

1 Introduction

Two major trends in the digital design industry are the increase in
system complexity and the increasing importance of short design
times. The rise in design complexity is motivated by consumer
demand for higher performance products as well as increases in
integration density which allow more functionality to be placed on
a single chip. A consequence of this rise in complexity is a signifi-
cant increase in the amount of simulation required to design digital
systems. Simulation time typically scales as the square of the
increase in system complexity [4]. Short design times are important
because once a design has been conceived there is a limited time
window in which to bring the system to market while its perfor-
mance is competitive.

Simulation serves many purposes during the design cycle of a digi-
tal system. In the early stages of design, high-level simulation is
used for performance prediction and analysis. In the middle of the
design cycle, simulation is used to develop the software algorithms
and refine the hardware. In the later stages of design, simulation is
used make sure performance targets are reached and to verify the
correctness of the hardware and software. The different simulation
objectives require varying levels of modeling detail. To keep design
time to a minimum, it is critical to structure the simulation environ-
ment to make it possible to trade-off simulation performance for
model detail in a flexible manner that allows concurrent hardware
and software development.

In this paper we describe the different simulation methodologies for
developing complex digital systems, and give examples of one such
simulation environment. The rest of this paper is organized as fol-
lows. In Section 2 we describe and classify the various simulation
methodologies that are used in digital system design and describe
how they are used in the various stages of the design cycle. In Sec-
tion 3 we provide examples of the methodologies. We describe a
sophisticated simulation environment used to develop a large ASIC
for the Stanford FLASH multiprocessor.

2 Simulation Methodologies

2.1 Design Level

During the design cycle of an ASIC or processor that is a part of a
complex digital system a variety of simulators are developed. These

simulators model the design at different levels of abstraction and
typically become slower as the design progresses to lower levels of
abstraction.

Table 1 shows the design levels typically used in the process of cre-
ating a digital system [9]. The highest level of system design is the
specification of the algorithm or protocol that the system will per-
form. Many digital systems are programmable to make them flexi-
ble and to make the system easier to debug. The programmable
element might be a general purpose processor or an application-
specific instruction-set processor (ASIP) [5]. If the system contains
an ASIP, the design of the instruction set will have a large impact on
the performance and flexibility of the system. Instruction set design
is typically performed with the aid of an instruction level simulator.
Simulating the system at the instruction level can be done with
instruction interpretation [19] or binary translation [3]. Due to the
similarity between instructions of an ASIP and the instructions of
general purpose processors, instruction level simulation only
requires tens or hundreds of instructions for each simulated instruc-
tion. This results in high simulation performance of 1 million to 10
million instructions per second on a 100 MIPS workstation.

At the architecture level designers are concerned with defining and
estimating the performance of the main functional blocks in the
system. An example of this is the design of the interconnection net-
work and communication protocols used to interconnect processors
in a heterogeneous multiprocessor system. Another example is the
design of a processor’s execution pipeline together with its memory
hierarchy and I/O system [11]. At the architectural level, designers
are interested in estimating overall system performance and collect-
ing performance data to guide architectural design trade-offs. The
speed of simulation at this level depends on the level of detail that is
modeled, but usually results in simulation speeds that vary between
10 and 100 kHz on a 100 MIPS workstation.

At the register transfer level the goal is to model all the components
in the system in enough detail so that performance and correctness
can be modeled to the nearest clock cycle. At this level of simula-
tion the simulator accurately models all the concurrency and

K. Olukotun, M. Heinrich, D. Ofelt “Digital
system simulation: methodologies and
examples,” Proceedings of 35th IEEE/
ACM Design Automation Conference, San
Francisco, CA, June, 1998.

Design level
Description

language Primitives
Simulation
slowdown

Algorithm HLL Instructions 10–100

Architecture HLL Functional
blocks

1K–10K

Register transfer HLL, HDL RTL primitives 1M–10M

Logic HDL, Netlist Logic gates 10M–100M

Table 1. Digital system design levels.

The simulation slowdown
assumes the processor is simulating a model of itself.

Digital System Simulation: Methodologies and Examples

Kunle Olukotun, Mark Heinrich and David Ofelt

Computer Systems Laboratory
Stanford University

Stanford, CA 94305-4070

resource contention in the system. The level of detail required to do
this for the complexity of current chips makes RTL simulation slow
even for the fastest simulators [22]. Despite their slow speed, RTL
simulators are heavily used to check the correctness of the system.
The performance of RTL simulation varies between 10 and 100 Hz
on a 100 MIPS workstation. The high demand for simulation cycles
for both performance and correctness verification makes simulation
speed at this level a critical factor in determining the quality of the
system design.

At the logic level all the nets and gates in the system are defined. At
this point the design could be used to drive the surrounding system.
However, the number of primitives and the characteristics of gate
level models constrain their simulation performance to between 1
and 10 Hz on a 100 MIPS workstation. This performance is typi-
cally too low to allow the simulation of significant system applica-
tions at the logic level.

2.2 Simulation Input

An important consideration in developing a simulation model is the
manner in which simulation input is provided to the model. There
are three basic techniques: statistics-driven simulation, trace-driven
simulation and execution-driven simulation. These techniques dif-
fer in the completeness of the simulation model. In statistics-driven
simulation the input is a set of statistics gathered from an existing
machine or a more complete simulator. These statistics are com-
bined with static analysis of the behavior of the instruction set or
architecture to provide early performance estimates. For example,
instruction-mix data can be combined with predicted instruction
execution latencies to estimate the performance of a pipelined pro-
cessor [11]. Statistics-driven simulation models are very simple
because they leave much of the system unspecified.

In trace-driven simulation the input data is a sequence of events that
is unaffected by the behavior of the model. Trace-driven simulation
is used extensively in instruction set design where the input events
are a sequence of instructions. However, it is possible to develop a
trace-driven processor model at any of the design levels discussed
above. Trace-driven memory-system simulators are also quite com-
mon. Here the trace is a sequence of memory address references.
Trace-driven simulation is also used in the design of network rout-
ers and packet switches. Although trace-driven simulators are sim-
pler and faster than execution-driven simulators because they do not
model data transformations, trace-driven simulators must be fed
from a trace that comes from an execution driven-simulator or an
existing digital system that has been instrumented for trace collec-
tion [18]. Trace-driven simulation is primarily used for detailed
architecture performance prediction.

In execution-driven simulation the exact sequence of input events is
determined by the behavior of the simulation model as it executes.
Execution-driven simulators are developed later in the design cycle
because they tend to have more design detail. They require more
design detail to model the data transformations that must occur to
accurately simulate the behavior of the system. Execution-driven
simulation is essential during the later stages of the design cycle
when the design is being verified for correctness. For example,
while it is possible to accurately estimate the performance of a
branch prediction algorithm using trace-driven simulation, execu-

tion-driven simulation is required to verify that the branch miss-
prediction recovery mechanisms work correctly.

2.3 Simulating Concurrency

Concurrency is a component of all digital systems. In fact, built-in
support for concurrency is the main characteristic that distinguishes
hardware description languages like Verilog and VHDL from high-
level languages like C. The way concurrency is simulated has a
large impact on both simulation performance and modeling flexibil-
ity. The classic way of simulating concurrency is to make use of a
dynamic scheduler which orders the execution of user defined
threads based on events. This is known as discrete-event simulation
and is the most flexible method of simulating concurrency. This is
the model of concurrency that is embodied in Verilog and VHDL
semantics, but it can be added with library support to C. The draw-
back to discrete-event simulation is low simulation performance
due to the runtime overhead of dynamic event-scheduling. A num-
ber of techniques have been used to improve the performance of
discrete-event simulation by reducing the event scheduler overhead
[14, 20]. These techniques sacrifice some of the generality of event-
driven simulation to achieve higher performance.

The alternative to dynamic event-scheduling is cycle-based simula-
tion. In cycle-based simulation all components are evaluated once
each clock cycle in a statically-scheduled order that ensures all
input events to a component have their final value by the time the
component is executed. Cycle based logic simulators which are also
called levelized compiled code logic simulators rely on the syn-
chronous nature of digital logic to eliminate all considerations of
time that are smaller than a clock cycle. Cycle based simulators
have the potential to provide much higher simulation performance
than discrete-event simulators because they eliminate much of the
run time processing overhead associated with ordering and propa-
gating events [1, 6, 22]. Some cycle-based logic simulators dis-
pense with the accurate representation of the logic between the state
elements altogether and transform this logic to speed up simulation
even further [15]. The main disadvantage of cycle-based simulation
techniques is that they are not general. These techniques will not
work on asynchronous models. In practice, even though most digi-
tal systems are mostly synchronous, asynchronous chip interfaces
are common.

2.4 Managing Simulation

 Complex digital systems design requires a sophisticated simu-
lation environment for performance prediction and correctness vali-
dation. Most systems are composed of hardware and software and it
is desirable to develop the hardware and the software concurrently.
In the later stages of the design once the components of the system
have been described at the RTL level, it is often necessary to simu-
late the whole system with realistic input data; however, the slow
simulation speed of RTL-level models makes this computationaly
expensive and time consuming. Two simulation management tech-
niques that have proved to be useful in providing solutions to these
problems are the use of multi-level simulation in which models at
different design levels are simulated together [2] and dynamic
switching between levels of detail [17].

Multi-level simulation can be used to support concurrent software
and hardware development of an ASIP with specialized functional

units in the following way. Software development can use a fast
instruction level simulator of the ASIP while hardware development
of the functional units takes place at the RTL level. Multi-level sim-
ulation incorporates both types of simulator so that the RTL-level
models can seamlessly replace the high-level descriptions of the
specialized instructions.

Dynamic switching between levels of detail takes multi-level simu-
lation one step further. It allows the models of the specialized func-
tional units to be dynamically switched at simulation time. This
ability makes it possible to run realistic workloads on a detailed
model while keeping simulation time reasonable. Simulation typi-
cally begins using the high-level fast simulator, and then when an
interesting region of the simulation is reached, the high-level model
is switched to the detailed model. The detailed model can be
switched back to the less detailed model to quickly simulate unim-
portant portions of the workload. This switching back and forth can
take place repeatedly and may involve multiple model levels with
different speed-detail characteristics. This technique is very effec-
tive at simulating realistic workloads in their entirety because, as
Table 1 shows, the simulation speed difference between the algo-
rithmic level and the logic levels can span five orders of magnitude.

3 FLASH Case Study

This section gives a brief description of the FLASH multiprocessor,
concentrating on the design and verification of MAGIC, the large
ASIP node controller for the FLASH machine. The simulation
methodology used in the FLASH design is discussed in detail as a
real-life example of the environment required to develop a complex
digital system.

3.1 FLASH Overview

The Stanford FLASH multiprocessor [12] is a general-purpose
multiprocessor designed to scale up to 4096 nodes. It supports
applications which communicate implicitly via a shared address
space (

shared memory

 applications), as well as applications that
communicate explicitly via the exchange of messages (

message
passing

 applications). Hardware support for both types of commu-
nication is implemented in the MAGIC chip, the communication
controller of the FLASH node. MAGIC contains an embedded, pro-
grammable

protocol processor

that runs software code sequences to
implement communication protocols. Since these protocols can be
quite complex, this approach greatly simplifies the hardware design
process, and reduces the risk of fabricating a chip that does not
work. A programmable protocol processor also allows great flexi-
bility in the types of communication protocols the machine can run,
and permits debugging and tuning protocols or developing com-
pletely new protocols even after the machine is built.

The structure of a FLASH node, and the central location of the
MAGIC chip is shown in Figure 1. The MAGIC chip integrates
interfaces to the main processor, memory system, I/O system, and
network with the programmable protocol processor. As the heart of
a FLASH node, MAGIC must concurrently process requests from
each of its external interfaces and perform its principal function—
that of a data transfer crossbar. However, MAGIC also needs to per-
form bookkeeping to implement the communication protocol. It is
the protocol processor which handles these control decisions, and
properly directs data from one interface to another.

MAGIC must control data movement in a protocol-dependent fash-
ion without adversely affecting performance. To achieve this goal,
the chip separates the data-transfer logic from the control logic. The
data transfer logic is implemented in hardware to achieve low-
latency, high-bandwidth data transfers. When data enters the
MAGIC chip it is placed in a dedicated on-chip data buffer and
remains there until it leaves the chip, avoiding unnecessary data
copying. To manage their complexity, the shared memory and mes-
saging protocols are implemented in software (called

handlers

) that
runs on the embedded protocol processor.

The protocol processor is
a simple two-way issue 64-bit RISC processor with no hardware
interlocks, no floating point capability, no TLB or virtual memory
management, and no interrupts or restartable exceptions.

The MAGIC chip was fabricated as a standard-cell ASIC with the

cooperation of LSI Logic. The die is 256mm

2

 and contains approx-
imately 250,000 gates and 220,000 bits of memory, making it large
by ASIC standards. One of our 18 on-chip memories is a custom, 6-
port memory that implements 16 128-byte data buffers, the key to
our hardware data-transfer mechanism.

The combination of multiple interfaces, aggressive pipelining, and
the necessity of handling multiple outstanding requests from the
main processor makes MAGIC inherently multithreaded, posing
complex verification and performance challenges.

As shown in Figure 2, the simulation strategy for FLASH went
through several phases, moving from low-detail exploratory studies
early in the design to very detailed gate-level simulations. The fol-
lowing sections describe each of these phases in more detail.

2$

I/ONet

2nd-Level
Cache

2nd-Level
Cache

DRAM μP

MAGIC

R10000
DRAM

MAGIC

MIPS

Figure 1. The Stanford FLASH multiprocessor.

DASH Counts/Hand-calculated latencies Dirsim/Dinero

FlashLite w/ C-Handlers

FlashLite w/ PPSim
Verilog Model

Gate-level Model

FlashLite/Verilog
FlashLite/Verilog/R10000

Figure 2. Simulation hierarchy used in the FLASH design.

3.2 Initial Design Exploration

Early on in the FLASH design, we decided to use an ASIP to imple-
ment the communication controller and to use a data cache to
reduce the amount of SRAM needed for protocol storage. The first
studies we performed were to decide if the ASIP would be efficient
enough to implement protocols in software at “hardware-like”
speeds, and if a cache for protocol data could achieve high hit-rates.

3.2.1 ASIP Performance

The first design problem was to determine if an ASIP would be fast
enough to act as a protocol engine for the FLASH machine. At this
point, the architecture of the machine was very vague and we had
no simulation environment, but we needed to generate performance
numbers to guide the design decisions.

We used a previous research prototype built in our group, the Stan-
ford DASH machine [13], to generate event counts from the
SPLASH parallel application suite [21]. We wrote the important
protocol handlers by hand in MIPS assembly to get an estimate for
how long each of the protocol operations would take. Overall
machine performance was obtained by multiplying the event counts
by the handler estimates and summing over all handlers.

This approach gave us a good idea on what the average perfor-
mance of the machine would be, and demonstrated that a general-
purpose CPU core could come within a factor of two of the perfor-
mance needed for MAGIC. Once we had these base performance
estimates, we changed the handler cycle counts to account for our
estimates of various hardware features that would help accelerate
protocol handling, to see how the performance would change.

Unfortunately, since the input data is based on statistical averages,
it is not possible to generate information about contention. In
machines like FLASH, contention is a major performance issue, so
it is important to model contention accurately in the simulation
environment.

3.2.2 Cache Performance

The other major design issue we needed to confirm was the idea of
caching the protocol data in the protocol processor's data cache. To
study this we wrote a very simple discrete event model that imple-
mented the general cache coherence protocol. This model was
again driven by programs from the SPLASH application suite. The
output from the model was a trace of addresses generated by the
loads and stores executed by the protocol processor.

We fed this address trace into the Dinero [7] cache simulator to
study cache miss rates over a wide range of standard cache parame-
ters. Since we were interested in obtaining average cache statistics
rather than absolute performance from this model trace-driven sim-
ulation was an acceptable choice. The results of this study demon-
strated that a protocol data cache would work well.

3.3 FlashLite

Our initial simulation studies confirmed that implementing the
communication controller as an ASIP was a good idea. We now
needed to understand the relationship of MAGIC’s performance to
overall system performance. To discover this, we constructed

FlashLite, a simulator for the entire FLASH machine. FlashLite
uses an execution-driven processor model [8, 17] to run real appli-
cations on a simulated FLASH machine. FlashLite is written in a
combination of C and C++ and uses a fine-grained threads package
[16] that allows easy modeling of the functional units and indepen-
dent state machines that comprise MAGIC.

Figure 3 shows the major FlashLite threads that make up a single
FLASH node. The protocol processor thread can itself be modeled
at two levels of detail. The next two sections describe why this is an
important feature.

3.3.1 FlashLite - “C-handlers”

Initially the FlashLite threads comprising the communication con-
troller were an abstract model of the MAGIC chip, parameterized to
have the same basic interfaces. At that point, we were able to vary
high-level parameters to determine what we could do well in the
software running on the protocol processor, and what needed to be
done with support from the surrounding hardware.

As the MAGIC architecture evolved, so did FlashLite, until eventu-
ally FlashLite had accurate models of all the on-chip hardware
interfaces except for the protocol processor itself. This was natural,
since the instruction set architecture of the protocol processor was
not yet defined. However, FlashLite was still able to simulate the
entire MAGIC chip by having a high-level model of the protocol
processor that ran the communication protocol in C (the “C-han-
dlers” and provided approximate delays to the basic protocol
actions like sending messages and manipulating protocol state. The
C-handlers played a crucial role in FLASH development, as they
allowed the protocols to be written and debugged, and high-level
design decisions to be made while the MAGIC hardware and the
protocol processor instruction set were still being designed.

In OutPIIn Out MC

I
n

O
u
t

I
n

O
u
t

NI IO

Protocol

MAGIC

Processor

Cache

DRAM

IO

N
e
t
w
o
r
k

Inbox

Outbox

ICache

C-handlers PPsim

MAGIC

or

MAGIC
DCache

Processor

Figure 3. The different FlashLite threads that model the entire
FLASH system.

3.3.2 FlashLite - PPSim

The next major step in the project was the design of the instruction
set architecture of the protocol processor. Once we had the basic
instruction set designed (we built our instruction set on top of MIPS
ISA) one of the first simulation tools we created to look at the trade-
offs in instruction-set design was an instruction level simulator for
the protocol processor. Along with this simulator, we developed a
series of other software tools, including a C-compiler, scheduler,
and assembler for translating the handlers into object code execut-
able by the real machine. The simulator, PPsim, became FlashLite’s
detailed thread for the protocol processor as shown in Figure 3.

3.3.3 Speed-Detail Trade-offs

FlashLite retained the ability to run C-handlers, but it could now
also use PPsim run the compiled protocol code sequences as they
would execute on the real machine, complete with cache models for
the MAGIC instruction and data caches. For speed and debugging
flexibility, FlashLite had the ability to switch between C-handlers
and PPSim on a fine-grain level (handler by handler).

While PPsim ran slower than C-handlers (see Table 2), it provided a
model with accurate timing, and provided new information such as
actual instruction counts, cycle counts, and accurate MAGIC cache
behavior. Integrating PPsim into FlashLite also had the advantage
of allowing us to debug the compiler, scheduler, and assembler
before we ever ran any code on the RTL description of the MAGIC
chip.

3.4 Verilog

Once the architecture started to solidify, work on the RTL design
began in earnest. This work was done completely in parallel with
the work on software tools and the fine-tuning of MAGIC’s param-
eters with FlashLite and PPsim.

3.4.1 Verilog - RTL

The MAGIC chip design is implemented in well over 110,000 lines
of Verilog. Most of the verification effort focused on this level of
detail. We generated a large set of directed and random diagnostics
that were run on the Verilog model. To make sure that no illegal
conditions arose, the design was liberally annotated with sanity
checking code that would not be part of the physical chip, but
helped to indicate when a problem arose during verification.

3.4.2 Verilog - Gate-level

Using logic synthesis and libraries supplied by LSI Logic, we con-
verted the RTL MAGIC description into a gate-level netlist descrip-
tion of the chip. This is the lowest-level description of MAGIC in
our design methodology, so all diagnostics had to pass on this ver-
sion before we sent MAGIC out for fabrication. As Table 2 shows
though, the gate-level simulation is by far the slowest since it is the
most detailed. For this reason, most diagnostic development and
verification effort was spent at the behavioral RTL-level, and only
when we had developed a large suite of random and direct diagnos-
tics did we simulate at this lowest level to make sure the chip was
really ready for fabrication.

3.5 Putting it All Together

To test the RTL-level MAGIC design with realistic workloads we
combined some of our simulation models in interesting ways. Two
of the issues that lead us to do multi-level simulations for the hard-
ware design were the correctness of the chip when running a realis-
tic workload and the correctness of the chip interfaces when
communicating with the other chips on the board.

3.5.1 FlashLite-Verilog

Ultimately we are interested in the overall performance of FLASH
as a multiprocessor. To get this information we needed to see how a
realistic workload would run on the hardware. We were particularly
interested in how efficiently the protocol processor supported the
multiprocessor cache coherency protocols.

Unfortunately, the performance of the RTL model is so poor, that it
would be impractical to replicate the model N times to build a N-
processor simulation. Instead, we used the FlashLite simulator to
model N-1 of the nodes, and replaced a single node with the Verilog
model of the MAGIC chip. Since FlashLite is much faster than the
Verilog, the resulting simulation ran only slightly slower than the
Verilog model by itself and allowed us to verify MAGIC with a
realistic workload.

3.5.2 FlashLite-Verilog-R10000

The other major issue that lead us to use multi-level simulation was
the task of confirming that MAGIC could communicate with the
other chips on the node board. One of these chips was the compute
processor for FLASH, the MIPS R10000.

In our simulation infrastructure, we replaced the high-level model
of the processor we used in Section 3.5.1 with the real RTL model
of the MIPS R10000. By running the realistic workloads within this
simulation environment we had high confidence that the processor
interface of MAGIC would work.

3.6 FLASH Conclusions

The evolution of the FLASH and MAGIC designs show that the
simulation environment is intimately linked with the design task at
hand. In the early stages of design low-detail statistics-driven simu-
lation was used to quickly verify high-level architectural design
decisions. Once the basic architecture was defined—an ASIP con-
trol path surrounded by dedicated data-movement hardware—more
detailed execution-driven simulation was used to provide guidance
for detailed architectural trade-offs. The result of these architectural
trade-offs was an RTL model that could be used to drive ASIC
design tools.

Simulation Level Speed (Hz)

FlashLite—C handlers 90,000

FlashLite—PPsim 80,000

Verilog—RTL 13

Verilog—Gate-Level 3

Table 2. Simulation Speed at Different Levels in the Hierarchy.

Two themes that emerge from the FLASH design are the need for
simulation to support concurrent software and hardware develop-
ment and the need to drive simulations with realistic workloads.
The simulation environment was structured to allow the software
development to commence using PPsim while the RTL develop-
ment proceeded in parallel. Once the RTL-level design was com-
plete, accurate performance evaluation was possible by using
realistic workloads. Multi-level simulation is the key methodology
that made this feasible.

Acknowledgments

This work is supported by DARPA contract number DABT63-94-
C-0054. The authors also thank the entire FLASH development
team.

References

[1] Z. Barzilai, J. L. Carter, B. K. Rosen, and J. D. Rutledge,
“HSS– A high speed simulator,”

IEEE Transactions on
Computer-Aided Design

, vol. CAD-6, pp. 601–617, 1987.

[2] J. Buck, S. Ha, E. lee, and D. Messerchmitt, “Ptolemy: a
framework for simulating and prototyping heterogeneous
systems,”

International Journal of Computer Simulation

,
January, 1990.

[3] R. F. Cmelik and D. Keppel, “Shade: A Fast Instruction-Set
Simulator for Execution Profiling,” University of
Washington, Technical Report UWCSE 93-06-06, June
1993.

[4] R. Collett, “Panel: Complex System Verification: The
Challenge Ahead,”

Proceedings of the 31st IEEE/ACM
Design Automation Conference

, p. 320, San Diego, CA,
June, 1994.

[5] G. DeMicheli, “Computer-Aided Hardware-Software Co-
Design,”

IEEE Micro

, vol. 14, August, 1994.

[6] R. S. French, M. S. Lam, J. R. Levitt, and K. Olukotun, “A
general method for compiling event-driven simulations,”

Proceedings of 32nd ACM/IEEE Design Automation
Conference

, pp. 151–156, 1995.

[7] J. D. Gee et al. Cache Performance of the SPEC Benchmark
Suite.

 IEEE Micro

, vol. 3, no. 2, August 1993.

[8] S. Goldschmidt. Simulation of Multiprocessors: Accuracy and
Performance. Ph.D. Thesis, Stanford University, June
1993.

[9] J. P. Hayes,

Computer Architecture and Organization 3rd
Edition.

New York, NY: McGraw-Hill, 1998.

[10] M. Heinrich et al. “The Performance Impact of Flexibility in
the Stanford FLASH Multiprocessor,” In

Proceedings of
the 6th International Conference on Architectural
Support for Programming Languages and Operating
Systems

, pp. 274-285, San Jose, CA, October 1994.

[11] J. L. Hennessy and D. A. Patterson,

Computer Architecture A
Quantitative Approach 2nd Edition

. San Francisco,
California: Morgan Kaufman Publishers, Inc., 1996.

[12] J. Kuskin et al. “The Stanford FLASH Multiprocessor,”
Proceedings of 21st Annual Int. Symp. Computer
Architecture, pp. 302–313, April-, 1994.

[13] D. Lenoski et al. “The Stanford DASH Multiprocessor,”

IEEE
Computer

, 25(3):63-79, March 1992.

[14] D. M. Lewis, “A hierarchical compiled code even-driven logic
simulator,”

IEEE Transactions on Computer-Aided
Design

, vol. 10, pp. 726–737, 1991.

[15] P. McGeer et al. “Fast discrete functional evaluation using
decision diagrams,”

Proceedings of IEEE/ACM
International Conf. Computer-Aided Design

, pp. 402–
407, San Jose, CA, November 1995.

[16] D.P. Reed and R K. Kanodia, “Synchronization with
Eventcounts and Sequencers, “

Communication of the
ACM

, vol. 22, no. 2, February 1979

[17] M. Rosenblum, S. Herrod, E. Witchel, and A. Gupta, “The
SimOS approach,”

IEEE Parallel and Distributed
Technology

, vol. 4, pp. 34–43, 1995.

[18] M. D. Smith, “Tracing with Pixie,” Stanford University,
Computer Systems Laboratory, Technical CSL-TR-91-
497, November 1991.

[19] J. Veenstra, “MINT a front end for efficient simulation of
shared-memory multiprocessors,”

Proceedings of
International Workshop on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems

,
pp. 201–207, January 1994.

[20] Z. Wang and P. M. Maurer, “LECSIM: A levelized Event
driven compiled logic simulator,” Proceedings of 27th
ACM/IEEE Design Automation Conference, pp.491–496
Orlando. Florida, 1990.

[21] S. Woo et al. “The SPLASH-2 Programs: Characterization
and Methodological Considerations.”

Proceedings of the
22nd International Symposium on Computer Architecture

,
June 1995

[22] J. Yim, et al. “A C-based RTL Design verification
methodology for complex microprocessor,”

Proceedings
of 324th ACM/IEEE Design Automation Conference

, pp.
83–88, 1997

