Acquiring Knowledge From Encyclopedic Texts

Fernando Gomez, Richard Hull, and Carlos Segami
Department of Computer Science
University of Central Florida
Orlando, FL 32816, USA
gomez@cs.ucf.edu

Abstract
A computational model for the acquisition of knowledge from encyclopedic texts is described. The model has been implemented in a program, called SNOWY, that reads unedited texts from The World Book Encyclopedia, and acquires new concepts and conceptual relations about topics dealing with the dietary habits of animals, their classifications and habitats. The program is also able to answer an ample set of questions about the knowledge that it has acquired. This paper describes the essential components of this model, namely semantic interpretation, inferences and representation, and ends with an evaluation of the performance of the program, a sample of the questions that it is able to answer, and its relation to other programs of similar nature.

Subject Areas: knowledge acquisition

1This research has been funded by NASA-KSC Contract NAG-10-0120
1 Introduction

We present an approach to the acquisition of knowledge from encyclopedic texts. The goal of this research is to build a knowledge base about a given topic by reading an encyclopedic article. Expert systems could use this database to tap in for pieces of knowledge, or a user could directly query the database for specific answers. Then, two possible applications could be derived from our research: (a) the automatic construction of databases from encyclopedic texts for problem-solvers and (b) querying an encyclopedia in natural language. The idea is to build a database from an encyclopedic text on the fly. Then, if a user asks the question, say, *Which bears eat seals?* the system would reply by saying something like “I don’t know. But, wait a minute, I am going to read this article and let you know.” In the process of reading the article, the system builds a small knowledge base about bears and calls the question-answering system to answer any question posed by an expert system or a human. The long-term goal of our research is to read an entire article on, say bears, and to build a knowledge base about bears. Since this goal requires dealing with an extraordinary number of research issues, we have concentrated on a series of topics about animals, including diet, habitat, and classification. A skimmer scans the article for sentences relevant to a given topic and passes these sentences to the understanding system, called SNOWY, for complete parsing, interpretation, concept formation, concept recognition and integration in long-term memory (LTM). But, if, in the process of learning about the dietary habits of, say beetles, the program is told that they cultivate fungi, and the program is able to interpret that sentence, that knowledge will also be integrated in LTM. Consequently, our approach to understanding expository texts is a bottom-up approach in which final knowledge representation structures are built from the logical form of the sentences, without intervening scriptal or frame knowledge about the topic. Hence, our system does not start with a frame containing the main slots to be filled for a topic, say “diet,” as in recent MUC projects [21, 22], but rather it will build everything relevant to diet from the output of the interpretation phase. Then, when
we are talking about the topic, it will not make any difference if the sentences refer to what the animals eat, or what eats them. Every aspect dealing with the general idea of ingest can be analyzed and properly integrated into memory. Our corpora for testing our ideas has been The World Book Encyclopedia [25], which is one or two levels less complex than the Collier’s Encyclopedia, which, in turn, is less complex than the Encyclopaedia Britannica.

2 Interpretation

In order for the integration component to integrate a concept in LTM, a successful parse and interpretation needs to be produced for a sentence or at least for one of its clauses. The input to the interpretation phase is built by a top-down, lexical-driven parser[4], which parses the sentences directly into syntactic cases. Prepositional phrases are left unattached inside the structure built by the parser. It is up to the interpreter to attach them, identify their meaning and the thematic roles that they may stand for. The parser is a deterministic machine, containing mechanisms for minimizing the need for backing up. The average amount of time in parsing a sentence from the encyclopedia is about one second. The parser has presently a lexicon of about 35,000 words. The rate of success of producing a full and correct parse of a sentence is, as of this writing, 71% for this Encyclopedia (see below for a detailed discussion of test results and machine used). The parser begins the parsing of a sentence on a syntactic basis until the meaning of the verb is recognized. The rules that determine the meaning of the verbs, called VM rules, are classified as subj-rules, verb-rules, obj-rules, io-rules, pred-rules, prep-rules, and end-of-clause-rules. These rules are activated when the verb, a syntactic case or a prepositional phrase has been parsed, or when the end of the clause has been reached, respectively. In most cases, the antecedents of these rules contain selectional restrictions which determine whether the interpretation of the syntactic constituent is a subclass of some concept in SNOWY’s LTM ontology. If during an examination of LTM the selectional restriction is passed, the consequent(s) of the VM rule establish the proper
<table>
<thead>
<tr>
<th>ACTION</th>
<th>INGEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>(is-a (relation))</td>
<td>(is-a (action))</td>
</tr>
<tr>
<td>(subj (thing (actor))) (obj (thing (theme)))</td>
<td>(subj (animate (actor)))</td>
</tr>
<tr>
<td>(adverb)</td>
<td>(prep)</td>
</tr>
<tr>
<td>(time (at-time))</td>
<td>(with (ltm-ctgy</td>
</tr>
<tr>
<td>(negation (negation)) (frequency (frequency))</td>
<td>utensil (instrument (strong)))</td>
</tr>
<tr>
<td>......</td>
<td>(human (accompany (strong)))</td>
</tr>
<tr>
<td>(prep)</td>
<td>(physical-thing)</td>
</tr>
<tr>
<td>(in (ltm-ctgy (physical-thing (at-loc (weak)))</td>
<td>(co-theme (weak))))</td>
</tr>
<tr>
<td>(time-unit (at-time (strong))))</td>
<td>(obj (physical-thing (theme))))</td>
</tr>
<tr>
<td>(at (ltm-ctgy (physical-thing (at-loc (strong))))</td>
<td>(DRINK</td>
</tr>
<tr>
<td>(time-unit (at-time (strong))))</td>
<td>(is-a (ingest))</td>
</tr>
<tr>
<td>(during (ltm-ctgy (physical-thing (at-time (strong))))</td>
<td>(obj (liquid (theme))))</td>
</tr>
<tr>
<td>(with (ltm-ctgy (animate-body-part (instrument (strong))))</td>
<td></td>
</tr>
<tr>
<td>(state (state (strong))))</td>
<td></td>
</tr>
<tr>
<td>......</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1: Organization of the Verbal Concepts

meaning or verbal concept for the verb. If no rules fire, the parser inserts the syntactic case or prepositional phrase in the structure being built and continues parsing. These rules, of which there are just over 300, incorporate a considerable degree of ambiguity procrastination [16]. For instance, rather than writing an obj-rule for determining the meaning of “take” saying: If \(LTM(obj) \) is-a medicament then meaning-of take is ingest, which will immediately jump to determine the meaning of “take” in Peter took an aspirin when the obj is parsed, it is better to write that rule as an end-of-clause rule. This will avoid making the wrong assumption about the meaning of the verb in Peter took an aspirin to Mary.

When the verbal concept has been identified, the syntactic cases and prepositional phrases already identified by the parser and any subsequent constituents are interpreted by matching them against the representation of the verbal concept. Verbal concepts are not reduced to a small set of primitives; on the contrary they are organized into a classification hierarchy containing the most general actions near the root node and the most specific at the bottom. Figure 1 contains simplified examples of the root node action, the subconcept ingest, and one subconcept of ingest, drink. The entry subj in the node ingest means that the actor of
ingest is an animate, and that this is indicated syntactically by the case subj. The entries for the preposition “with” mean that if the object of the PP is a utensil, then the case expressed by the preposition is the instrument case; if the object of the preposition is a human, then the case is the accompany case, etc. The entries strong and weak indicate whether the verbal concept claims that preposition strongly or weakly, respectively. This information is used by the interpreter to attach PPs. The drink node has only one entry for the case theme. The others are inherited from the nodes, ingest and action. If the context to be understood requires a more detailed understanding of how animals drink, distinct from how humans drink, then the concept drink may be split into the concepts human-drink and animal-drink. Consequently, the specification of the hierarchy depends on the domain knowledge to be acquired. The algorithm that matches syntactic cases or prepositional phrases to the representation of the verbal concept searches the hierarchy in a bottom-up fashion. The search ends with success or failure, if the LTM entry in the verbal concept is true or false, respectively. Hence, entries in subconcepts override the same entries in superconcepts. The node action provides an excellent way to handle situations not contemplated in subconcepts by defaulting them to those in the action root node.

Figure 2 depicts the output of the interpreter. The slot subject contains the output of the parser marked by the slot PARSE, the interpretation of the noun phrase marked by INTERP, and the thematic role marked by SEMANTIC-ROLE. The entry Q within the INTERP slot indicates the quantifier for that case. The entries for the slot PREP, contain, in addition to the PARSE slot, the slot ATTACH-TO indicating which concept in the parse structure to attach that constituent to, and the meaning of the preposition indicated, in this case, by the subslot LOCATION-R. The quantifier for “monkey” is a question mark, because its value is not indicated in the text. In [6], the reader may find a detailed discussion of the interpretation issues presented in this session.
(REPS (VRS (G233)))
 SUBJ ((PARSER ((DFART THE) (VERB CROWNED) (NOUN EAGLE)))
 (REF (DEFINITE)) (PLURAL NIL)
 (INTERP (CROWNED-EAGLE (Q (ALL)))) (SEMANTIC-ROLE (ACTOR)))
PREP ((PARSE (OF ((PN AFRICA)))) (INTERP (AFRICA (Q (CONSTANT)))))
 (ATTACH-TO (CROWNED-EAGLE (LOCATION-R (AFRICA)))))
VERB ((MAIN-VERB EAT EATS) (TENSE PRES) (NUM SING) (PRIM (INGEST)))
OBJ ((PARSE ((NOUN MONKEYS))) (PLURAL T)) (INTERP (MONKEY (Q (?))))
 (SEMANTIC-ROLE (THEME))))
Output for Structure G233:
(SUBJ ((PARSE ((DFART THE) (VERB CROWNED) (NOUN EAGLE)))
 (REF (DEFINITE)) (PLURAL NIL)
 (INTERP (CROWNED-EAGLE (Q (ALL)))) (SEMANTIC-ROLE (ACTOR)))
VERB ((MAIN-VERB LIVE LIVES) (TENSE PRES) (NUM SING) (PRIM (INHABIT)))
PREP ((PARSE (IN ((DFART THE) (NOUN RAIN) (NOUN FOREST))))
 (REF (DEFINITE)) (PLURAL NIL)
 (INTERP (RAIN-FOREST (Q (?)))) (SEMANTIC-ROLE (AT-LOC))
 (ATTACH-TO (VERB (STRONGLY))))

Figure 2: Output of the parser and interpreter for the sentence The crowned eagle of Africa lives in the rain forests and eats monkeys.

3 Inferences

If the knowledge about dietary habits of animals were indicated in the texts by using “eat” and its cognates, the task of acquiring this knowledge would be rather simple. But, the fact is that an encyclopedia article may refer to the dietary habits in a variety of manners. Figure 3 contains a hierarchy about the diet topic. The verbs that trigger these verbal concepts are indicated by writing [verb]. The verb “dig out” triggers the action dig-r. Those verbal concepts from which an ingest relation is inferred are indicated by writing an asterisk by its side. The representation of dig-r is:

(dig-r (is-a (action))
 (subj (animal (actor)) (machine (actor))) (obj (physical-thing (theme)))
 (add ((actor (actor)) (pr (ingest)) (theme (theme))])
Figure 3: Conceptual Verbs Organizing the Topic

The representation of *dig-r* is similar to the previous verbal concepts, except for the entry that says *addition-rule*. This is an inference rule saying that if the *actor* of this action is an animal and the *theme* is an animate, then add to LTM the relation saying that the *actor* ingests the *theme*. This rule permits the acquisition of the fact that bears eat squirrels and mice from the sentence *A grizzly has long, curved claws that it uses chiefly to dig out ground squirrels and mice.* Similar inference rules are stored in the other actions marked with an asterisk. Then, if the system reads the sentence *Bears are fond of honey*, it will infer that they eat honey. The inference rules are also inherited from the nodes representing the actions in the hierarchy. Hence, if the verbal concept *animal-fish*, shown in Figure 3, was suggested for the sentence *Owls have been known to fish in shallow creeks*, we would inherit an addition rule from the verbal concept *animal-hunt* which would then infer an ingest relation.

The hierarchy is also helpful in avoiding incorrect inferences. Sentences discussing humans hunting animals do not automatically imply ingest relations, especially when an explicit purpose is given which is not ingest-related. For example in *People hunt some kinds of seals*
for their soft fur, it is unlikely that the people mentioned will eat those seals. Therefore, we have separate verbal concepts for hunt relations where humans are the actors, whose inference rules do not suggest ingest relations, except in cases like Eskimos hunt polar bears for food. Furthermore, addition rules typically have constraints within their antecedents to prevent inappropriate inferences, i.e., we would not want to infer an ingest relation when processing the sentence Tigers search for warm places to sleep during the day, and a constraint on the theme of “search for” to be at least animate rejects the inference.

4 Interpreting Noun Phrases and Restrictive Modifiers

Detecting classification relations in the text becomes a must, not only if questions of the type Which owls eat fish?, or Which eagles eat hyraxes? are to be answered, but also for the acquisition of the knowledge in sentences like The prey of polar bears consists of seals, or The diet of bears consists of nuts, berries and small rodents. In order to achieve this, complex noun groups and restrictive modifiers are represented by the noun group interpreter as classification hierarchies. One of the senses of “diet” is represented as: $X_1 \ (cf \ (is-a \ (food) \ R1))$, where $R1$ is the relation ingest with actor = animal, and theme = food. Then, “the diet of bears” is represented as the concept $X_2 \ (cf \ (is-a \ (food) \ R2))$, where $R2$ is the relation ingest with actor = bear, and theme = food. The slot cf contains the necessary and sufficient conditions that define the concept X_2. Then, the meaning of X_2 is:

$$\forall(x)(X_2(x) \iff Food(x) \land R2(x))$$

The same interpretation is given to restrictive relative clauses. The phrase “eagles that live in the rain forests” is represented as $X_3 \ (cf \ (is-a \ (eagle) \ R3))$, where $R3$ is the relation “live in the rain forests.” Once these structures are built by the interpreter, a classifier that is a component of the integration algorithm integrates these concepts in the proper position in LTM. The interpretation of complex nouns proceeds by attempting to determine
the meaning of pairs of items in the complex noun, utilizing a scheme that combines the items in the complex noun from left to right. For example, in the interpretation of “big red wine bottle” an attempt is made to find a meaning for the terms “big red,” “big wine,” “big bottle,” “red wine,” “red bottle” and “wine bottle.” If one item in the complex noun can be paired (i.e., a meaning can be found) with more than one other item in the complex noun, then the algorithm returns more than one interpretation for the complex noun, and disambiguation routines are activated. In our example, a meaning is found for “big bottle,” “red wine,” “red bottle,” and “wine bottle,” from which the algorithm returns the two possible interpretations:

\[
\begin{align*}
(bottle & \text{ size (big)} \, (color \text{ (red)}) \, \text{(pertain-to (wine))}) \\
(bottle & \text{ size (big)} \, \text{(pertain-to (wine (color (red))))})
\end{align*}
\]

Finding the meaning of terms of the form “item1 item2” reduces to finding a relation that connects the concepts corresponding to “item1” and “item2” in LTM. Consequently, this algorithm as well as the algorithm that finds the meaning of PPs and syntactic cases depends on a \textit{a priori} set of concepts that constitutes the basic ontology of SNOWY. As SNOWY reads, it adds new concepts to this ontology as explained below. Its initial ontology consists of 1243 concepts.

In order to find a semantic relation between two pair of items in a NP, the items or any of their superconcepts must belong to the \textit{a priori} ontology. If the noun group interpreter does not find a semantic relation between two items, the algorithm will hyphenate them. This has been the case for “rain forest,” and “crowned eagle” (see Figure 2). “Rain-forest” is constructed in LTM as a subconcept of “forest.” But, no semantic relation will be built between “rain” and “forest.” However, if the pair of items is “sea mammal,” the algorithm builds \(X3 \ (cf(\text{is-a(mammal)} \ \text{live-in(sea)})\), because “mammal” and “sea” are categorized in LTM as subconcepts of “animate” and “habitat,” respectively. The algorithm will produce the same representation for “sea mammal” and “mammals that live in the sea,” except
for the names of the concepts, which are dummy names with no meaning. The recognizer algorithm is able to tell that the two concepts are the same concept by examining the content of the cf slot, and activating a classifier that analyzes the subsumption relations between a pair of concepts. In [5], the reader may find a detailed discussion of the recognizer algorithm. Note that the algorithm will produce the concept $Xf \ (cf(\text{is-a(lion) live-in(sea)}))$ if the noun group “sea lion” is not in quotation marks or capitalized.

5 Final Knowledge Representation Structures

The input of the interpreter is passed to the formation phase that builds the final knowledge representation structures. These are in turn integrated into LTM upon activating a recognizer algorithm and an integration algorithm both of which make extensive use of a classifier similar to the one reported in [1, 19]. The construction of the final knowledge representation structures is done as follows. The interpretation phase, if successful, has built a relation, and a set of thematic roles for each sentence. Let us call the thematic roles of the relation the entities for that relation. All the n entities of a n-ary relation are represented as objects in our language, and links are created pointing to the representation of the relation, which is represented as a separate structure, called an a-structure. Figure 4 depicts the representation produced from the interpretation of the sentence The crowned eagle of Africa lives in the rain forests and eats monkeys. Five objects have been created; CROWNED-EAGLE, AFRICA, RAIN-FOREST, MONKEY and @X235, which stands for the concept “crowned eagle of Africa.” The relation @A237 represents the ingest relation between the object @X235 and the object MONKEY. The object MONKEY points to this structure by the entry under MONKEY that says ingest%by (@x235 ($more (@a237))))), and the object @X235 also points to this structure by the slot (ingest (monkey ($more (@a237))))). The scope of the quantifiers is from left to right. Then, the meaning of structure @A239 (assuming that the question mark in the quantifier slot of MONKEY stands for “some” as the question-answering assumes) is
CROWNED-EAGLE
(is-a (eagle))

AFRICA
(location-of (@x235 ($more (@a236))))

RAIN-FOREST
(is-a (forest))
(related-to (@a239))

MONKEY
(ingest%by (@x235 ($more (@a237))))

@A235
(cf (is-a (crowned-eagle)) (@a235))
(location-r (africa ($more (@a237))))
(ingest (monkey ($more (@a237))))
(inhabit ($null ($more (@a239))))

@A237
(args (@x235) (monkey))
(pr (ingest))
(actor (@x235 (q (all))))
(theme (monkey (q (?))))
(instance-of (action))

@A239
(instance-of (description))
(args (@x235) (africa))
(pr (inhabit))
(actor (@x235 (q (all))))
(at-loc (rain-forest (q (?)�)))
(instance-of (action))

Figure 4: Formation Structures

\[\forall (x)(@X235(x) \Rightarrow \exists y(MONKEY(y) \land INGEST(x, y))). \]

An a-structure can be linked to other a-structures by slots expressing causality, time, etc., as becomes necessary in the representation of Birds migrate south when it freezes.

6 Results

Table 1 below provides statistics revealing how well the system performed during testing. The system was initially trained on ten articles: bears, beavers, beetles, elephants, frogs, penguins, raccoons, seals, snakes, and tigers. Then, two more articles about sharks and eagles were analyzed to assess our progress. Test texts were chosen randomly by a student selecting a letter of the alphabet and then finding texts about animals within those volumes of the encyclopedia. The letter “B” and the letter “M” were chosen. The texts were then selected from those volumes. In December of 1993, an article about birds was chosen. No component of the system (lexicon, parser, interpreter, etc.) was pre-prepared with information about this article. The lexicon of the parser consisted of 10,000 words. This text was the largest
article that the system had analyzed, containing approximately 1330 sentences and 16,000 words. None of the designers of the system read this article prior to the test. And even if they had read it, it would have been of very little use because the system has reached such complexity that it is not easy to assess how it is going to perform in an article of 1330 sentences.

The first row of Table 1 indicates that 145 sentences were selected from the bird text by a keyword/pattern-based skimmer. Of these 145 sentences, 91 were relevant to the dietary habits domain. A total of 23 relevant sentences were missed, primarily due to keywords or patterns not contemplated. An example of sentence that is relevant but was not selected is *Robins and sparrows, for example, are highly effective against cabbageworms, tomato worms, and leaf beetles.* The parser was able to produce a correct parse for 58 of the 91 relevant sentences (64%), even in cases where the sentence contained unknown words. Among the sentences successfully parsed, the parser encountered some 40 unknown words of which approximately 70% were names of birds, such as “grosbeaks”, “flycatchers”, “titmice”, “thrashers,” etc., and 30% were common words. Of those 58 parsed sentences, 32 (55%) were interpreted correctly. The output for these 32 sentences was then passed to the formation, recognition, and integration phases to be inserted into LTM. Interpretation failures can be attributed to missing VM rules, comparatives, and problems of anaphoric reference.

Later, in April of 1994, three more texts were randomly chosen for testing. A summary of the results for those three tests is also given in Table 1. In this test, the parser ran with a lexicon consisting of about 35,000 words. The improvement of the interpreter was mainly due to new interpretation rules, additions to the hierarchy of verbal concepts, and to the hierarchy of concepts that organize the inferences about the topic.

All of the tests were run on a SPARC Classic Machine executing Allegro Common Lisp. The average time to completely process a selected sentence on this platform was 3.1 seconds. This is a conservative figure because it includes the processing time of the skimmer, i.e., some amount of overhead is necessary for file handling and for determining when a sentence
Table 1: Statistics for the Sentences of the Bird, Bat, Monkey, and Mouse Texts

<table>
<thead>
<tr>
<th></th>
<th>Sel</th>
<th>Rel</th>
<th>Irrel</th>
<th>Miss</th>
<th>Parse</th>
<th>Interp</th>
<th>Concepts</th>
<th>Time*</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bird</td>
<td>145</td>
<td>91</td>
<td>54</td>
<td>23</td>
<td>64%</td>
<td>55%</td>
<td>325</td>
<td>441 secs</td>
<td>12/93</td>
</tr>
<tr>
<td>Bat</td>
<td>27</td>
<td>26</td>
<td>1</td>
<td>9</td>
<td>93%</td>
<td>60%</td>
<td>118</td>
<td>79 secs</td>
<td>4/94</td>
</tr>
<tr>
<td>Monkey</td>
<td>22</td>
<td>8</td>
<td>14</td>
<td>4</td>
<td>73%</td>
<td>75%</td>
<td>72</td>
<td>79 secs</td>
<td>4/94</td>
</tr>
<tr>
<td>Mouse</td>
<td>29</td>
<td>21</td>
<td>8</td>
<td>3</td>
<td>79%</td>
<td>50%</td>
<td>123</td>
<td>93 secs</td>
<td>4/94</td>
</tr>
</tbody>
</table>

* this time includes skimming, parsing, interpreting, forming, and integrating on a SPARC Classic machine (microSPARC 50MHz CPU).

<table>
<thead>
<tr>
<th></th>
<th>Bird</th>
<th>Bat</th>
<th>Monkey</th>
<th>Mouse</th>
<th>Combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selected Sentences</td>
<td>145</td>
<td>27</td>
<td>22</td>
<td>29</td>
<td>223</td>
</tr>
<tr>
<td>Average Words/Sentence</td>
<td>17.1</td>
<td>11.6</td>
<td>16.8</td>
<td>13.7</td>
<td>16.0</td>
</tr>
<tr>
<td>Longest Sentence</td>
<td>35</td>
<td>21</td>
<td>27</td>
<td>26</td>
<td>35</td>
</tr>
</tbody>
</table>

is irrelevant. Therefore, the average time for processing a sentence is actually less than 3.1 seconds.

The following is a list of natural language questions posed to the system after reading the bird, bat, and monkey articles and the contents of the system-generated answers. Note that the system output has been altered superficially for the sake of brevity. In answering the questions, the system uses classification-based reasoning, not theorem proving. Many complex chains of inferences can be obtained by keeping memory organized in a principled manner. In those cases in which a question asks about a concept that does not exist in LTM, the classifier is activated to place that concept in LTM and obtain an answer. See [7] for a detailed discussion of all these issues and the theorems proving the soundness of the inference algorithms.

What do birds eat? sapsucker ingest tree-sap; hummingbird ingest nectar; duck ingest plant-matter, grass, seaweed; louisiana-water-thrush ingest water-insect; young-bird ingest earthworm, insect, small animal;

Which birds eat nectar? hummingbird ingest nectar

What kinds of insect eaters are there? chickadee, creeper, flycatcher, kinglet, swallow, swift,
thrasher, titmouse, vireo, warbler, woodpecker, owl

What is gravel? I don’t know, but I know that: bird ingest gravel < related-to > bird

assist grinding-process

Do most cactus dwellers eat insects? yes

What kills birds? eagle is a bird, and hunters and trappers kill eagles; osprey is a bird, and hunters and trappers kill osprey

When do most birds search for food? at-time day

Do birds help people? yes, bird help farmer

How do birds help farmers? bird ingest < insect which ingest crop >; bird ingest weed-seed

Do bats eat blood? yes, some bat eat blood because vampire-bat is a bat and vampire-bat ingest blood

How much blood do vampire bats eat? vampire-bat ingest blood quantity 1 tablespoon *frequency* day

Do vampire bats attack human beings? yes, vampire bat harm human *frequency* sometimes

Do monkeys have enemies? yes, some monkey has-enemy cheetah hyena jackal leopard lion because < monkeys inhabit at-loc ground > has-enemy cheetah hyena jackal leopard lion

7 Related Work

In [20], frame-like structures, KL-ONE structures in fact, are also used to guide semantic interpretation in an application domain. However, the overall approach to the interpretation task presented here differs from that work. In approaching the problem of unrestricted texts, we agree with those researchers [10, 8] who think that it is possible to build correct parses and interpretations for real-world texts. In fact, it is hard for us to see how statistical methods [15, 3] could be used for building knowledge-bases with sufficient expressive power to correctly answer questions posed by expert systems or human users. We think that the same critique applies to skimmers [14], but for very different reasons. In order to guarantee the
correctness of the knowledge-base built, every element in the sentence needs to be interpreted. For instance, if the adverb “mostly” is not interpreted in the sentence *These owls eat mostly rodents*, the integrity of the knowledge-base built is not going to suffer greatly. But, if we are talking about the adverb “rarely” in the sentence *These owls rarely eat rodents*, the situation becomes much more serious, as we found out.

This work has advanced a new approach to semantic interpretation that occupies a middle ground between those approaches that rely heavily on the parser for building structures and attaching PPs, subordinate clauses, etc. [8, 11, 23] and semantic-centered approaches [17, 2, 18, 24]. Our parser delegates all the burden of dealing with structural ambiguity (attachment of PPs, relative clauses, subordinate clauses, etc.) to the interpreter. That is one of the reasons why it is so fast. The interpreter has a very sophisticated algorithm that uses the information built in the verbal concepts in order to attach PPs. Yet, if the parser does not build a parse, albeit a shallow one, the interpreter will not know what to do. Moreover, the interpreter does not question the parser when it says this constituent is an *obj*, or *subj*, or a *time-np*, etc. This is a situation that we are not happy about, because the parser identifies some constituents incorrectly, especially the *time-np*. We are studying mechanisms under which the interpreter will *override* the parser and will get it out of trouble in processing very complex sentences [13, 12].

8 Conclusions

We have presented a method for the acquisition of knowledge from encyclopedic texts. The method depends on understanding what is being read, which in turn depends on: (1) providing a successful parse and interpretation for a sentence, (2) building final knowledge representation structures from the logical form of the sentence, which involves creating new concepts and relations as the system is reading, and (3) integrating in LTM those concepts and relations that the recognizer algorithm fails to recognize, which in many cases involves
the reorganization of concepts in LTM.

The results that are reported in this paper are very encouraging, because a high percentage of the failures are due to some incomplete implementations of some aspects of the system. For instance, in dealing with anaphora we have incorporated in our system some of the ideas reported in [9, 11], but our work is clearly insufficient in that regard. A major hole in the interpreter, as of this writing, is that it does not interpret comparatives, except very simple ones like quantifiers, e.g., “more than 2.” The interpreter needs to have mechanisms in place to recover the elliptical elements in comparatives, which in many cases require solving extrasentential reference, e.g., The golden eagle defends a territory of about 20 to 60 square miles. The bald eagle holds a smaller territory. The skimmer uses very rudimentary techniques, and there is a lot of room for improvement here. In any case, this has not been a major concern of this research. Moreover, because the system is so incredibly fast, if the skimmer overgenerates, it is not much of a problem. An aspect related to the skimmer that we have no space to discuss is that it became necessary to build an algorithm to recognize subclasses of the class of animals being searched for every question. For instance, if the question is Do sharks eat plankton, this algorithm analyzes every sentence in the encyclopedic article, before being passed to the skimmer, searching for NPs denoting subclasses of sharks. This is necessary because the author may introduce the concept “Mako sharks” in a context unrelated to the relation ingest, and consequently, the skimmer is not going to select this sentence. Then, if the author later on says Makos feed on other fish, including herring, mackerel, and swordfish, the system has no way to relate “Mako” to sharks, missing the fact that sharks feed on herring, mackerel, and swordfish. The parser has improved 10% over the test conducted in December of 1993. In late April, we tested the parser on 1500 sentences and the rate of success was 71%. However, some sentences are still not parsed because some subcategorizations of verbs are wrong or incomplete, or the phrasal lexicon is incomplete. We are confident that the parser may reach a plateau at 85% or 90% for this Encyclopedia. The remaining 10% or 15% may require considerable help from the interpreter to be parsed.
References

