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Abstract
A large and increasing gap exists between processor and memory
speeds in scalable cache-coherent multiprocessors. To cope with
this situation, programmers and compiler writers must increasingly
be aware of the memory hierarchy as they implement software.
Tools to support memory performance tuning have, however, been
hobbled by the fact that it is difficult to observe the caching behav-
ior of a running program. Little hardware support exists specifi-
cally for observing caching behavior; furthermore, what support
does exist is often difficult to use for making fine-grained observa-
tions about program memory behavior.

Our work observes that in a multiprocessor, the actions required
for memory performance monitoring are similar to those required
for enforcing cache coherence. In fact, we argue that on several
machines, the coherence/communication system itself can be used
as machine support for performance monitoring. We have demon-
strated this idea by implementing the FlashPoint memory perfor-
mance monitoring tool. FlashPoint is implemented as a special
performance-monitoring coherence protocol for the Stanford
FLASH Multiprocessor. By embedding performance monitoring
into a cache-coherence scheme based on a programmable control-
ler, we can gather detailed, per-data-structure, memory statistics
with less than a 10% slowdown compared to unmonitored program
executions. We present results on the accuracy of the data col-
lected, and on how FlashPoint performance scales with the number
of processors.

1 Introduction

In recent years, processor speeds have improved much faster than
DRAM speeds, resulting in significant relative increases in mem-
ory latencies. This situation has led to heightened attention on pro-
gram memory performance. The problem is particularly acute in
multiprocessors, due to the potential for accesses over a network to
remote memory. For example, even in the absence of contention,
some remote accesses in the Stanford FLASH Multiprocessor can
take as many as 380 processor cycles to complete [HKO+94].

Despite the great importance of memory system behavior to appli-
cation performance, it is difficult to build tools to monitor such
behavior. The main challenges are:

• Memory references happen frequently, and therefore require
very frequent, fine-grained monitoring.

• Little hardware support exists to give feedback on caching
and memory behavior.

• The semantics of program loads and stores present software
with the abstraction of a flat memory space (caching is hid-
den) which hinders implementing memory monitoring tools
in software.

In response to these difficulties, memory performance tools have,
in many cases, turned to simulation-based approaches. Such
approaches can give detailed information about how the program
is likely to behave on a specified memory hierarchy. The main
drawback of these approaches is that while they offer a realistic
view of what might happen to the code, there are no assurances
that the code running on the real machine will behave this way. For
example, most such tools do not include operating system effects
in their simulation, because the additional references would
increase simulation time. Furthermore, simulations of parallel sys-
tems suffer slowdowns that increase with increasing numbers of
processors, preventing interactive use of simulation-based tools.
For these reasons, hardware support for memory performance
monitoring is often needed to get detailed assessments of program
behavior accurately and efficiently.

The key contribution of this paper is to expose the parallels
between the system support that is desirable for memory system
performance monitoring and the system support that is already
implemented on cache-coherent shared memory multiprocessors.
The main observation is that the mechanisms used to implement
cache coherence are often quite similar in structure to what is
desired for performance monitoring. In other words, while mem-
ory performance monitoring does need particular forms of support,
we argue that in many cases that support has already been imple-
mented, albeit for another purpose.

To demonstrate concretely the utility of integrating performance
monitoring with coherence support, we have implemented Flash-
Point, a performance monitoring tool for the FLASH Multiproces-
sor [KOH+94]. The tool is integrated into the software handlers of
FLASH’s flexible coherence protocol. It takes advantage of
FLASH’s existing mechanisms for (i) automatic software activa-
tion on each second-level cache miss and (ii) per-cache-line
accounting of memory usage. FlashPoint keeps detailed memory
statistics for individual program code and data structures. By tak-
ing advantage of existing cache-coherence support, FlashPoint is
able to collect these fine-grained statistics at low overheads. Gath-
ering per-data-structure statistics incurs less than 10% overhead;
gathering per-data-structure, per-procedure statistics has higher
overheads but still generally results in less than 2X slowdown.

FlashPoint represents an interesting and concrete demonstration of
a symbiosis between cache coherence and performance monitoring
in multiprocessors. The paper, however, is not simply a description
of this particular tool, but rather an analysis of the natural parallels
between these two system functions, and the opportunities for
amortizing hardware and systems costs across both of them.

Section 2 outlines the basic needs of performance monitoring and
coherence systems, and shows the commonalities between the two.
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As a case study, Section 3 describes the implementation and per-
formance of FlashPoint. Section 4 expands the discussion to con-
sider possible implementations in other styles of parallel
computers. Section 5 discusses related issues and future work, and
Section 6 offers our conclusions.

2 Integrating Monitoring and Coherence

To establish the link between performance monitoring and cache
coherence in parallel systems, this section first outlines the needs
of both independently, and then discusses which requirements are
common to both.

2.1 Performance Monitoring

The functionality of a performance monitoring system can be con-
sidered in terms of three main components: (i) a means of trigger-
ing on events to be monitored, (ii) hardware or software handlers
to respond to triggering events, and (iii) state information, or stor-
age, to aggregate statistics over a stream of triggering events.

As an example, consider a hardware histogram monitor, such as
the DASH Hardware Performance Monitor [Hei93]. Here, moni-
toring is triggered by each reference on the shared cluster bus.
Hardware (in essence, a handler) responds to the trigger by incre-
menting appropriate counts in a set of histograms. These banks of
memory-mapped histograms form the statistics state information
for this performance monitoring system.

For comparison, consider a software-based approach such as
MemSpy [MGA95] or CProf [LW94]. In these tools, the events-to-
be-monitored are memory references in the code. Trigger points
are created at these events by instrumenting them with calls to
software procedures, or handlers. These monitoring routines
update their data structures with statistics about the reference and
then return control to the application. Although the implementation
of these monitors is quite different from the hardware-based
approaches, the three basic components of the performance moni-
tor are still clearly present.

Finally, systems using hardware miss counters (such as implemen-
tations of the R10000 [JHei95], Pentium [Mat94] or DEC Alpha
[DEC92] architectures) trigger on first level cache misses, and
cause counters to be incremented. In this case, the trigger is the
miss signal resulting from the cache probe, the increment is the
hardware handler, and the counter register is the statistics state
information.

For many tools, the main limitation to their efficiency and accu-
racy has been the lack of lightweight, selective-notification mecha-
nisms for performing the first of the three main components:
identifying and triggering on events to be monitored. While bus
monitors or on-chip cache miss counters allow one to trigger on all
memory events (at a particular level of the hierarchy), it can be dif-
ficult to trigger selectively on some events or to take actions other
than aggregate counting. For example, tools like MemSpy catego-
rize miss counts according to the code and data structures that
incurred the misses. This categorization is still quite time-consum-
ing even with support such as on-chip miss counters or hardware
histogram bus monitors. If miss detection could be performed
instantaneously in hardware, the overhead for such a tool could
drop by a factor of two or more in some cases [Mar93]. The fol-
lowing subsection introduces how cache-coherence mechanisms
can help support selective notification and statistics categorization.

2.2 Cache Coherence

The key observation underlying this research is noting that within
many cache-coherent shared-memory multiprocessors, the three

components central to performance monitoring: trigger points,
handlers, and available state storage, have already been imple-
mented for an entirely different purpose. Namely, they are often
present as part of the cache-coherence support on many shared-
memory multiprocessors.

At the heart of most current high-performance shared-memory
multiprocessors is a cache coherence protocol, which guarantees
that the data in each processor’s cache is kept in sync with the data
in other caches throughout the system. Hardware or software will
track which lines are cached in which processor caches, watch for
activity on those lines, and send out updates or invalidations
accordingly. Although cache coherence strategies vary, a common
theme is that the hardware or software intended to implement
cache coherence will be triggered on “interesting” references (i.e.,
loads or stores that cause a protocol state change for the referenced
cache line). This triggering activates hardware or software han-
dlers. The handlers perform functions such as fetching the data or
invalidating it from other caches. They may also maintain per-
cache-line or per-page state information that the protocol uses to
maintain coherence.

One can also extend beyond this surface similarity. In shared-
memory cache coherence protocols, trigger points are those refer-
ences that require coherence actions—either to fetch a line into the
cache, or to upgrade its state from shared to exclusive. In scalable
(e.g. directory-based) protocols, the memory events that cause
major delays are almost always those requiring coherence actions;
therefore, “interesting” coherence events are “interesting” memory
performance monitoring events.

Once a cache-coherence handler has been invoked, it performs
(either in hardware or software) a table lookup to check on the
coherence state for the cache line. Based on this information, it
sends out messages as needed and updates the coherence state
information. One could modify the protocol handler state machine
or software to update statistics counters as part of each coherence
action. Furthermore, by modifying the directory storage to include
counter bits or to include indexing bits that point to an array of
counters, one could categorize statistics for different regions of
memory at granularities as small as a cache line. Thus the three
required mechanisms for fine-grained memory performance moni-
toring are present in the standard cache-coherence mechanisms.

3 FlashPoint: A Case Study

As a concrete example of our ideas, we now describe a tool called
FlashPoint. The tool gives data oriented breakdowns of memory
overhead in the programs being run. That is, similar to tools like
MemSpy [MGA95] and CPROF [LW94] it presents program per-
formance information in terms of data, as well as code, structures
in the program. FlashPoint maintains data structures that map each
memory location accessed by the monitored program to its corre-
sponding program data structure identifier. The mappings handle
heap-allocated as well as static data, and they aggregate together
elements of dynamic data structures such as linked lists.
([MGA95] and [ZH88] describe similar methods.)

FlashPoint gathers statistics on the number and latency of read and
write misses. It maintains separate categories of statistics for local
and remote references. It also keeps counts on the number of inval-
idations required and on the number of cold misses in the program
(i.e., misses to memory not previously referenced since monitoring
began). The information gathered by FlashPoint can be viewed
with a graphical user interface to give the programmer a display of
the program’s memory behavior in familiar terms (procedure and
variable names from the program).
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3.1 FlashPoint Implementation

Lacking adequate, widely-available hardware support for memory
performance monitoring, tools like MemSpy and CProf were
designed to evaluate application performance based on simulations
of the program. In contrast, FlashPoint is designed to run directly
on the Stanford FLASH Multiprocessor; its implementation takes
advantage of the implicit performance monitoring support offered
by FLASH’s cache-coherence mechanisms. FlashPoint is imple-
mented as a modified cache coherence protocol. Instead of the
default protocol, each protocol processor in the machine runs pro-
tocol code that implements both performance monitoring and the
standard coherence actions. It is crucial to note that unlike Mem-
Spy or CProf, FlashPoint is NOT simulation-based; rather, it gath-
ers data from a real, running system.1 For this reason, it has
several beneficial characteristics. First, it captures information
about full system effects. Second, it scales with number of proces-
sors. Third, it requires no additional hardware.

The FlashPoint method has one potential disadvantage, however.
Unlike simulation-based approaches, FlashPoint is intrusive
because it augments the default coherence protocol with perfor-
mance monitoring information. As a result, the timing of a pro-
gram in a FlashPoint system is not identical to its timing in an
unmonitored system. Later in this section, we examine the implica-
tions of this approach on monitoring accuracy and application per-
formance.

FlashPoint is built by augmenting the default protocol used in the
FLASH Multiprocessor. For this reason, we first describe the
FLASH architecture and the default FLASH protocol. Following
that, we describe the FlashPoint protocol in some detail—covering
its data structures and control mechanisms.

3.1.1 The FLASH Architecture

Figure 1 shows the organization of one compute node in the
FLASH architecture. These nodes are interconnected via a two-
dimensional mesh network. At the heart of every compute node is
the MAGIC chip which includes interfaces to the processor, the
network, and the I/O subsystem. MAGIC queues incoming events
from each of these external interfaces, and invokes the appropriate
software handlers on its embedded Protocol Processor (PP) to han-
dle these events. (See Figure 2.)

1. Since the system does not yet exist however, we evaluate the performance of the
FlashPoint protocol code by running it on the FlashLite simulator. This is precisely
how one would evaluate a coherence-only protocol for the system.

Figure 1. FLASH Node Organization
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The protocol processor is a programmable controller that imple-
ments a subset of the DLX instruction set [HP90] with extensions
that include bitfield operations and a bit-wise conditional branch.
Both extensions accelerate the state-bit manipulations that are
common in the protocol handlers. The PP is implemented as a
dual-issue 64-bit machine with static scheduling. It fetches a pair
of instructions on every PP cycle. Since the PP does not support
interrupts or exceptions, these instructions are executed uncondi-
tionally. The PP also does not support pipeline interlocks or most
types of resource conflict detection, so the PP programmer or com-
piler must avoid these statically. Our FlashPoint implementation
takes advantage of these PP characteristics: some of the FlashPoint
code added to each handler fills otherwise-empty slots in the stati-
cally-scheduled protocol handlers.

The protocol processor’s memory hierarchy consists of a 16 KB
direct-mapped on-chip instruction cache and a 1 MB, 2-way set-
associative off-chip data cache. With these parameters, the proto-
col processor code experiences very few cache misses; they are
negligible in the results presented in this paper for both the default
protocol and the augmented FlashPoint protocol. The MAGIC chip
has a target frequency of 100MHz, therefore all latencies collected
by FlashPoint are stated in terms of these 10 ns system cycles.

3.1.2 The Default FLASH Protocol

FLASH’s default coherence protocol is directory-based, and uses
dynamic pointer allocation [Sim92] to maintain a scalable direc-
tory structure. In this protocol, eight bytes of state, the directory
header, is associated with each coherence unit (a 128 byte cache
line). The header includes boolean flags that encode the line’s
state, as well as a link field which is the head of a linked list of
sharers. For efficiency, the first of these sharers is also stored
within the directory header. Each line has a directory entry at one
node in the system; that node is called the home node.
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Figure 2. Block Diagram of FLASH’s MAGIC Chip
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The directory state is maintained via a set of software handlers.
The base protocol accepts incoming messages from either the local
compute node or from the network. Incoming read or read-exclu-
sive requests may be satisfied either locally (if this is the home
node for the line) or remotely (otherwise). For local requests, the
protocol processor checks and updates the line’s state, and on
writes, may also send invalidation requests to other nodes. For
remote requests, the local protocol processor sends a correspond-
ing request to the home node for that line. For each request mes-
sage in the system, a corresponding reply message is sent back;
these return requested data or acknowledge completion of a
requested action.

3.1.3 The FlashPoint Protocol

The FlashPoint protocol can be viewed as a superset of the default
dynamic pointer allocation protocol. It augments several handlers
with additional code that updates the performance counts. In addi-
tion, it defines several new handlers not present in the default pro-
tocol. In total, FlashPoint required modifying 12 out of the
approximately 100 handlers in the default protocol, and adding
four new handlers. Figures 3 and 4 show the pseudo-code for two
FlashPoint handlers. The portion in boldface is the code added to
the handler for FlashPoint; the remaining code is the default proto-
col handler.

Performance Data Structures
The FlashPoint protocol maintains two per-processor data struc-
tures in addition to the default cache-coherence data structures.
One data structure is a bit field occupying part of the directory
header for each cache line. We use eleven previously unused bits
in the directory header to store a “warm bit” and a ten-bit “bin
number”. The warm bit indicates whether the cache line has been
accessed since initialization. The value of the warm bit is checked
on data replies to decide whether or not the reference is a cold
miss, and if so, to update statistics accordingly. The bin number
identifies which data structure the cache line belongs to. For all
coherence operations at the home node, the default protocol looks
up the directory header and loads it into a register. Consequently, it
is available without recalculation for performance monitoring
code.
void
NIRemotePut(Header hdr, Address addr)
{

long long binAddr, latency;
int       bin, warm;

PISend(hdr, addr);

latency = ReadLatency();
bin     = hdr.bin;
warm    = hdr.warm;
binAddr = binTableStart +

bin * sizeof(FP_BIN);

binAddr.rdMissRemote++;
binAddr.rdLatencyRemote += latency;

if (!warm) {
binAddr.cold++;

}
}

Figure 3. NIRemotePut Handler

The second data structure is the storage for the per-bin statistics. It
is an array of statistics structures where each individual record
includes counters for read misses, write misses, local vs. remote
misses, and so on. These records are organized as a two-dimen-
sional array where the first dimension is the procedure number,
and the second dimension is the bin number. This allows Flash-
Point to maintain per-data-structure, per-procedure statistics. For
efficiency, a pointer to the current procedure’s array of bins is
stored in a register. In the applications used in our study, this data
structure’s average size is approximately 256 KB.

Program Access to Performance State
There are two pieces of information that the user-level system
needs to pass down to the protocol. The first is the assignment of
bins to cache lines. This is used to categorize memory to form per-
data-structure statistics. We implement this with an uncached store
to a special location. The address of the store is interpreted as a
command by MAGIC, and the data contains: (i) the starting physi-
cal address for a data bin, (ii) the length (in cache lines) of the bin,
and (iii) the bin number to assign to that range. The protocol takes
this data and loops over the appropriate directory headers setting
the bin field of each to the new bin number, and clearing the warm
bit. In a real system, the mapping between the program’s virtual
memory and the physical memory of the machine can change over
the course of the program’s execution. In our experiments we
assume that all pages are pinned (the virtual to physical transla-
tions do not change, and hence you need to establish bin mappings
only once). Other components of the FLASH design remove this
page-pinning requirement [HGD+94]; for simplicity, we do not
address this problem here because we do not believe it affects the
quality of our results.

NILocalGet(Header hdr, Address addr)
{

Address headLinkAddr;
long long h;

headLinkAddr = AddrToHeadlinkAddr(addr);
h = headLinkAddr;

if (!h.Pending) {
if (!h.Dirty) {  // Clean

if (!h.HeadPtr) {
// no previous sharers
hdr.len = LEN_CACHELINE;
hdr.msgType = MSG_PUT;
hdr.bin = h.FPBin;
hdr.warm = h.FPWarm;
NISend(header, addr);
h.FPWarm = 1;
h.Ptr = hdr.src;
h.HeadPtr = 1;

}
else {... // Already sharers
}

}
else { ... // Dirty bit set
}

else { ... // Pending bit set
}

}

Figure 4. NILocalGet Handler
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When monitoring per-procedure statistics, the user-level system
also needs to pass the protocol the procedure number on every
function call and return. Whenever the program switches proce-
dures the difference between the current procedure number and the
new procedure number, the delta, is sent down to the memory sys-
tem. The current bin pointer is adjusted by delta times the size of
the bin array.2 This is implemented as an uncached load where the
page offset bits contain the procedure delta.

After the program has run, the statistics need to be read by the
main processor. There are many ways of doing this. For example,
one could send a command to the PP that causes it to flush the bin
data structures from its cache. The main processor can then read
the bin structures like it would any other part of memory.

3.1.4 Fine-Grained Timing Support

Counts are easy to do in software, but determining accurate laten-
cies is not. A request may spend an arbitrary amount of time
between the main processor and the PP (waiting in queues). There-
fore, if the entire latency calculation were done by having the PP
set and later read timestamps, it could be arbitrarily inaccurate
since it would not have recorded the time the request spent in the
system before being initially serviced by the PP. Instead, there is
hardware directly at the processor interface to MAGIC that starts a
counter when the request arrives from the processor bus. When the
corresponding reply is sent back to the processor, the PP can read
the counter to record the latency in the proper bin. By reading the
counter after the reply is sent to the main compute node (i.e. out-
side the latency interval itself), FlashPoint obtains a highly accu-
rate measurement of the miss latency.

3.1.5 Summary

Clearly, some aspects of FlashPoint’s implementation are specific
to the FLASH multiprocessor and its cache-coherence support. For
example, the programmability of the PP allows protocol modifica-
tions to happen in a flexible way. In addition, the PP’s dual-issue
pipeline allows some of the extra performance monitoring code to
be embedded into unused instruction slots. Beyond that, FLASH’s
default protocol already maintains state information about each
cache line in the system. By adding performance information to
the coherence state, we can easily access the information, and can
amortize directory table lookup overhead that is already needed for
the coherence protocol. The main point is that although some
implementation details are machine-specific, the notion of inte-
grating coherence and performance monitoring is a much more
generally applicable idea. Section 4.0 discusses extensions to other
protocols and machines.

3.2 FlashPoint Performance

In order to present results on FlashPoint’s performance, we first
describe the methodology used to collect the data. We then present
results comparing the performance overhead and accuracy of the
FlashPoint protocol to the default dynamic pointer allocation pro-
tocol. We conclude with a discussion of some implementation
tradeoffs in the FlashPoint design. Many of the ideas in that sec-
tion can be used to reduce FlashPoint’s overhead even further than
the numbers presented here.

3.2.1 Experimental Methodology

We gathered these results using the FlashLite simulator. FlashLite
is a multithreaded system simulator that interfaces to the Tango

2. If the size of the bin array is a power of two, then the procedure adjustment is just
two instructions—a shift and an add.

Lite event-driven reference generator [Gol93]. To model latency
and contention accurately, FlashLite uses cycle counts and arbitra-
tion information from a Verilog model of the MAGIC chip. Han-
dler code is compiled using a modified version of gcc [Stall93],
which generates object code that makes use of the PP’s extended
instruction set. This code is then scheduled using a version of
twine [Smi92], an instruction scheduler originally developed for
the TORCH processor [SJH89]. To make the comparison fair, the
same tools and optimization levels are used when generating the
default and FlashPoint versions of the protocol handlers.

We evaluate FlashPoint on a subset of the SPLASH-2 suite of par-
allel applications [WOT+95]. The four programs considered are:
FFT, LU, OCEAN, and RADIX. The FFT benchmark uses a data
set of 256K points. LU performs an LU decomposition on a
512x512 matrix with a block size of 16. OCEAN is a scientific
program that studies large-scale ocean movements; we run it here
on a 258x258 grid. Finally, RADIX performs an integer sort with
radix 256 and 1 million keys. Except where specified, we use 16
processor runs of these applications. Our results are presented in
two parts. First we consider the accuracy of the statistics gathered
by FlashPoint by comparing the miss counts and miss latencies it
reports with those for the same application run with the default
coherence protocol. Subsequently, we quantify the performance
overhead of running with the FlashPoint protocol as compared to
running with FLASH’s default protocol. Throughout these results,
we present overview statistics for all applications. Occasionally we
also present results focusing in on a single application’s behavior.
Typically, we focus on FFT, but its behavior is not qualitatively
different from the other three applications.

3.2.2 Accuracy Impact of FlashPoint

Clearly our goal is to collect statistics about program caching
behavior with only slight perturbation of the behavior being stud-
ied. FlashPoint collects statistics both on cache miss counts and on
their latencies, and we would like each of these to reflect the
behavior of the unmonitored program run.

To determine the accuracy impact of FlashPoint, we compare the
cache statistics collected by a run with the FlashPoint protocol (in
which the timing and perturbation of FlashPoint are included)
against the statistics collected by a control run of the simulator. In
the idealized control run, the simulator collects the same statistics
that FlashPoint would, but uses the default protocol so the program
is not charged for the timing effects of gathering these statistics.

Cache Miss Counts
Table 1 shows the application cache miss counts for local and
remote reads and writes, for three different protocol configura-
tions. DP refers to the dynamic pointer allocation protocol that is
the default on FLASH. FP-NoProc is the FlashPoint protocol with
per-data-structure statistics, but without per-procedure statistics.
FP-Proc is the full FlashPoint protocol, which keeps statistics both
per-data-structure and per-procedure.

For all four applications the cache miss counts gathered by Flash-
Point are quite close to the true statistics. In most cases, miss
counts for reads and writes differ by less than 3% from ideal. The
9-13% difference in remote read misses for RADIX is caused by
an artifact of our simulator, resulting in different placement of
static data between the DP and the FlashPoint runs. Notice though
that for total read misses in RADIX, FlashPoint barely differs from
the default protocol. Clearly, for gathering statistics of this sort,
FlashPoint is quite accurate.
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Cache Miss Latencies
Beyond counts, FlashPoint also collects information about the
latencies of memory events. Table 2 shows information about
FlashPoint’s latency estimates. For each application, latency esti-
mates are given for the same three protocol configurations as
before. For each, we display the average, average local, and aver-
age remote read and write miss latencies. Although not as success-
ful as the count values, the results for latency measurements are
also acceptable. For all four applications, read latencies are esti-
mated to within 20% of their true values. RADIX and LU have the
best behavior of the four, with latency estimates remaining within
20% of the true values for both reads and writes. For OCEAN and
FFT, read estimates are fairly accurate, but write estimates deviate
by roughly 35% and roughly 55% respectively. This occurs
because these programs perform bursty writes, so the added occu-
pancy of the FlashPoint handlers exacerbates the queueing delays
inherent under the base DP configuration. It may be possible to
improve the accuracy of latency measurements by adjusting them
by a fixed amount corresponding to FlashPoint’s additional
instruction overhead in a particular handler.

Table 1: Cache Miss Counts (x103)

Read Miss Counts (Total / Local / Remote)

Application DP FP NoProc Error FP Proc Error

FFT 215 / 122 / 93 214 / 121 / 93 -1% / -1% / 0% 215 / 121 / 93 0%/-1% / 0%

LU 225 / 26.9 / 198 224 / 26.2 / 198 0% / -2% / 0% 225 / 27.8 / 198 0%/ 3%/ 0%

OCEAN 452 / 216 / 236 457 / 221 / 235 1% / 2% / 0% 456 / 221 / 235 1%/ 2%/ 0%

RADIX 71.7 / 69.2 / 2.48 71.8 / 69.0 / 2.79 0% / 0% / 13% 71.7 / 69.0 / 2.69 0%/ 0%/ 9%

Write Miss Counts

FFT 105 / 105 / .016 105 / 105 / .019 -1% / 0% / 19% 105 / 105 / .018 0%/ 0%/ 13%

LU 42.5 / 26.1 / 16.5 41.8 / 25.3 / 26.5 -2% / -3% / 0% 43 / 26.5 / 16.5 1% / 2%/ 0%

OCEAN 630 / 630 / .293 629 / 628 / .284 0% / 0% / -3% 629 / 629 / .307 0% / 0% / 5%

RADIX 149 / 40.5 / 108 149 / 40.6 / 108 0% / 0% / -1% 149 / 40.6 / 108 -1% / 0%/ -1%

Table 2: Cache Miss Latencies (10 ns system cycles)

Read Latency (Average / Local / Remote)

Application DP FP NoProc Error FP Proc Error

FFT 84 / 22 / 165 95 / 23 / 189 13% / 3% / 14% 95 / 23 / 189 13% / 2% / 14%

LU 141 /  23 / 157 163 / 24 / 181 16% / 5% / 16% 152 / 22 / 171 8% / -1% / 9%

OCEAN 94 /  24 / 158 102 / 28 / 172 9% / 15% / 9% 103 / 28 / 172 9% / 15% / 9%

RADIX 104 / 101 / 190 109 / 104 / 226 4% / 3% / 19% 109 / 104 / 225 4% /  3% / 19%

Write Latency

FFT 77 / 77 / 297 118 / 118 / 283 52% / 52% / -5% 119 / 119 /282 54% / 54% / -5%

LU 62 / 31 / 110 67 / 32 / 120 8% / 2% / 9% 65 / 30 / 122 5% / -5% / 10%

OCEAN 42 / 42 / 286 57 / 57 / 301 34% / 34% / 5% 57 / 57 / 294 35% / 35% / 3%

RADIX 170 / 31 / 222 192 /  33 / 252 13% / 4% / 14% 192 / 32 / 253 13% / 3% / 14%

Per-Bin Statistics
The above paragraphs have examined FlashPoint’s aggregate mea-
surement accuracy. Our goal, however, is to use FlashPoint as a
mechanism for collecting fine-grained statistics. On one hand, it
may seem even more difficult to collect fine-grained data accu-
rately as compared to aggregated data. When reference statistics
are very finely categorized, the number of data points collected per
bin may be quite small and the potential for measurement error
may therefore be greater. As a performance tuning tool, however,
FlashPoint’s main objective is to indicate to programmers the main
bottlenecks in the code and the degree to which they are bottle-
necks. The proportional representation of key data and code struc-
tures may be more important than absolutely precise
measurements of event latencies.

Table 3 summarizes some of the FlashPoint per-data structure sta-
tistics output for a 16 processor run of FFT. The two top-ranking
bins are shown, and they make up 84% of the read and write
misses for this run of the code. For each data structure (there are
two shown) and each statistics metric (there are ten shown), the
table presents the proportion of that metric caused by this data bin.
For example, the top-ranking data structure (a pointer to doubles,
called trans) is responsible for 29% of the local read misses, 33%
of the remote read misses, and 65% of the total write misses. We
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show these proportions for both FlashPoint and the base protocol.
We also show the relative errors between the base, unperturbed
results and the FlashPoint results. The results here are extremely
promising. All FlashPoint measurements are within 7% of their
unperturbed values. Even in cases (such as FFT’s write latencies)
where FlashPoint’s absolute measurements deviate due to pertur-
bation, the relative proportion of latencies by data structures can be
reported quite accurately. For programmers assessing which vari-
ables make the most difference in their program’s performance,
this metric is arguably more important than the absolute latency
measurements.

3.2.3 Performance Impact of FlashPoint

Having established that FlashPoint can accurately measure several
aspects of fine-grained memory behavior, we now present data on
its performance overhead. Figure 5 plots execution time for the
four applications using our three different protocol configurations.
The execution time presented here is the time the program spends
in the parallel section of its code; initialization is not included. In
all cases, the execution time required for the FP-NoProc protocol
is less than 10% greater than the default unmonitored run. When
users wish to have statistics categorized both by data bin and by
procedure, the overhead increases somewhat for some of the appli-
cations. For OCEAN and RADIX, even the FP-Proc protocol costs
only an extra 5% in execution time. For FFT and LU, the over-
heads are higher, but are still much lower than the only previous
alternative (simulation) for gathering statistics at this granularity.

Table 3: Per-data-structure Statistics for FFT

Metric DP run FP run Error

Top Ranking Data Bin: (double*).trans

Read Miss Local 29% 32% 7%

Read Latency Local 28% 30% 6%

Read Miss Remote 33% 33% 0%

Read Latency Remote 35% 34% -2%

Write Miss Local 65% 68% 4%

Write Latency Local 62% 64% 2%

Write Miss Remote 0% 0% 0%

Write Latency Remote 0% 0% 0%

Cold Misses 33% 33% 0%

Invalidation Misses 59% 59% 0%

2nd Ranking Data Bin: (double*).x

Read Miss Local 29% 27% -7%

Read Latency Local 31% 29% -6%

Read Miss Remote 66% 66% 0%

Read Latency Remote 61% 60% -1%

Write Miss Local 34% 31% -7%

Write Latency Local 38% 36% -4%

Write Miss Remote 0% 0% 0%

Write Latency Remote 0% 0% 0%

Cold Misses 33% 33% 0%

Invalidation Misses 41% 40% -1%

For comparison, MemSpy would require greater than 10X over-
head to gather similar statistics, and its simulation-based approach
does not scale well with the number of processors [Mar93].

Impact on Handler Latency
Figure 6 shows the average latencies of the five instrumented han-
dlers with the greatest impact on performance. These five handlers
are: (i) PILocalGetX (gets exclusive access for a local write), (ii)
PILocalUpgrade (a local upgrade from shared to exclusive mode),
(iii) NILocalGet (a remote read request), (iv) PILocalGet (a local
read) and (v) NIRemotePut (a remote read reply). Latency is mea-
sured as the time from when the PP executes the first instruction of
the handler to the time when the PP sends the response. Although
the additional instrumentation in the FlashPoint protocol leads to
different program execution, with slightly different handler laten-
cies, Figure 6 shows that none of the handler latencies increase sig-
nificantly. For completeness, Table 4 reports the handler latency
and occupancy perturbations for all four of our applications for two
of the most common handlers: PILocalGet and NILocalGet. Since
these perturbations are nearly identical for FP-NoProc and FP-
Proc, we report results only for FP-Proc in the table.

Impact on Handler Occupancy
Figure 7 shows a graph similar to the previous one, this time for
the handler occupancies in FFT. Occupancy is defined as the time
from when the PP executes the first instruction of the handler until
the time the PP reaches the next “switch” which is the PP instruc-
tion to load in the next handler. Occupancy is a measure of how
busy the PP is being kept, while handler latency is a measure of
how long a particular access (or portion of an access) will take.
The figure shows that although handler latencies were largely
unchanged under FlashPoint, handler occupancies do increase.
Particularly for NIRemotePut (a small pass-through handler) the
occupancy increases significantly. Referring back to Figure 3, the

Figure 5. Application Parallel Execution Time
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Table 4: Handler Latency/Occupancy Perturbations (10 ns system cycles)

PILocalGet NILocalGet

App DP
FP

Proc
Over-
head DP

FP
Proc

Over-
head

FFT 9/11 9/21 0%/91% 15/29 17/37 15%/30%

LU 9/11 9/21 0%/91% 15/49 22/56 41%/15%

OCEAN 9/11 9/21 0%/91% 16/38 18/47 9%/25%

RADIX 11/13 11/18 0%/36% 16/37 20/44 23%/20%



8

reason for this becomes apparent. Without FlashPoint, the handler
merely passes off the request to the processor interface. With
FlashPoint, additional instructions are inserted. The handler
latency is measured only up until the send, so it is unaffected. The
handler occupancy includes all the PP instructions after the send,
so it is here that the monitoring has an impact. Again, Table 4
shows occupancy perturbations for all four of the applications for
two of the most common protocol handlers.

Scaling Number of Processors
One of the primary drawbacks to using simulation-based tools for
performance monitoring parallel programs is that simulation time
scales poorly with increased number of parallel processors to sim-
ulate. The result is that the runtime overhead of using a simulation-
based tool can become prohibitive when one is interested in moni-
toring even a moderate number of processors. FlashPoint, in con-
trast, shows quite good scaling behavior with the number of
processors.

As an example, Table 5 compares read and write miss counts and
latencies generated for 16 and 64 processor runs of FFT. The miss
count error remains negligible in the 64 processor case. The error
in the miss latencies remains significant, but does not increase
much with the number of processors. Table 5 also compares the 16
and 64 processor parallel execution times for each of our three pro-
tocol configurations. Surprisingly, the FlashPoint execution time
overhead for FFT decreases as the number of processors increase,
though handler occupancies are larger for the 64 processor case
than for the 16 processor case. Overall as the number of processors
increases, the performance trends depend on the application
behavior. For example, if increasing the number of processors on a
fixed problem size reduces capacity misses, then FlashPoint’s rela-
tive performance may actually improve with the number of proces-
sors, since the number of misses decreases.

Figure 6. Handler Latencies for FFT
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Figure 7. Handler Occupancies for FFT
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3.2.4 Summary

In summary, FlashPoint is quite accurate in collecting statistics on
miss counts with only minimal performance impact on the applica-
tion. Furthermore, the per-data-structure miss counts and miss
latencies (as a percentage of the total) are nearly identical between
the unmonitored DP protocol and the monitored FlashPoint sys-
tem. The overhead and the accuracy of FlashPoint also scale well
with the number of processors.

FlashPoint’s implementation has a number of interesting design
tradeoffs that affect both monitoring overhead and accuracy. For
example, if the user does not want to collect latency information,
but instead is only interested in miss counts, the overhead of Flash-
Point would be much smaller. In the current installation, users can
choose between NoProc and Proc versions of the protocol. In
future installations, more versions could be available. In addition,
since the FLASH multiprocessor uses an aggressive, out-of-order
execution main compute processor, FlashPoint must be conserva-
tive in notifying MAGIC about procedure entry and exit points and
data binning information. In particular, we use memory fence
instructions to prevent newer loads and stores from bypassing the
uncached write that changes the pointer to the current set of bins
(which could potentially assign miss information to the wrong sta-
tistical bin). It is likely that the error introduced by not inserting
the fence instructions is small, and that they can therefore be
removed without adversely affecting the accuracy of FlashPoint.
Since the fence stall time is the major source of execution time
overhead in the per-procedure (FP-Proc) version of FlashPoint,
removing the fence instructions will decrease the overall execution
time dramatically, and may reduce the total amount of system per-
turbation as well.

Table 5: Scaling FFT to 64 Processors

Metric DP

FP
No

Proc Error
FP

Proc Error

FFT 16P

Read Misses (103) 215 214 -1% 215 0%

Read Latency 84 95 13% 95 13%

Write Misses (103) 105 105 -1% 105 0%

Write Latency 77 118 52% 119 54%

FFT 64P

Read Misses (103) 203 203 0% 203 0%

Read Latency 188 231 23% 218 16%

Write Misses (103) 102 102 0% 102 0%

Write Latency 81 126 55% 127 56%

Parallel
Execution Time

(106 cycles) DP

FP
No

Proc
Over-
head

FP
Proc

Over-
head

FFT 16P 3.45 3.62 5% 5.19 51%

FFT 64P 1.11 1.17 5% 1.55 40%
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4 Other Coherence Mechanisms

The preceding example has taken an in-depth look at an imple-
mentation of a performance monitoring tool integrated into
FLASH’s flexible coherence protocol. This section discusses other
common classes of coherence protocols, and the support they offer
for performance monitoring.

Machines that implement user-level shared memory schemes, such
as Typhoon [RLW94], also provide an excellent environment for
performance-coherence integration. Typhoon is similar to FLASH
in the sense that both architectures include a network interface
device with a fully-programmable processor. This allows perfor-
mance tools to be implemented relatively simply via changes in
the protocol code running in the network interface processor.
Among systems with programmable protocol processors, varia-
tions in block sizes may affect tool performance. FlashPoint bene-
fits slightly from longer cache lines for two reasons. First, the data
bin mapping of a new page is done by mapping each of the cache
blocks within it, so larger lines require fewer individual mapping
operations per new page. Second, FlashPoint’s overhead is fixed,
regardless of the amount of data being transferred. With longer
cache lines, one amortizes this overhead over more bytes of data,
and the handler overhead is more likely to be hidden in parallel
with the data transfer.

Fully hardwired implementations of directory-based protocols also
offer some of the same advantages as FLASH’s programmable
directory protocol. Whether implemented using a hardwired or
programmable controller, directory protocols keep per-cache-line
state information. For performance monitoring tools, this per-line
information can be extended by only a few bits to store a unique id
(bin number) indicating which data structure this cache line is a
part of. The main difference is that the decision to support perfor-
mance monitoring must be made at hardware design-time. In
FlashPoint, data structures for per-procedure and per-data statistics
are built up in software by the protocol’s handler code. To build a
similar tool in a directory-based machine with a hardwired control-
ler, additional hardware would be required to record counts and
latencies of read and write events. Because of the hardwired imple-
mentation, users would have less flexibility in selecting levels of
performance monitoring detail.

Over time, scalable parallel machine designs are converging, as are
the communication mechanisms in both “message-passing” and
“shared-memory” machines. Although not hardware cache-coher-
ent, machines like the Wisconsin COW [HLW95] or upcoming
SHRIMP [BLA+94] implementations may also be amenable to
integrating communication and performance monitoring. In these
machines, the network interface is (or is likely to be) implemented
using Myricom switches [BCF+95]. The core of these switches is
a programmable controller implemented using the LANai proces-
sor. Thus, performance monitoring code could be inserted directly
into the LANai handlers that support communication. Unfortu-
nately, the 33MHz LANai processor is not nearly as high-perfor-
mance as FLASH’s protocol processor. Furthermore, LANai is a
single-issue processor, so there are fewer unused instruction slots
where performance code could be inserted “for free”. On the other
hand, LANai provides hardware support for two full contexts, and
has a mechanism for switching between contexts in a single cycle.
The freedom to place the performance instrumentation code in a
separate context may allow for better register usage in the commu-
nications code itself.

5 Related Work

Implicit in the work described here were several assumptions
based on related work. First, our implementation made per-data-

structure performance information a primary goal. While space-
constraints limit our discussion, this belief is based on work such
as SHMAP [DBK+90], MemSpy [MGA95], and CPROF [LW94];
in these tools, the authors argued strongly that the ability to get
visualizations or performance data on individual data structures is
instrumental to understanding program behavior. Other higher-
level approaches like MTool [GH93] also exist; we argue however
that particularly in parallel code, additional statistics detail can be
instrumental in understanding application memory referencing
patterns.

We have also touched only briefly on hardware monitoring support
in current machines. In fact, over the past five to ten years, moni-
toring support has become increasingly available both on research
and commercial machines. On-chip hardware counters are a class
of monitoring support found on several current-generation proces-
sor chips, including the DEC Alpha 21164, MIPS R10000, and
Intel Pentium processors. These counters—collecting information
on data accesses, cache misses, pipeline stalls, and instruction
mix—can be invaluable in collecting fine-grained information
about program and system behavior. Unfortunately their main
drawback, as discussed in [HMM+96], is that they are primarily
intended to offer aggregate counts on hardware performance.
Since the counters are often memory-mapped, the overhead to read
the counter values can be quite high, so it is difficult to implement
tools that can attribute individual cache misses to particular refer-
ence points in the code. In addition, the counters on current proces-
sors offer no mechanism by which software can observe and react
to individual cache misses as in FlashPoint.

Several multiprocessors [Hei93, NAB+94, ABC+95] provide sys-
tem-level monitoring hardware as well. For example, the DASH
multiprocessor includes a monitoring board connected to each
shared cluster bus, and the Alewife project includes monitoring
hardware on the CMMU. Some such approaches have enough flex-
ibility that they can gather statistics similar to those gathered by
FlashPoint. The advantage of these approaches over FlashPoint is
that by dedicating hardware for monitoring, they can design the
monitor to be able to observe communication behavior without
perturbation. The clear disadvantage, however, is their reliance on
special-purpose hardware which tools like FlashPoint can circum-
vent.

Finally, by integrating the performance monitoring into the coher-
ence protocol itself, one can also develop systems where the on-
line performance information can be used by the protocol to cus-
tomize handler actions according to the observed program data
usage patterns. For example if the protocol notes that a processor is
making frequent remote accesses to lines on a particular page, it
could use this information to suggest to the operating system that it
might be useful to migrate the page to this processor’s local mem-
ory. (This is similar to the approach described in [CDV+94], which
used dedicated monitoring hardware.) More elaborate protocols
might also use similar information to guide decisions of whether to
use updates or invalidations to maintain the coherence of each line.
For these types of applications, the integration of performance and
coherence monitoring is especially useful; less integrated
approaches (for example using profile data from a hardware trace
buffer) do not work well because of extra overhead in detecting
and responding to particular conditions.

6 Conclusions

This paper has explored the natural parallels between coherence
and performance monitoring in cache-coherent, shared-memory
multiprocessors. By taking advantage of existing coherence sup-
port on such machines, performance monitoring can often be inte-
grated into a multiprocessor system with little design effort or cost.
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The extent to which performance monitoring can be implemented
out of existing hardware and software depends on the coherence
mechanism being used. In machines with programmable protocol
controllers, it becomes especially easy to take advantage of these
parallels. Changes required to implement even fairly detailed mon-
itoring can be done entirely by modifying protocol code.

We have demonstrated the usefulness of this approach by imple-
menting the FlashPoint memory performance monitoring tool as
part of a software coherence protocol for the FLASH Multiproces-
sor. FlashPoint obtains detailed memory performance statistics at
low overheads with good accuracy. Both per-bin cache miss counts
as well as counts aggregated over the whole program run agree
well with an unperturbed execution. Absolute measurements of
cache miss latencies are more error-prone than cache miss counts,
but relative comparisons of latencies attributed to different data
structures remain quite accurate.

For a collection of programs from the SPLASH-2 benchmark
suite, FlashPoint runtime overhead was less than 10% for gather-
ing per-data structure program statistics. When one uses Flash-
Point to gather per-procedure and per-data structure statistics, the
overheads increase somewhat, but are still generally less than 2X.
This compares favorably with previous approaches with overheads
of 10X or more. In addition, FlashPoint’s overheads scale well
with the number of processors.

Although the paper describes a case study based on a particular
multiprocessor implementation, the observation of similarities
between coherence and monitoring is both important and general.
In light of a large and still-increasing processor-memory perfor-
mance gap, memory performance monitoring is an essential part of
application development in shared-memory multiprocessors.
Using the techniques described here, efficient, useful support can
be integrated into cache-coherent designs with relative ease and
low cost.
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