people
tracking that is inspired by the goal-oriented nature of people’s
movement. This motion model involves a learning component
that allows it to use information about people’s common
trajectories in a specific environment to learn goal locations.
The goal locations are optimized so that paths produced by a
planner agree well with the training trajectories. Paths planned
from the location of a person being tracked to these goals are
used by the motion update to project the hypotheses forward
in time. We compared the performance of our motion model
to a simple Brownian motion model within the framework
of a particle filter based people tracker. Experimental results
verified that our motion model performed better, creating a
more realistic distribution over positions.
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