
Active Memory Clusters: Efficient
Multiprocessing on Commodity Clusters

Mark Heinrich, Evan Speight, and Mainak Chaudhuri

Cornell University, Computer Systems Lab, Ithaca, NY 14853, USA
{heinrich,espeight,mainak}@csl.cornell.edu

WWW home page: http://www.csl.cornell.edu/

Abstract. We show how novel active memory system research and sys-
tem networking trends can be combined to realize hardware distributed
shared memory on clusters of industry-standard workstations. Our active
memory controller extends the cache coherence protocol to support trans-
parent use of address re-mapping techniques that dramatically improve
single-node performance, and also contains the necessary functionality
for building a hardware DSM machine. Simultaneously, commodity net-
work technology is becoming more tightly-integrated with the memory
controller. We call our design of active memory commodity nodes in-
terconnected by a next-generation network active memory clusters. We
present a detailed design of the AMC architecture, focusing on the active
memory controller and the network characteristics necessary to support
AMC. We show simulation results for a range of parallel applications,
showing that AMC performance is comparable to that of custom hard-
ware DSM systems and far exceeds that of the fastest software DSM
solutions.

1 Introduction

With the advent of low-cost, high-performance commodity components, net-
works of industry-standard workstations have captured the interest of both
industry and research institutions over the past several years. Referred to as
NOWs (network of workstations), COWs (collection of workstations), COPs
(collection of PCs), etc., these clusters are typically comprised of commodity
high-performance uniprocessor or small-scale symmetric multiprocessor (SMP)
nodes containing two or four processors, large amounts of local memory (on the
order of 1-4 GB of RAM), and a high-speed network such as Myrinet, cLAN, or
ServerNet that provides zero-byte inter-node latencies less than 10µs.

Clusters. As a whole, the machines comprising a cluster make up a distributed-
memory parallel machine, with each node containing a complete version of the
operating system, its own memory hierarchy, and I/O subsystem. This “virtual
parallel machine” lends itself naturally to message passing APIs such as MPI [16].
However, many clusters are comprised of SMP nodes that already contain cache-
coherent hardware, presenting the application programmer with two distinct

memory interfaces: shared memory between the processors local to each machine,
and distributed memory between processors that are not co-located. Because
of the high overhead incurred when sending and receiving messages, there are
clear performance advantages to using the native SMP load/store interface for
communication between co-located processors, but accesses to remote memory
then require an entirely different communication model. Utilizing two different
communication models in the same program is problematic, particularly when
the number of threads and processors per machine is not known at compile time.

Software DSM. In an attempt to address the programming concerns of cluster-
based parallel computing, several software DSM systems have been built that
provide shared-memory parallel programming on the cluster as a whole with-
out requiring specialized hardware (e.g., Ivy [14], TreadMarks [8], Munin [2],
Brazos [22], and Shasta [20]). These systems typically use page-level granular-
ity to enforce coherence, manipulating the virtual memory page protections to
trap protection violations and executing the coherence protocol in software on
the main microprocessor. Utilizing page-level granularity also allows the high
cost of communication to be amortized over a large coherence unit (4-16 KB
for a typical page). Although multiple-writer protocols [2] and relaxed consis-
tency models [2, 8] significantly reduce the amount of communication necessary
to maintain coherence between nodes, high communication costs often result in
poor performance.

Other software DSM systems instrument application code to check for co-
herence actions that need to be performed before each access to shared memory
(e.g., the Shasta system [20]). These systems can then implement coherence at
any granularity desired, but the high handler overhead and the fact that the
network is typically integrated on the I/O bus rather than the memory bus still
results in the choice of pages for data transfer. Subsequently, such systems also
incur large software overhead compared to hardware DSM systems. Despite this
overhead, and other factors such as high synchronization rates, frequent sharing,
or large amounts of false sharing that can severely hinder the performance of
software DSM systems, the cost advantages of software DSM clusters make them
a viable alternative in many situations.

Hardware DSM. Alternatively, some systems provide direct hardware support
for scalable shared memory, adding substantial cost to each individual node in
exchange for higher performance on parallel applications. Such hardware DSM
machines include DASH [13], the SGI Origin 2000 [12], and the Sun S3.mp [17].
Most high-performance hardware DSM machines have tightly-integrated node
or memory controllers that connect the microprocessor both to the memory sys-
tem and to a proprietary high-speed switching network. The scalable coherence
protocols used in such machines are implemented either in hardware finite-state
machines or in software running on an embedded programmable device in the
controller. Despite the resulting high performance of these systems, and efforts
to show that the necessary additional hardware to support hardware DSM in
commodity workstations and servers is small [13], high-end PC servers and en-
gineering workstations have yet to integrate the additional functionality needed

to build seamless hardware DSM from COTS (commodity off-the-shelf) compo-
nents. As discussed in Section 2, the primary reason for this is that this additional
hardware does nothing to improve single-node performance.

In this paper, we show that our research in active memory systems and our
subsequent active memory controller, combined with emerging network technol-
ogy trends, can create the realization of hardware DSM performance on com-
modity clusters at the cost of previous software DSM efforts, with a concomitant
improvement in single-node performance. We call the result of this convergence
active memory clusters (AMC).

In Section 2 we explain the key differences between hardware and software
DSM systems in more detail, and how our research in active memory systems
narrows the gap between the two. Section 3 presents the design of active memory
clusters and discusses the architectural, network, and operating systems issues
in implementing AMC. Section 4 discusses the parallel performance of AMC rel-
ative to that of hardware DSM solutions, and presents simulated AMC speedup
results for several parallel applications. In addition, we explore the performance
impact of varying the latency and bandwidth of the commodity network inter-
connect. Section 5 concludes the paper.

2 Differences Between HW DSM and SW DSM

To the näıve eye, a physical comparison of a hardware DSM machine with a
modern software DSM system based on clusters reveals few differences. Both
machines are constructed out of individual commercial boxes connected together
with proprietary high-speed networks. Closer examination reveals three main
differences between the two systems:

– hardware DSM networks are faster and more tightly-integrated
– nodes in software DSM systems run separate versions of the operating system
– hardware DSM requires a specialized node controller

The first difference is the speed and integration level of the network. Typically
the communication latency in software DSM networks is an order of magnitude
more than in hardware DSM networks (∼10µs versus under 1µs). In addition,
commodity motherboards integrate the network on the I/O bus versus the tighter
integration on the node or memory controller in hardware DSMs. These are real
differences, but they are rapidly disappearing. The computing industry’s new
InfiniBand network (discussed further in Section 3.2) has latencies on the order
of 1µs (similar to hardware DSM latencies) and will be connected directly to
the memory controller on future commodity motherboards [7].

Unlike hardware DSM systems in which every node is under the control of
a single operating system, software DSM systems run in an environment where
each node executes its own version of the host operating system. The critical
aspect of this distinction with respect to hardware DSM is the lack of a central
page table accessible by all nodes in the system. Instead, each operating system
maintains its own set of virtual-to-physical mappings. As discussed in Section 3.3,
we can remove this distinction by making a “distributed page table” that acts

like the centralized page table in a hardware DSM-capable operating system.
Alternately, a NUMA-aware OS providing a single-system image across the entire
cluster can be used in the context of an AMC system.

The only remaining architectural difference is the last one listed above: the
specialized node controller. In hardware DSM machines, this node controller
implements the directory-based coherence protocol at a fine granularity and
offloads the overhead from the main microprocessor. If these functions were
integrated into the memory controller of a commodity server, there would be
essentially no remaining difference between the two architectures.

While the integration of the specialized hardware DSM functions into com-
modity servers and workstations is possible, the economic arguments have not
been compelling enough to include this functionality for two main reasons. Most
importantly, this additional functionality does not improve single-node perfor-
mance, meaning it is unlikely it would ever be included in commodity servers.
Second, the size of the high-performance hardware DSM market has never been
large enough to warrant true commodity nodes with hardware DSM support.

The debate about whether the necessary controller functionality will ever
become commodity would be left at that, except for two factors. First, there is
a trend toward placing more CPUs per machine in today’s SMP boxes (e.g., the
32-processor SMP solution currently offered by Unisys) that is naturally accom-
panied by a higher cost per box. The desire to keep the cost of individual boxes
low, while retaining the ability to program an entire cluster as if it were a single
SMP, will be a powerful economic argument for including support for hardware
shared-memory in commodity cluster components. Second, we will show how re-
cent research into the single-node performance benefits of active memory systems
argues for their inclusion in high-end servers, providing hardware DSM support
“for free” if the active memory support is implemented in a flexible manner.

2.1 Active Memory Systems
One of the biggest challenges facing modern computer architects is overcoming
the memory wall [19]. Technology trends dictate that the gap between processor
and memory performance is widening. Though good cache behavior mitigates
this problem to some extent, memory latency remains a critical performance
bottleneck in modern high-performance processors. Heavily-pipelined clocked
memory systems have improved memory bandwidth, but do nothing to address
memory latency or reduce the number of cache misses incurred by the processor.

One approach to reducing the gap between processor and memory perfor-
mance is to move processing into the memory system by using active memories [4,
5, 9, 15, 18, 23] or active memory controllers [3, 10]. In many such systems, parts
of a program that have poor cache behavior are executed in the memory sys-
tem, thereby reducing cache misses and memory bandwidth requirements. Other
work employs address re-mapping techniques to re-structure data (like linked
lists or non-unit-stride accesses) so that the processor can access them in a more
cache-efficient manner. Recently, we made the observation that active memory
techniques can be treated as an extension of the cache coherence protocol [10]
because of the coherence problem created by address re-mapping techniques. Our

active memory controller implements the coherence protocol and the extensions
necessary to support active memory operations on data in the memory system,
allowing the memory system to transparently and coherently access any data in
the system. In this paper we detail our active memory controller architecture,
its integration with emerging commodity network technology, and the resulting
high-performance, low-cost, coherent DSM architecture of AMC. Our particular
active memory controller approach is described in more detail in Section 3.1.

Convergence. We return now to our discussion of hardware DSM versus soft-
ware DSM systems. Our active memory controller that is designed to improve
uniprocessor and single-node performance contains the same functionality needed
to enable cluster-based hardware DSM systems. This fact—that active memory
controllers and hardware DSM controllers share much of the same functionality—
lies at the heart of the AMC design. It strengthens the cases of both the active
memory and hardware DSM advocates for inclusion in commodity servers. Even
if the individual arguments for including specialized controller functionality fall
short, their combined benefits may be enough to finally produce commodity
nodes with active memory controllers.

Switch
Or

Node

S
ys

te
m

M
em

or
y

C
P

U
C

P
U

H
os

t I
nt

er
co

nn
ec

t

A
ct

iv
e

M
em

or
y

C
on

tr
ol

le
r

N
et

w
or

k
In

te
rf

ac
e

IB
 Link

IB Link InfiniBand
Switch

IB
 Link

System
Memory

Active
Memory

Controller

Network
Interface

Investigate integration

CPUCPU

Improves single node and
cluster performance

IB Link

SMP or uniprocessor nodes

Host Interconnect

Switch
Or

Node

Globally shared across
cluster for AMC apps

Switch
Or

Node

S
ys

te
m

M
em

or
y

C
P

U
C

P
U

H
os

t I
nt

er
co

nn
ec

t

A
ct

iv
e

M
em

or
y

C
on

tr
ol

le
r

N
et

w
or

k
In

te
rf

ac
e

IB
 Link

IB Link InfiniBand
Switch

IB
 Link

System
Memory

Active
Memory

Controller

Network
Interface

Investigate integration

CPUCPU

Improves single node and
cluster performance

IB Link

SMP or uniprocessor nodes

Host Interconnect

Switch
Or

Node

Globally shared across
cluster for AMC apps

Fig. 1. Active Memory Cluster Configuration.

3 Active Memory Clusters Implementation

This section discusses the implementation details of our active memory cluster
system (see Figure 1), focusing on the three architectural differences between
current hardware and software DSM machines that we presented in Section 2.
We first describe our active memory controller functionality, present our active
memory controller design, and show how it can dramatically improve unipro-
cessor and single-node performance. We further explain how this functionality

enables a hardware DSM machine to be constructed from cluster components.
We then discuss the ramifications of upcoming tightly-integrated commodity
networks and the details relevant to AMC. Finally, we end with a discussion of
the system software issues related to our active memory clusters implementation.

3.1 Active Memory Controller Functionality
Recent active memory proposals have advocated the technique of re-mapping
the address space of a process in an application-specific manner. Accesses to this
space are then used as a signal to the memory controller to perform “active”
operations rather than satisfying these accesses from physical memory [3, 10, 15].
For example, when performing matrix operations that require row and column
traversals, one traversal uses the cache effectively whereas the other does not.
By providing multiple memory viewpoints of the same matrix using shadow
address spaces, row traversals are unchanged, whereas column traversals are
treated as row traversals of a matrix at a different (shadow) address. The active
memory controller fetches individual double-words from a column and returns
them in a single cache line. Data is therefore provided in blocks that can be
cached efficiently by the main processor. The result is good cache behavior for
both row and column traversals of the matrix. Such an approach speeds up
many scientific applications by using the processing capability in the memory
system. Similar re-mapping techniques are used to speedup sparse matrix codes,
scatter/gather operations, reductions, and linked-list-intensive programs. These,
and other active memory operations are described in more detail in [10].

The main challenge with this active memory approach is solving the cache
coherence problem it creates. For example, if columns of a matrix are being
written via a different address space during column traversals, the next row
traversal via the normal address space will return incorrect or stale data unless
care is taken or costly cache flushes are performed. The key insight into solving
the coherence problem in active memory systems is that the active memory
controller controls both the coherence protocol and the fetching of the data
requested by the processor. In architectures like the FLASH multiprocessor [11]
and the S3.mp [17], the coherence protocol itself is programmable or extensible.
Thus, active memory support is, in effect, an extension of the cache coherence
protocol. In this case, the active memory controller enforces coherence between
the original and shadow address spaces.

Our work with active memory controllers indicates that the occupancy of
an active memory controller is significantly reduced by the introduction of a
hardware unit to support the fast assembly of cache lines from individual double
words (and their disassembly as well). Adding this special data unit to our
flexible coherence engine reduces the occupancy of active memory operations by
up to an order of magnitude, thereby improving overall system performance. At
the same time, a flexible engine need not slow down non-active requests, as the
processing on the AMP in Figure 2 occurs in parallel with the memory lookup
needed to satisfy the cache miss [10].

Our active memory controller microarchitecture (see Figure 2) combines a
flexible coherence engine with the aforementioned special data unit to support

PIPIPI

DispatchDispatch

Send UnitSend Unit

Protocol Unit

Active Memory
Processor

(AMP)

Protocol Unit

Active Memory
Processor

(AMP)

Data UnitData Unit

Address
Calculation

AM TLB

Memory
Load/Store

Data
Cache
Data

Cache
Data

Cache

Instruction
Cache

Instruction
Cache

Instruction
Cache

Data
Buffer
Data

Buffer

AM
Buffer
AM

Buffer

Memory
Controller
Memory

Controller
MemoryMemory

NINININI
Software Queue

PIPIPI NININI

Fig. 2. Active Memory Controller Microarchitecture.

fast address re-mapping and dynamic cache line assembly. Detailed simulations of
this microarchitecture can be found in [10], but we repeat representative results
here. Figure 3 shows uniprocessor speedup between 1.75 and 2.8 when using our
active memory controller versus systems with normal memory controllers. In
these applications the number of application cache misses is reduced by over a
factor of two, and prefetching the transformed shadow address space offers room
for additional speedup not available in the normal application. The source code
of these applications was changed minimally (on the order of 10 lines of code) to
achieve these results. As shown in [10], the same architecture can also improve
the performance of single-node multiprocessors via the same methods. In this
paper we will further show how to extend this architecture to create multi-node
DSM systems.

FFTW Conjugate Gradient MST
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

S
pe

ed
up

Normal
AM
AM+Prefetch

Fig. 3. Uniprocessor Active Memory Speedup.

Because we leverage cache coherence, our active memory controller design
achieves this performance without requiring cache flushes on the processor. Sim-
ilarly, our design is also compatible with the SMP nodes commonly used in
clusters (where, because of process migration, architectures that rely on cache

flushes must flush all the caches on the node, even for uniprocessor applications).
In the remainder of this section we describe how to use this same architecture
to build active memory clusters and highlight the relevant features of our mi-
croarchitecture to AMC.
Active Memory Controller Requirements. Our active memory controller
manages the cache coherence protocol. Consequently, our flexible active memory
controller already tracks sharing information in the system and invalidates and
retrieves cache lines from the processor caches. For active memory support the
processor can communicate with the memory controller through uncached writes
to a portion of the address space where these writes are interpreted as commands
by the memory controller (e.g. notifying the controller about shadow address
spaces during initialization). An active memory controller must also have the
ability to dispatch both normal and active coherence handlers by looking at
certain bits in the request and address on the processor bus.
Additional support required for AMC. To support AMC, the memory con-
troller must have a network interface as shown in Figure 1 in addition to the
processor interface. In forthcoming network architectures such as InfiniBand, the
network interface will be moved closer to the main CPU. We discuss the effect
of the memory controller being directly connected to the network interface in
more detail in Section 3.2. The additional features needed for AMC beyond those
already present in the active memory controller are the ability to dispatch han-
dlers from the network interface (including deadlock avoidance in the scheduling
mechanism) and the existence of the corresponding coherence handlers for net-
work messages. In flexible active memory controllers with a direct interface to
the network, the additional coherence handlers that are needed consist of pro-
tocol code running on the memory controller (AMP in Figure 2) and do not
necessitate architectural changes to the active memory controller.

3.2 Network Integration
Commodity architectures are witnessing evolutionary changes in network inte-
gration as the network connection moves from a plug-in card on the distant I/O
bus to a routing chip directly connected to the memory controller (see Figure 1).
Although these networks are designed primarily for use in storage networks and
support user-level heavyweight protocols, our active memory controller only uses
the physical routing capabilities of these directly-connected network switches.
In addition, coherence messages travel between memory controllers only and are
not forwarded up to the processor for handling via interrupts. Instead, an active
memory cluster handles the messages entirely in the memory controller, similar
to a hardware DSM machine.

Our AMC controller design uses a system area network (SAN), such as In-
finiBand, as its network interface. However, the active memory controller does
not use the high-level (and higher overhead) user-level protocols that run over
the SAN network link when sending and receiving the messages that comprise
the coherence protocol. Instead, our controller uses the fast underlying link-level
performance to synthesize and handle messages to support DSM. InfiniBand sup-
ports these low-level messages via its raw packet format , which has an overhead

of 14 bytes on top of the data payload of the packet [7]. Although this message
overhead is more than that present in many hardware DSM machines, it is still
small compared to the data payload (typically a cache line, or 128 bytes in our
system).

The latency and bandwidth characteristics of system area networks such
as InfiniBand, as well as the physical routing capabilities, are comparable to
networks used in today’s hardware DSM machines. InfiniBand supports virtual
lanes, a critical feature for supporting deadlock-free request/reply networks in
DSM machines. The “hop time” through an InfiniBand switch is currently on
the order of 150 ns, and will likely drop in the near future with later generations
of the hardware. The bandwidth of a single link in the InfiniBand network is
250 MB/s (2.0 Gb/s). Although this is less bandwidth than the network in an
Origin 2000 (800 MB/s), it is still 2.5 times higher than that used in the most
advanced current software DSM machines. Coupled with the its low latency, this
network will provide an excellent base on which to build a high-performance DSM
machine. We show simulation results of a prototype active memory cluster in
Section 4 with varying network latencies and bandwidth parameters.

3.3 Operating System Issues
As mentioned in Section 2, software DSM runtime layers are typically used on
clusters of workstations, each running their own version of the host operating
system. The majority of these clusters consist of the same types of machines run-
ning the same version of the same operating system. The reasons for this include
the cost advantage of buying in bulk, ease of cluster-wide system management,
and the avoidance of the overhead associated with translating between different
data representations. Clusters providing high-performance parallel programming
environments are not groups of machines sitting on desks in an office environ-
ment, but rather sets of rack-mounted machines sequestered in machine rooms.
Thus, while companies such as Entropia seek to use heterogenous, widely-spread
machines for large-scale independent computations, realistically we do not expect
high-performance cluster machines to be constructed of different components.

In AMC, as in other hardware and software DSM implementations, the vir-
tual address of the shared global memory region must be the same on all nodes in
the cluster. Furthermore, unlike software DSM, the virtual-to-physical mapping
must be the same across the cluster because the AMC memory controller main-
tains coherence based on the physical addresses presented. With a single system
image, the OS running on the cluster provides this shared page table directly for
AMC. With separate operating systems, a small AMC runtime library is used to
ensure the VA-to-PA mappings are consistent across the cluster during program
initialization. Thus, AMC requires that the host OS support the ability to re-
quest that a specific virtual address map to a physical address within a certain
range of the physical memory address space, a feature commonly used to map
I/O devices into a process’ virtual space. With this ability, we can create a “dis-
tributed page table” in which the shared region of memory resides at the same
virtual and physical location across all OS instances. This procedure, as well
as issues regarding pinning of shared pages and shared pointer distribution, are

detailed in [6]. For operating systems with readily-available source (i.e., Linux or
FreeBSD), we can modify the virtual memory manager to provide the necessary
functionality required by AMC. Operating systems such as Windows 2000 can
also provide this functionality through the use of device drivers.

Several operating systems are currently available that provide NUMA sup-
port, including Irix from SGI, Windows XP from Microsoft, and a NUMA-aware
version of Linux. Any of these operating systems will run on active memory clus-
ters with little or no modification.

4 AMC Performance Results

We simulated several parallel applications from the SPLASH-2 application suite [24]
running on an AMC system connected via a SAN with InfiniBand-like charac-
teristics: FFT with 1M points, LU decomposition with a 512x512 matrix, Ocean
with a 514x514 ocean, Radix-Sort with 2M keys and a radix of 32, and Water
with 1024 molecules.

Table 1. AMC hardware configuration.

Parameter Value

Number of Nodes 1-32
Processors per Node 1
Processor Clock Speed 2.0 GHz
System Clock Speed 400 MHz (2.5 ns)
Primary Data Cache 32 KB, 32 B line size
Primary Instruction Cache 32 KB, 64 B line size
Secondary Cache 1 MB, 128 B line size
Max. Outstanding Misses 4
Network Interface Delay Inbound: 40 ns; Outbound: 20 ns
Memory Latency from AMC Controller 125 ns to first double-word

These execution-driven simulations use the parameters described in Table 1.
Our AMC simulator models our flexible active memory controller from Figure 2
connected to a network with the latency, bandwidth, and overhead character-
istics of a system area network such as InfiniBand. The AMC results assume a
network comprised of 16-port switches connected in a fat-tree configuration for
varying network latencies. We present results for 3 different network “hop times”
corresponding to current and future SAN architecture generations. Results for
450 ns show the performance with first-generation SAN parameters, which have
been available for some time. The 150 ns performance numbers reflect the cur-
rent state-of-the-art in system area networks, and the 50 ns results show the
performance of AMC as system area networks mature. For comparison, results
for a custom hardware DSM system are shown as well. The HWDSM system
modeled in detail here has 12.5 ns hop times and is connected in a mesh con-
figuration. Note that uniprocessor execution times for the HWDSM and AMC
simulations are identical, indicating that speedup comparisons between the ar-
chitectures is a valid metric for performance. The coherence protocol running on

FFT Radix Ocean Water LU
0

5

10

15

20

25

30

S
pe

ed
up

hop time=50ns
hop time=150ns
hop time=450ns
HWDSM

8P

16P

32P

8P

16P

32P

8P

16P

32P

8P

16P

32P

8P

16P

32P

Fig. 4. AMC SPLASH-2 speedup.

the AMC controller is dynamic pointer allocation [21], a linked-list protocol that
scales well to the processor counts used here. Figure 4 reports speedup on 8, 16,
and 32 processor systems for the parallel execution times of the applications.

AMC performance. As shown in Figure 4, the performance of the SPLASH-2
benchmarks on AMC is remarkably good. When the interconnection network
has a 50 ns hop time, all applications perform nearly as well as the custom hard-
ware DSM implementation, despite the fact that the HWDSM architecture has
a hop-time over four times faster than this AMC configuration. At the other
end of the spectrum, when the network latency is 450 ns we find that AMC per-
forms significantly worse than HWDSM. For 32-processors, HWDSM performs
an average of 72% better than AMC across all 5 applications.

The bars representing 150 ns hop times most closely represent the current
InfiniBand architecture, which we are using as our representative SAN. At 150 ns,
HWDSM outperforms AMC by 16% for FFT, 7% for Radix-Sort, 12% for Ocean,
40% for Water, and 9.4% for LU. Even if system area networks do not ultimately
achieve the 50 ns latency represented in our experiments, the bandwidth of SANs
is sure to increase in subsequent generations due to the importance of I/O. For
example, in the InfiniBand architecture it is possible to add additional links to
increase bandwidth substantially over the 250 MB/s shown here.

To evaluate the impact of increasing the bandwidth of AMC’s network, we
also simulated our five applications with a network bandwidth of 1 GB/s. The
results for 32 processors are shown in Figure 5. This quadrupling of the net-
work bandwidth improved the performance of all 5 applications, most notably
that of Radix, FFT, and Ocean, all of which have much higher network require-
ments than Water or LU. Radix shows a 46% improvement in speedup with the
additional bandwidth, Ocean improves by 18%, and FFT is 14% faster.

We also expect the performance of a traditional software DSM system to im-
prove when using future system area network architectures due to three features
of emerging network architectures: a significant reduction in memory latency,
the capability of remote DMA operations, and reliable communication mecha-

nisms. Nevertheless, we still expect AMC to outperform software DSM due to
software DSM’s remaining high kernel overhead involved with page exception
handling, the large granularity of sharing required, and the processing overhead
for runtime structures such as diffs and twins. By way of comparison, the
best reported software DSM speedup on 32 processors for these applications was
achieved by running a software DSM system on the Origin 2000, resulting in
speedups of 5.5 for FFT, 16.5 for LU, 5.9 for Ocean, and 14.1 for Water [1].
AMC achieves substantially better speedup than even this optimistic software
DSM scenario.

Fig. 5. AMC SPLASH-2 speedup at different network bandwidth (32 P, 150 ns hops).

Finally, we emphasize that despite the impressive results, the parallel per-
formance of AMC does little toward strengthening the argument for putting
the required AMC functionality in commodity servers. The only way that ac-
tive memory controllers will be included in commodity servers is if the industry
embraces the research results showing that active memory techniques like those
discussed in Section 3.1 will significantly improve the performance of a stan-
dalone machine. When this happens, the insight of this paper is that designing
a flexible active memory controller allows the realization of hardware DSM per-
formance with commodity components using active memory clusters.

5 Conclusions

In this paper, we have shown that building clustered compute farms that deliver
hardware DSM parallel performance at software DSM cost is becoming a real
possibility. The only necessary changes are utilizing a more tightly-integrated
network technology, adding new functionality in the memory controller, and
perhaps adding a small amount of operating system support. Detailed simula-
tions show the resulting active memory clusters architecture achieves excellent
parallel performance.

Of these three enabling mechanisms, the most problematic is the additional
memory controller functionality. Historically, the additional cost of changing the
memory controller to support hardware DSM was not justified by the expected
performance gain for two main reasons. First, the required support did nothing

to help single-node performance, which is the metric by which the computer
industry measures any technology for inclusion in “commodity” boxes. Second,
the number of users that would benefit from such a costly change to the memory
controller architecture was relatively small. However, research in active memory
systems has argued for enhanced memory controller functionality to improve
single-node performance. By treating active memory support as an extension
of the cache coherence protocol, we showed that the controller support needed
for active memory and hardware DSM is almost identical, provided the active
memory mechanisms are implemented in a flexible manner.

Industry has already begun addressing the issue of network/system integra-
tion to support the low communication latency required by the cluster-based
systems in use today. We used InfiniBand as an example of such a network ar-
chitecture, but others exist that would work equally well with active memory
clusters. The only remaining issue is one of system software. Software DSM ma-
chines have had a distinct advantage in this area, because the use of commodity
operating systems is an important factor in keeping both initial system cost and
subsequent upgrade costs low. The active memory cluster architecture can cer-
tainly be used with an operating system that natively supports hardware DSM.
Alternately, simple functionality provided by device drivers can be used with
commodity operating systems to achieve hardware DSM performance, even in
the absence of a specialized DSM operating system.

In summary, our research in the area of active memory systems shows that ac-
tive memory techniques substantially improve single-node performance in cases
where caching behavior is poor. The results presented in this paper also show
that this additional memory controller functionality, if implemented in a flex-
ible manner, results in clusters of servers with the necessary components to
achieve the parallel performance of a hardware distributed shared memory sys-
tem. These two performance benefits are a strong argument for the inclusion of
active memory systems in commodity nodes, resulting in a parallel computing
platform comprised of industry-standard servers that exhibit parallel perfor-
mance far surpassing that of traditional cluster and software DSM efforts.

Acknowledgments
This research was supported in part by Cornell’s Intelligent Information Systems
Institute, Microsoft Corporation, and NSF CAREER Award CCR-9984314.

References
1. Bilas, A., Liao, C., Singh, J.P.: Using Network Interface Support to Avoid Asyn-

chronous Protocol Processing in Shared Virtual Memory Systems. In Proceedings of
the 26th International Symposium on Computer Architecture, May 1999.

2. Carter, J. B., et al.: Design of the Munin Distributed Shared Memory System.
Journal of Parallel and Distributed Computing , 29(2):219–227, September 1995.

3. Carter, J. B., et al.: Impulse: Building a Smarter Memory Controller. In Proceedings
of the Fifth International Symposium on High Performance Computer Architecture
January 1999.

4. Gokhale, M., Holmes, B., Iobst, K.: Processing in Memory: the Terasys Massively
Parallel PIM Array. Computer , 28(3):23–31, April 1995.

5. Hall, M., et al.: Mapping Irregular Applications to DIVA, A PIM-based Data-
Intensive Architecture. Supercomputing , Portland, OR, Nov. 1999.

6. Heinrich, M., Speight, E.: Active Memory Clusters: Efficient Multiprocessing on
Next-Generation Servers. Technical Report CSL-TR-2001-1014, Computer Systems
Lab, Cornell University, August, 2001.

7. InfiniBand Architecture Specification, Volume 1.0, Release 1.0. InfiniBand Trade
Association, October 24, 2000.

8. Keleher, P., et al.: TreadMarks: Distributed Shared Memory on Standard Worksta-
tions and Operating Systems. In Proceedings of the Winter 1994 USENIX Confer-
ence, pages 115–132, January 1994.

9. Kang, Y., et al.: FlexRAM: Toward an Advanced Intelligent Memory System. In-
ternational Conference on Computer Design, October 1999.

10. Kim, D., Chaudhuri, M., Heinrich, M.: Leveraging Cache Coherence in Active
Memory Systems. Technical Report CSL-TR-2001-1018, Computer Systems Labora-
tory, Cornell University, November 2001.

11. Kuskin, J., et al.: The Stanford FLASH Multiprocessor. In Proceedings of the 21st
International Symposium on Computer Architecture, pages 302–313, April 1994.

12. Laudon, J., Lenoski, D.: The SGI Origin: A ccNUMA Highly Scalable Server. In
Proceedings of the 24th International Symposium on Computer Architecture, pages
241–251, June 1997.

13. Lenoski, D., et al.: The Stanford DASH Multiprocessor. IEEE Computer , 25(3):63–
79, March 1992.

14. Li, K., Hudak, P.: Memory Coherence in Shared Virtual Memory Systems. In ACM
Transactions on Computer Systems,7(4):321–359, November 1989.

15. Manohar, R., Heinrich, M.: A Case for Asynchronous Active Memories. In ISCA
2000 Solving the Memory Wall Problem Workshop, June 2000.

16. Message Passing Interface Forum. MPI: A Message-Passing Interface Standard,
Version 1.0, 1994.

17. Nowatzyk, A., et al.: The S3.mp Scalable Shared Memory Multiprocessor. In Pro-
ceedings of the 24th International Conference on Parallel Processing , 1995.

18. Oskin, M., Chong, F. T., Sherwood, T.: Active Pages: A Computation Model for
Intelligent Memory. In Proceedings of the 25th International Symposium on Computer
Architecture, 1998.

19. Saulsbury, A., Pong, F., Nowatzyk, A.: Missing the Memory Wall: The Case for
Processor/Memory Integration. In Proceedings of the 23rd International Symposium
on Computer Architecture, pages 90–101, May 1996.

20. Scales, D. J., Gharachorloo, K., Thekkath, C. A.: Shasta: A Low-Overhead
Software-Only Approach for Supporting Fine-Grain Shared Memory. In Proceedings
of the Seventh International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 174–185, October 1996.

21. Soundararajan, R., et al.: Flexible Use of Memory for Replication/Migration in
Cache-Coherent DSM Multiprocessors. In Proceedings of the 25th International Sym-
posium on Computer Architecture, pages 342–355, June 1998.

22. Speight, E., Bennett, J. K.: Brazos: A Third Generation DSM System. In Proceed-
ings of the First Usenix Windows NT Symposium, August 1997.

23. Torrellas, J., Yang, L., Nguyen, A.-T.: Toward a Cost-Effective DSM Organization
that Exploits Processor-Memory Integration In Proceedings of the 6th International
Symposium on High-Performance Computer Architecture, January 2000.

24. Woo, S. C., et al.: The SPLASH-2 Programs: Characterization and Methodological
Considerations. In Proceedings of the 22nd International Symposium on Computer
Architecture, pages 24–36, June 1995.

