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ABSTRACT
Motivation: The rapid accumulation of biological network data
translates into an urgent need for computational methods for
graph pattern mining. One important problem is to identify
recurrent patterns across multiple networks to discover bio-
logical modules. However, existing algorithms for frequent
pattern mining become very costly in time and space as the
pattern sizes and network numbers increase. Currently, no effi-
cient algorithm is available for mining recurrent patterns across
large collections of genome-wide networks.
Results: We developed a novel algorithm, CODENSE, to
efficiently mine frequent coherent dense subgraphs across
large numbers of massive graphs. Compared with previous
methods, our approach is scalable in the number and size of
the input graphs and adjustable in terms of exact or approxim-
ate pattern mining. Applying CODENSE to 39 co-expression
networks derived from microarray datasets, we discovered a
large number of functionally homogeneous clusters and made
functional predictions for 169 uncharacterized yeast genes.
Availability: http://zhoulab.usc.edu/CODENSE/
Contact: xjzhou@usc.edu

1 INTRODUCTION
The recent development of high-throughput technologies
provides a range of opportunities to systematically character-
ize diverse types of biological networks. ‘Network Biology’
has been an emerging field in biology. The variety of biological
networks can be classified into two categories: (1) phys-
ical networks, which represent physical interactions among
molecules, e.g. protein-interaction, protein–DNA interaction
and metabolic reactions and (2) conceptual networks, which
represent functional associations of molecules derived from
genomic data, e.g. co-expression relationships extracted from
microarray data and genetic interactions obtained from syn-
thetic lethality experiments. While the physical network data
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are as yet very limited in size, the large amount of microar-
ray data allows us to infer conceptual functional associations
of genes under various conditions for many model organisms,
thus providing valuable information to study the functions and
the dynamics of biological systems.

Studying the building principles of biological networks
could potentially revolutionize our view of biology and dis-
ease pathologies (Barabasi and Oltvai, 2004). The popular
clustering approach can draw densely connected modules
from biological networks, which are often biologically mean-
ingful, e.g. a dense protein interaction subnetwork may
correspond to a protein complex (Bader and Hogue, 2003;
Spirin and Mirny, 2003), and a dense co-expression net-
work may represent a tight co-expression cluster (Sharan
and Shamir, 2000). On account of the noisy nature of high-
throughput data, a significant number of spurious edges exist
in biological networks, which may lead to the discovery of
false patterns. Since biological modules are expected to be
active across multiple conditions, we can easily filter out spuri-
ous edges by mining frequent patterns in multiple biological
networks simultaneously. A straightforward approach is to
aggregate these networks together and identify dense sub-
graphs in the aggregated graph. However, it could result in
false dense subgraphs that may not occur frequently in the
original networks. Figure 1a illustrates such an example with
a cartoon of six graphs. If we simply add these graphs together
to construct a summary graph, we may find a dense subgraph
comprising verticesa,b, c andd. Unfortunately, this subgraph
is neither dense nor frequent in the original graphs.

A potential solution to the false pattern problem is mining
frequent subgraphs directly. A subgraph is frequent if it occurs
multiple times in a set of graphs. Frequent subgraph discovery,
in general, is considered a hard problem. However, biological
networks can often be modeled as a special class of graph
where each gene occurs once and only once in a graph. That
means, our graph has distinct node labels, and we do not have
the ‘subgraph isomorphism problem’ which is NP-hard and so
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Fig. 1. (a) Given six graphs with the same vertex set but different edge sets, we construct a summary graph by adding these six graphs together
and by deleting edges that occur less than three times in the graphs. The dense subgraph in the summary graph{a,b, c,d} does not actually
occur in any original graph. (b) The verticese andf are shared by cliques{a,b, c,d, e,f } and{e,f ,h, i}; they can be assigned to both cliques
only by approaches that are able to detect overlapping dense subgraphs (cliques are the densest subgraphs).

Fig. 2. Shown are six graphs with the same vertex set but different edge sets. The bold subgraph{c–e, c–f , c–h,f –e,f –h, e–h, e–g,
g–h,h–d,g–d} occurs in three of the six graphs (graphs 1, 3, and 6). However, the vertices/edges of this subgraph may not be tightly
associated in their occurrence, because one large component, the subgraph{c–e, c–f , c–h,f –e,f –h, e–h} occurs in every network.

far, constitutes the bottleneck of subgraph frequency counting.
We term such graphs relation graphs. Recently, we and others
have designed efficient approaches to identify frequent sub-
graphs across multiple relation networks by decomposing the
networks into smaller pieces and applying pattern expansion
techniques (Kuramochi and Karypis, 2004; Yanet al., 2005)
or by performing frequent set mining with subsequent con-
nectivity checking (Koyuturket al., 2004). However, these
approaches encounter scalability and interpretability issues
when being applied to massive biological networks: (1) In
both approaches we tested, the time and memory requirements
increase exponentially with increasing size of patterns and
increasing number of networks. The number of frequent dense
subgraphs is explosive when there are very large frequent
dense subgraphs, e.g. subgraphs with hundreds of edges. (2)
A frequent dense subgraph may not represent a tight asso-
ciation among its nodes. Figure 2 shows a sample network
dataset. Verticese, c, f, h, d andg form a frequent dense sub-
graph. However, biologically it is more interesting to divide
this subgraph into two modules, one comprisinge, c,f and
h; the other comprisingh,d,g ande since these two mod-
ules have different occurrences throughout this graph set (for
details refer to the figure caption). As one can see, frequent
dense subgraphs may not capture accurate information for the
discovery of biological modules.

In this paper, we address the two aforementioned issues
and develop a novel algorithm, called ‘CODENSE’, to mine
coherentdense subgraphs, a concept having better interpretab-
ility than frequent graph. All edges in a coherent subgraph
should exhibit correlated occurrences in the whole graph set.
We also term this kind of subgraph ‘network module’. Accord-
ing to the definition of coherent dense subgraph, we are able to
distinguish the two modules shown in Figure 2. Moreover, the
design of CODENSE can solve the scalability issue. Instead
of mining each biological network individually, CODENSE
compresses the networks into two metagraphs and performs
clustering in these two graphs only. Thus, CODENSE can
handle any large number of networks. Using CODENSE,
we can successfully identify high-quality network modules
within limited time and memory.

As a side product, CODENSE also provides a solution to
a graph mining problem—discovery of overlapping graph
clusters. It is known that under different conditions, one
gene may serve different roles and be involved in different
functional groups (Gasch and Eisen, 2002), thus identify-
ing overlapping clusters is important in biological applic-
ations. However, most graph clustering algorithms follow
the methodology of graph partitioning (Spirin and Mirny,
2003; Van Dongen, 2000); they usually cannot identify over-
lapping clusters. For example, in Figure 1b, two cliques
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{a,b, c,d, e,f } and {e,f ,h, i} share two common vertices
{e,f }. If a partition-based method the former clique identified
first, the latter clique will be missed. Here, as a component of
CODENSE, we designed a novel algorithm, MODES (Min-
ing Overlapping DEnse Subgraphs), to identify overlapping
graph clusters.

As an application example, we used CODENSE to identify
frequent co-expression clusters across multiple microarray
datasets. A microarray dataset is modeled as an unweighted
and undirected network, where each gene is represented by
one node and two genes are connected with an edge if they
show high expression correlation. A densely connected sub-
graph in these networks corresponds to a tight co-expression
cluster. However, several studies pointed out that clusters
derived from asingle microarray dataset often include spuri-
ous links and may not be functionally homogeneous (Allocco
et al., 2004; Clare and King, 2002). A recent study showed that
genes co-expressed in multiple datasets tend to have the same
functions (Leeet al., 2004). Here, applying our methods to 39
microarray datasets ofSaccharomyces cerevisiae, we demon-
strated that recurrent expression clusters are very likely to be
homogeneous in function and regulation, and can be used to
perform large-scale functional annotation of uncharacterized
genes.

The remainder of this paper is organized as follows. Sec-
tion 2 gives the problem formulation. Our algorithms of
mining coherent dense subgraphs and overlapping dense sub-
graphs are examined in Sections 3 and 4, respectively. We
give a thorough comparison between our approach and the
others in Section 5. The experimental study and biological
applications are examined in Section 6. Section 7 concludes
our study.

2 PROBLEM FORMULATION
A relation graph set consists ofn undirected simple graphs,
D = {Gi = (V ,Ei)}, i = 1, . . . ,n,Ei ⊆ V × V , where a com-
mon vertex setV is shared by the graphs in the set. We denote
the vertex set of a graphG byV (G) and the edge set byE(G).
Let wi(u,v) be the weight of an edgeei(u,v) in Gi . For an
unweighted graph,wi(u,v) = 1 if there is an edge between
u andv, otherwise 0. We choose to illustrate the principles
on unweighted and undirected graphs in this paper, although
our algorithm should be extendable to weighted and directed
graphs.

Definition 1 (Support). Given a relation graph dataset,
D = {G1,G2, . . . ,Gn}, where Gi = (V ,Ei), the support of a
graph g is the number of graphs (in D) where g is a subgraph,
written support(g). A graph is frequent if its support is greater
than a minimum support threshold.

Definition 2 (Summary Graph). Given a relation graph
dataset, D = {G1,G2, . . . ,Gn}, where Gi = (V ,Ei), the sum-
mary graph of D is an unweighted graph Ĝ = (V , Ê) where

an edge is present if it occurs in more than k graphs in D,
where k is a user-defined support threshold (see an example
in Fig. 1a).

Definition 3 (Edge Support Vector). Given a relation
graph dataset, D = {G1,G2, . . . ,Gn}, where Gi = (V ,Ei),
the support vector of an edge e, written w(e), is of length n

where n is the number of graphs. The i-th element of w(e)

corresponds to the weight of edge e in the ith graph.

The support vector of the edge(a,b) for the six graphs
shown in Figure 1a is [1, 1, 1, 0, 0, 0], while the support
vector of the edge(b, c) is [0, 0, 0, 1, 1, 1]. As one can see,
edges(a,b) and(b, c) are not correlated in this dataset, though
both of them are frequent.

We use a special graph, termed second-order graph (denoted
asS), to illustrate the co-occurrence of edges across all graphs
in a relation graph setD. Each edge inD is transformed
into a vertex inS, and two verticesu and v in S will be
connected if their corresponding edge support vectorsw(u)

andw(v) in D show high similarity. Depending on whether
or not the edges are weighted, the similarity measure could
be Euclidean distance or Pearson’s correlation. Figure 3 (Step
3b) shows how to generate a second-order graph from a set
of edge support vectors. For example, the Euclidean distance
between the support vectors of edges(c, e) and(c, i) is only
1, so we create an edge between the vertices(c, e) and(c, i)
in the second-order graphS shown in Figure 3. In contrast
to the second-order graph, we term the original graphsGi

the first-order graphs. The utilization of second-order graph
discussed in this paper is one type of second-order analysis,
a concept that has been proposed in our previous publication
(Zhouet al., 2005).

Definition 4 (Second-Order Graph). Given a relation
graph dataset, D = {G1,G2, . . . ,Gn}, where Gi = (V ,Ei),
the second-order graph is an unweighted graph S = (V × V ,
Es) where the vertex set of S is the edge set of G, and an
edge connects vertices u and v if the similarity between the
corresponding edge support vectors w(u) and w(v) is greater
than a threshold.

In reality, if Gi is large and dense,S will be impractic-
ally large. Therefore, to achieve efficiency, in this paper we
constructS each time only for a subgraph of the summary
graphĜ.

Definition 5 (Coherent Graph). Given a relation graph
dataset, D = {G1,G2, . . . ,Gn}, where Gi = (V ,Ei), a sub-
graph sub(Ĝ) is coherent if all the edges of sub(Ĝ) have
support higher than k and the second-order graph of sub(Ĝ)
is dense.

Definition 6 (Graph Density). The density of a graph g,
written density(g), is 2m/[n(n − 1)] where m is the number
of edges and n the number of vertices in g.
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Fig. 3. CODENSE: discover coherent dense subgraphs across multiple graphs (dense subgraphs are marked bold).

The problem of mining coherent dense subgraphs is
formulated as follows: given a relation graph dataset,
D = {G1,G2, . . . ,Gn}, discover subgraphsg that satisfy the
following two criteria simultaneously: (1)g is a densely
connected subgraph of the summary graph; and (2)g is a
coherent graph. As discussed in Section 1, the coherent dense
subgraphs have significant biological interests.

3 CODENSE: MINING COHERENT DENSE
SUBGRAPHS

A scalable algorithm for mining coherent dense subgraphs
must perform well despite increasing number of graphs and
increasing size of patterns. In order to tackle this problem, we
investigate the relation between a coherent dense subgraph
and the summary graph as well as its second-order graph. We
make the following two observations:

(1) If a frequent subgraph is dense, then it must be a dense
subgraph in the summary graph. However, the reverse
conclusion is not true. A dense subgraph in the sum-
mary graph may be neither frequent nor dense in the
original dataset (e.g. Fig. 1a).

(2) If a subgraph is coherent (its edges show high correl-
ation in their occurrences across a graph set), then its
second-order graph must be dense.

Algorithm 1: CODENSE

(1) build a summary grapĥG across multiple relation
graphsG1,G2, . . . ,Gn;

(2) mine dense summary subgraphs sub(Ĝ) in Ĝ

using MODES;

for each dense summary subgraph sub(Ĝ) do

(3) • construct the second-order graphS;

(4) • mine dense subgraphs sub(S) in S using MODES;

(5) • for each dense subgraph sub(S) do
* convert sub(S) into the first-order graphG;

* mine dense subgraphs sub(G) in G

using MODES;

* output sub(G);

These two observations provide a clue to mining coherent
dense subgraphs with reasonable computational cost. Accord-
ing to Observation 1, each frequent dense subgraph is a
subgraph of a dense summary graph. We can start from the
summary graph and mine dense summary subgraphs first.
Once it is done, we can single out coherent subgraphs from
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dense summary subgraphs by mining their corresponding
second-order graphs.

Our CODENSE algorithm consists of five steps, as outlined
in Algorithm 1 and illustrated in Figure 3. In Steps 2, 4 and 5,
a novel algorithm to discover overlapping dense subgraphs,
called ‘MODES’, is employed. We will describe the design
of the MODES algorithm in Section 4.

In Step 1, CODENSE builds a summary graph by eliminating
infrequent edges.

In Step 2, CODENSE identifies dense subgraphs (possibly
overlapping) in the summary graph. Although the dense
subgraphs in the summary graph may not be truly fre-
quently occurring in the original graphs, they do serve as
a superset of potential frequent dense subgraphs in the
original graphs. We start with this superset to refine the
search results.

In Step 3, CODENSE builds a second-order graph for each
dense summary subgraph.

In Step 4, CODENSE identifies dense subgraphs in the
second-order graph. The high connectivity among ver-
tices in the second-order graph indicates that the corres-
ponding edges show high similarity in their occurrences
across then original graphs.

In Step 5, CODENSE discovers the real coherent dense sub-
graphs. Although a dense subgraph sub(S) found in
Step 4 guarantees the co-occurrence of its edges across
then relation graphs, those edges may no longer form a
densely connected graph in the original summary graph.
To eliminate such cases, we convert the vertices in sub(S)

back to edges and then apply the MODES algorithm to
identify dense subgraphs. The resulting subgraphs by
construction will satisfy the criteria for coherent dense
subgraphs: (1) they are dense subgraphs and all of their
edges occur frequently; and (2) their edges are highly
correlated in their occurrences across then relation
graphs.

In comparison with previous frequent graph mining
algorithms, our algorithm may not show a significant advant-
age when the number of relation graphsn is small. However,
whenn is large, CODENSE will achieve significant time and
memory efficiency since it works on two graphs only: sum-
mary graph and second-order graph instead of thengraphs. On
the contrary, traditional frequent pattern mining algorithms
will not work well for high numbers of large graphs due to the
astronomical number of frequent patterns.

In case the relation graphs do not contain a large amount of
edges, we can skip the step of clustering the summary graph,
and start from Step 3 by transforming all edges directly into the
second-order graph with further steps unchanged. The clus-
tering of the summary graph serves the purpose of restricting
the second-order graph to a reasonable size to avoid excessive
computation.

4 MODES: MINING OVERLAPPING DENSE
SUBGRAPHS

The overlapping dense subgraph mining algorithm, called
MODES, is frequently used in CODENSE. In this section,
we present the details of its design. MODES is developed
based on HCS (Mining Highly Connected Subgraphs) (Hartuv
and Shamir, 2000), with two new features: (1) MODES
is more efficient in identifying dense subgraphs; and more
importantly, (2) MODES can discover overlapping subgraphs.

It is computationally intractable to enumerate all dense sub-
graphs in a large graph. Usually, a large graph is first clustered
hierarchically and the dense clusters are singled out. HCS is
this kind of algorithm. It recursively partitions the graph into
two subgraphs until its minimum cut is no less than half of its
vertex set size.

Definition 7 (Minimum Cut). Given a graph G, an edge
cut is a set of edges Ec such that E(G) − Ec is disconnected.
A minimum cut is the smallest set in all edge cuts.

There are two issues remaining in HCS. First, HCS cannot
identify overlapping dense subgraphs because of its nature
of graph-partitioning. Second, the above recursive partition-
ing process is time consuming. The fastest deterministic
minimum cut algorithm in practice has time complexity
O(|V ||E| + |V |2 log |V |), where|V | and |E| are the vertex
set size and the edge set size of a given graph (Stoer and Wag-
ner, 1997). The minimum cut criterion adopted by HCS favors
cutting small sets of nodes from the graph. When applying
the algorithm repeatedly to a large graph consisting of more
than thousands of vertices, such unbalanced cuts could lead
to unexpected high costs. As verified by our experiments, we
found HCS often cuts off one node in each iteration, thus
having time complexityO(|V |2|E| + |V |3 log |V |).

To avoid the undesirable bias for partitioning out small sets
of vertices and to speed up the process, we apply the normal-
ized cut (Shi and Malik, 2000) instead of minimum cut in the
initial runs of the HCS algorithm. Normalized cut is able to
better balance the sizes of the partitions. When the size of the
partitions generated by normalized cut is reasonably small,
we proceed with the minimum cut algorithm to identify dense
subgraphs. We revert to the use of the minimum cut in the later
stage to exploit its power better in clustering without severe
effects on computational cost.

In order to identify overlapping dense subgraphs, we
designed the following procedure, as outlined in Algorithm 2
and illustrated in Figure 4: (1) We mine dense subgraphs
using the above modified HCS algorithm in a given graphG.
(2) Each discovered dense subgraph sub(G) is then condensed
into a single vertexv′; any vertexv that does not belong to
sub(G) will have an edge withv′ if v has edge with a vertex
in sub(G). (3) The condensed graph, writtenG′, is then re-
clustered using the above modified HCS algorithm. (4) Once
the clustering is done, if any newly discovered dense subgraph
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sub(G′) contains condensed vertices, MODES restores the
condensed vertices back into subgraphs. To avoid the repetit-
ive discovery of already discovered dense subgraphs, MODES
conducts the following to focus on the vertices that have not
been clustered previously: for a restored subgraphC, MODES
removes the verticesv(v ∈ C), wherev is connected to<p%
of the vertices inV [sub(G′)] − V (C). Since the resulting sub-
graph sub(G′) may not be dense any more, in order to extract
the dense subgraphs, we perform Step 1 again on sub(G′) to
identify its dense subgraphs. This procedure is repeated until
no new dense graph is discovered. To speed up the computa-
tion, we require that a new dense subgraph should have<90%
overlap with any existing dense subgraph.

The running time of computing normalized cut is determ-
ined by the extraction of the second smallest eigenvalue of
I − D−1/2WD−1/2, where W (i, j) is the weight of edge
(i, j), D(i, i) = ∑

j W (i, j). Its complexity isO(nc), 1≤ c ≤ 3,

(O(n3) is the upper bound on solving the eigensystem
of an n-dimension square matrix) (Shi and Malik, 2000).
Empirically, the value ofc is around 1.5 when the graph
is very sparse (Shi and Malik, 2000). Assume a graph
G = (V ,E) is clustered tok partitionsV1,V2, · · · Vk, where
V1 ∪ V2 ∪ · · · ∪ Vk = V . The total cost of clustering thesek
partitions isO(|V1|c + |V2|c + . . . + |Vk|c) which is at most
O(|V |c) givenc ≥ 1. For hierarchical recursive clustering, the
cost isO(d|V |c), whered is the largest recursive steps. The
value ofd is betweenO(log |V |) andO(|V |). Since normal-
ized cut prefers balanced partitions, in general,d is far away
from |V | but close to log|V |, which means our algorithm
MODES can run much faster than the worst case.

MODES may iterate several times in order to discover
overlapping dense subgraphs. Each iteration involves a hier-
archical clustering. Assume that the maximum number of
recursions for a given graph isr (Algorithm 2, MODES). The
running time of MODES isO(r|V |2.5) for a sparse graph. In
practice, we may restrict the recursion depth.

Figure 4 illustrates a clustering example of mining over-
lapping dense subgraphs. The upper-left graph in the figure

is the original graph. Obviously, it has two dense con-
nected subgraphs. The readers can simulate our MODES
algorithm to detect these two subgraphs. As demonstrated
in this example, MODES is able to discover some dense
subgraphs that traditional clustering approaches cannot find.

Algorithm 2: MODES

(1) mine dense subgraphs, sub(G), in a given graphG using
the modified HCS algorithm in which normalized-cut and
min-cut are combined for recursive partitions;

(2) for each dense subgraph sub(G) do
• condense sub(G) into a condensed vertex v’ in the

original graph;

denote the condensed graph byG′;
(3) mine dense subgraphs sub(G′) from the condensed graph

G′ using the modified HCS algorithm again;

(4) for each dense subgraph sub(G′) do
if sub(G′) contains any condensed vertexthen

(a) restore each condensed componentC in
sub(G′) ;

(b) remove verticesv, if v ∈ C andv is connec-
ted to less thanp%(|V (sub(G′)) | − |V (C)|)
vertices;

• repeat Steps 1–4 until no new dense subgraph
is discovered in sub(G′);

5 COMPARISON WITH OTHER METHODS
Our approach proposed so far simplifies the problem of identi-
fying coherent dense subgraphs acrossngraphs into a problem
of identifying dense subgraphs in two special graphs: the
summary graph and the second-order graph. Here, we com-
pare CODENSE with other methods and highlight its major
advantages.

By transforming all necessary information of the ngraphs into
two graphs, CODENSE achieves significant time and memory
efficiency. Prior frequent graph mining approaches, mostly
based on graph pattern expansion technique (Kuramochi and
Karypis, 2004; Yanet al., 2005), iteratively extend frequent
patterns and check their support. However, these approaches
are infeasible in discovering large patterns. The problem of
counting the number of distinct maximal frequent subgraphs
is #-P-complete, thereby providing a strong implication that
the problem of mining maximal frequent subgraphs may be
NP-hard (Yang, 2004).

CODENSE can mine coherent subgraph patterns which
likely represent true network modules. As discussed in
the introduction section, frequent patterns may contain sub
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components that differ significantly in their support, although
this is not an issue for coherent patterns.

CODENSE can mine both exact and approximate patterns.
We can control the similarity threshold of the edge support
vectors for edge construction in the second-order graph as
well as the density threshold for the subgraph discovery in the
second-order graph. The lower the two thresholds, the higher
the degree of approximation in the output of CODENSE. Con-
versely, if the support vector similarity threshold is set to be
100% and the second-order dense subgraph is required to form
cliques, the identified subgraphs shall occur exactly in the
same graphs.

CODENSE can be extended to pattern mining on weighted
graphs since the core algorithms, normalized-cut and
minimum-cut based clustering, can be applied to both
weighted and unweighted graphs.

CODENSE can be further modified and extended to identify
more subtle patterns. For example, instead of clustering
edges with overall similar edge support vectors, one may use
biclustering algorithms (Cheng and Church, 2000) to identify
edges showing similar supports in a subset of datasets. Effi-
cient algorithm design for this purpose is currently under
development.

6 EXPERIMENTAL STUDY
6.1 Graph modeling and parameter setting
In this study, we use the co-expression networks derived
from microarray datasets as a testing system for CODENSE.
We integrated 39 yeast microarray datasets, each comprising
the expression profiles of 6661 genes in at least 8 experi-
ments, from Stanford Microarray Database and the NCBI
Gene Expression Omnibus (details of the dataset are avail-
able at http://zhoulab.usc.edu/CODENSE/). The similarity
between two genes in one microarray data set is measured
by Pearson’s correlation between their expression patterns.
We transform the Pearson’s correlation (denoted asr) into
another quantity,

√
(n − 2)r2/1− r2, and model this quant-

ity as at-distribution withn−2 degrees of freedom, where
n is the number of measurements used in the computation of
the Pearson’s correlation. From each microarray data set, we
construct a relation network where two genes are connected
if the Pearson’s correlation between their expression patterns
is significant ata = 0.01 level.

We construct a summary grapĥG, collecting edges which
support at least 6 over the 39 relation networks. MODES is
first applied toĜ to identify subgraphs with density≥d1. For
each identified subgraph, we then construct a second-order
graph by transforming edges to vertices. Here, we build the
edge support vector (of length 39) by computing the Pear-
son’s correlation between the expression profiles of two genes
(two vertices) in each of the 39 datasets (note that this is
different from the binary edge support vectors illustrated in

Fig. 3). If the Pearson’s correlation between support vectors
of two edges is significant atα = 0.001 level, we connect their
transformed vertices with an edge in the second-order graph.
We again apply the MODES algorithm to the second-order
graph to identify subgraphs with density≥d2. Such identified
second-order graph is then transformed back to the summary
graph (vertices→ edges), and MODES is employed once
more to identify subgraphs with density≥d3. In this exper-
iment, we set the three density cutoffsd1 = d2 = d3 = 0.4.
However, they can be adjusted to accommodate specific needs
of the users. For example, decreasingd1 andd3 will favor
sparse coherent patterns; and increasingd2will strengthen the
co-occurrence of edges across all networks in an identified pat-
tern. In this study, we only focus on the coherent subgraphs
with at least four vertices.

6.2 Functional module discovery
We applied CODENSE to discover coherent clusters across
the 39 co-expression networks and compare the result with
the dense subgraphs generated by MODES on the summary
graph.

To quantify the comparison, we assess the clustering quality
by determining the percentage of functionally homogeneous
clusters among all identified clusters. We used the Gene
Ontology (GO) biological process annotation, and consider
a cluster to be functionally homogeneous if (1) the functional
homogeneity modeled by the hypergeometric distribution
(Wu et al., 2002) shall be significant atα = 0.01; and (2) at
least 40% of its member genes with known annotations belong
to a specific GO functional category. Using the GeneOntology
biological process annotation, we define specific functions to
be those associated with GeneOnology nodes that are more
than 5 levels below the root.

We found that CODENSE significantly increased the
percentage of functionally homogeneous clusters from the
MODES results by filtering out larger amounts of noisy genes
or noisy clusters. MODES identified 366 clusters, among
which 151 (42%) are functionally homogeneous. Starting with
the 366 clusters, after the second-order clustering, CODENSE
identified 770 clusters that have at least 4 annotated genes.
Of these clusters, 76% are functionally homogeneous. This
shows a 34% increase of functionally homogeneous clusters
compared with the MODES results.

The major performance improvement of CODENSE over
MODES is attributed to the power of the second-order clus-
tering in eliminating dense summary subgraphs whose edges
do not show co-occurrence across all networks. For example,
MODES identified a five-gene clique in the summary graph,
{MSF1, PHB1, CBP4, NDI1, SCO2}. However, the five
genes come from diverse functional categories, such as ‘pro-
tein biosynthesis’, ‘replicative cell aging’ and ‘mitochondrial
electron transport’. In fact, although all edges of this clique
occur in at east 6 networks, their co-occurrence is not sig-
nificant across the 39 networks (Fig. 5a). The second-order
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Fig. 5. (a) The edge occurrence profile of the five-gene clique in the summary graph. (b) Shown are the coherent dense subgraph containing
six genes; all five genes except ASC1 are known to be involved in protein biosynthesis. ASC1 is, therefore, to be predicted to have this
function as well.

clustering can filter out such pseudoclusters, thus providing
more reliable results.

Moreover, we found instances in which the second-order
clustering can remove the noisy genes in a functionally diverse
cluster so that its subcluster(s) becomes functionally homo-
geneous. For example, in a cluster containing 54 genes that are
associated with diverse functional categories, such as ‘organic
acid metabolism’, ‘carboxylic acid metabolism’ and ‘amino
acid and derivative metabolism’, none of these categories is
significantly overpresented in this cluster. After the second-
order clustering, a coherent subcluster emerges with seven
annotated genes, which is dominated by the function ‘organic
acid metabolism’ (P -value= 2.18× 10−5).

6.3 Functional annotation
The large number of functionally homogeneous clusters iden-
tified by CODENSE provides a solid foundation for functional
annotation of uncharacterized genes. For those clusters con-
taining unknown genes, if the most dominating GO functional
category is significantly overrepresented (Bonferroni cor-
rected hypergeometricP -value <0.01), we annotated the
unknown genes with that function. To assess the predic-
tion accuracy of our method, we employed a ‘leave-one-out’
approach by masking a known gene to be unknown and assign
its function based on the remaining known genes in the cluster.
We consider a prediction to be correct, if the lowest common
ancestor of the predicted and known functional categories of
that gene is five levels below the root in the GO hierarchy.
That is, the predicted and the known categories will merge
into the same category at least at the level 6 of the GO hier-
archy. Note that the annotated yeast genes encompass 160
functional categories at the level 6 of the GO hierarchy. We
have assigned functions to 448 known genes and achieved a
prediction accuracy of 50%.

By applying this approach to unknown genes, we made a
functional prediction for 169 genes, covering a wide range
of functional categories from cellular protein metabolism,
protein biosynthesis, ribosome biogenesis, nucleobase, nuc-
leoside, nucleotide and nucleic acid metabolism, cellular
biosynthesis, etc. Figure 5b illustrates an example of our

predictions, in which the uncharacterized gene ASC1 is
predicted to be involved in ‘protein biosynthesis’, because all
of the remaining five genes in the same subgraph participate in
that biological process. The comprehensive prediction results
are available at http://zhoulab.usc.edu/CODENSE/. Many of
our predictions are supported by experimental studies in the
literature. For example, we predicted RRP15 to participate
in ‘ribosome biogenesis’. According to a recent study (De
et al., 2005), this gene is involved in pre-rRNA processing.
We assigned the function ‘protein biosynthesis’ to YMR116C;
and two studies showed that it is involved in translation regu-
lation (Chantrelet al., 1998) and control (Gerbasiet al., 2004).
We predicted QRI5 to be involved in ‘protein biosynthesis’;
QRI5 has been shown to participate in a common regulatory
process together with MSS51 (Simonet al., 1992) and the GO
annotation of MSS51 is ‘positive regulation of translation and
protein biosynthesis’.

7 CONCLUSIONS
We developed a novel algorithm, CODENSE, to efficiently
mine coherent dense subgraphs across massive biological net-
works. In comparison with previous approaches, CODENSE
is scalable in the number and the size of the networks to
mine, adjustable in terms of exact or approximate coherent
pattern mining and extendable to weighted and directed net-
works. It provides an efficient tool for the identification of
network modules and for the functional discovery in the ever
increasing biological networks. The method can integrate het-
erogeneous network data (e.g. protein interaction network,
genetic interaction network and co-expression networks) to
reveal consistent biological signals. The discovered network
modules can be used in a variety of biological applications,
e.g. predict the functions of unknown genes, construct the
transcription modules and infer the potential protein assembly
mechanisms.
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