
Latency, Occupancy, and Bandwidth in DSM
Multiprocessors: A Performance Evaluation

Mainak Chaudhuri, Student Member, IEEE, Mark Heinrich, Member, IEEE, Chris Holt,

Jaswinder Pal Singh, Member, IEEE, Edward Rothberg, and John Hennessy, Fellow, IEEE

Abstract—While the desire to use commodity parts in the communication architecture of a DSM multiprocessor offers advantages in

cost and design time, the impact on application performance is unclear. We study this performance impact through detailed simulation,

analytical modeling, and experiments on a flexible DSM prototype, using a range of parallel applications. We adapt the logP model to

characterize the communication architectures of DSM machines. The l (network latency) and o (controller occupancy) parameters are

the keys to performance in these machines, with the g (node-to-network bandwidth) parameter becoming important only for the fastest

controllers. We show that, of all the logP parameters, controller occupancy has the greatest impact on application performance. Of the

two contributions of occupancy to performance degradation—the latency it adds and the contention it induces—it is the contention

component that governs performance regardless of network latency, showing a quadratic dependence on o. As expected, techniques

to reduce the impact of latency make controller occupancy a greater bottleneck. Surprisingly, the performance impact of occupancy is

substantial, even for highly-tuned applications and even in the absence of latency hiding techniques. Scaling the problem size is often

used as a technique to overcome limitations in communication latency and bandwidth. Through experiments on a DSM prototype, we

show that there are important classes of applications for which the performance lost by using higher occupancy controllers cannot be

regained easily, if at all, by scaling the problem size.

Index Terms—Occupancy, distributed shared memory multiprocessors, communication controller, latency, bandwidth, queuing

model, flexible node controller.

�

1 INTRODUCTION

DISTRIBUTED shared memory (DSM) multiprocessors are
converging to a family of architectures that resemble a

generic system architecture. This architecture consists of a
number of processing nodes connected by a general
interconnection network. Every node contains a processor,
its cache subsystem, and a portion of the total main memory
on the machine. It also contains a communication controller
that is responsible for managing the communication both
within and between nodes. Our interest in this paper is in
the specific class of cache-coherent DSM machines.

There are many ways to build cache-coherent DSM

machines, arising from differences in desired performance

and cost characteristics and in the extent to which one

wants to use commodity parts and interfaces rather than

build customized hardware. In keeping with current trends,

we assume the use of a commodity microprocessor, cache

subsystem, and main memory. The major sources of

variability are in the network and in the communication

controller, which together constitute the communication
architecture of the multiprocessor.

DSM networks vary in their latency and bandwidth
characteristics, as well as in their topologies. They range
from low-latency, high-bandwidth MPP networks, all the
way to commodity local area networks (LANs). On the
controller side, there are two important and related
variables. One is the location where the communication
controller is integrated into the processing node. This can be
the cache controller, the memory subsystem, or the I/O bus.
The other design variable is how customized the commu-
nication controller is for the tasks it performs; for instance, it
may be a hardware finite state machine, a special-purpose
processor that runs protocol code in response to commu-
nication-related events, or an inexpensive general-purpose
processor.

Because of the differences in design cost and design
effort, all of these architectures are viable. Current and
proposed architectures for cache-coherent DSM machines
take different positions on the above trade offs and, thus,
there are examples of real machines at almost every point in
this design space. The question we address in this paper is
how the performance characteristics of the network and
controller affect how well the machines will run parallel
programs written for cache-coherent multiprocessors. That
is, as we move from more tightly integrated and specialized
communication architectures to less tightly integrated and
more commodity-based systems, how significant is the loss
in parallel performance over a wide range of computations.
We address this question by studying a range of important
computations and communication architectures through a
combination of detailed simulation, analytical modeling,
and experiments on a flexible DSM prototype.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 7, JULY 2003 1

. M. Chaudhuri and M. Heinrich are with the Computer Systems
Laboratory, Cornell University, Ithaca, NY 14853.
E-mail: {mainak, heinrich}@csl.cornell.edu.

. C. Holt is with Transmeta, Inc., 3940 Freedom Circle, Santa Clara, CA
95054. E-mail: xris@transmeta.com.

. J.P. Singh is with the Department of Computer Science, Princeton
University, Princeton, NJ 08544. E-mail: jps@cs.princeton.edu.

. E. Rothberg is with ILOG, Inc., 1901 Landings Dr., Mountain View, CA
94043. E-mail: rothberg@ilog.com.

. J. Hennessy is with the Computer Systems Laboratory, Stanford
University, Stanford, CA 94305. E-mail: jlh@mojave.stanford.edu.

Manuscript received 23 Jan. 2002; revised 12 Aug. 2002; accepted 27 Aug.
2002.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 115758.

0018-9340/03/$17.00 � 2003 IEEE Published by the IEEE Computer Society

We characterize the communication architectures of
DSM multiprocessors by a few key parameters that are
similar to those in the logP model [6]. Our characterizations
and the design space that they represent are described in
Section 2. Section 3 describes the framework and methodol-
ogy we use to study the effectiveness of different types of
DSM architectures. Section 4 presents and analyzes our
simulation results. Section 5 presents a queuing model to
analyze the contention in the communication controller and
uses that model to predict the parallel efficiency of
applications running on different communication architec-
tures. Section 6 describes the effect of varying the
occupancy of a programmable protocol engine in a flexible
DSM architecture and shows that it is very difficult to
regain the lost performance by increasing the problem size
as the controller becomes slower. Section 7 concludes the
paper.

1.1 Related Work

The logP model suggested in [6], introduced a machine-
independent model to reason about the performance of
message-passing parallel programs. In a 1995 technical
report [13], we first adapted this model to describe a generic
DSM architecture, where o was the occupancy of the DSM
communication controller, and carried out a simulation-
based study to show the effects of latency (l) and occupancy
(o) on the performance of large-scale parallel applications
and computational kernels. This was followed by a similar
study by others on a high-performance NOW [18]. The
effects of processor overhead, network interface occupancy,
node-to-network bandwidth, and interrupt overhead have
also been studied in the context of shared virtual memory
clusters [2].

Inspired by our previous study, many research groups
have proposed designing controllers with lower occupancy
[20] and have explored methods to reduce the contention of
the communication controller [7], [9], [12], [19], [21], [34].
Also, it has been suggested that, if the controller is slower
than the node-to-network interface, increasing the coher-
ence granularity may help reduce contention [33]. The
effects of bisection bandwidth and ratio of processor cycle
time to network latency have been studied for several
versions of shared memory and message passing applica-
tions running on the Alewife machine [1]. However, this
study does not discuss the performance effects of node
controller occupancy and node-to-network bandwidth, or
how these parameters interact with each other as one moves
from one point to another in the design space. In [27], a
performance model for shared memory machines is pre-
sented as a function of various architectural and statistical
parameters of the system. We present a much more simple
analytical model in this paper and show how the model
behaves with varying communication architecture para-
meters. In this paper, we expand the ideas in our original
report, make the analysis more concrete with a queuing
model, and augment the simulation results with experi-
mental results obtained from a programmable DSM proto-
type. The experimental results allow us to look at the effects
of controller occupancy at larger problem sizes than it is
possible to simulate and determine whether less aggressive
communication controllers can regain their lost perfor-
mance at these larger problem sizes.

2 PARAMETERS AND DESIGN SPACE

Using the logP model, we abstract the multiprocessor
communication architecture of a parallel machine in terms
of four parameters. The l parameter in the logP model is the
network latency from the moment the first flit of a message
enters the network at a source node to the moment the
message arrives at the destination node, o is the overhead of
sending a message, g is the gap (reciprocal of node-to-
network bandwidth through the network interface), and P
is the number of processors. The only difference between
our DSM model and the logP model developed for
message-passing machines is in the o parameter. In logP,
the overhead, o, is the time during which the main
processor is busy initiating or receiving a message and
cannot do anything else. In most DSM machines, however,
protocol processing is off-loaded to a separate communica-
tion controller, and the main processor is free to continue
doing independent work while the controller is occupied.
The o parameter in our DSM model then stands for the
occupancy of the communication controller per protocol
action or message; that is, the time for which the controller
is tied up with one action and cannot perform another.
Alternatively, occupancy can be viewed as the reciprocal of
the communication controller’s message bandwidth or
service rate. However, since controller bandwidth may be
confused with (the very different) network bandwidth
parameter, we prefer to use the term controller occupancy.

Our original study fixed the number of processors at 64.
In this paper, we simulate two values of P , P ¼ 32 and
P ¼ 64, and we carry out a study on the effect of varying
occupancy on a real 16 and 32-node DSM multiprocessor
with a programmable protocol engine. We also briefly
explore the effect of speeding up the main processor relative
to the memory system. The other three parameters that
characterize the communication architecture—latency, oc-
cupancy, and bandwidth (or gap)—all have complicated
aspects to them, and we make certain simplifying assump-
tions. Let us discuss each parameter individually before
setting the range in which we vary these parameters in the
context of realistic machines.

2.1 Latency

The latency of a message through the network depends on,
among other things, how many hops the message travels in
the network. For the moderate-scale machines that we
consider (� 64 processors), the overhead of getting the
message from the processor into the network and vice versa
usually dominates the topology-related component of the
end-to-end latency seen by the processor. We, therefore,
ignore topology and compute network latency as the
average network transit time between two nodes in a two-
dimensional mesh topology. By taking into account the
topology-related effects, our experimental model can be
easily adapted to the cases where latency is not homo-
geneous over the entire network or when there are some
nonnegligible variations of latency over time. However, this
study is beyond the scope of this paper.

2.2 Occupancy

The occupancy that the controller incurs for a request
affects performance in two ways. First, it contributes
directly to the end-to-end latency of the current request
because the request must pass through the controller.

2 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 7, JULY 2003

Second, it can contribute indirectly to the end-to-end
latencies of subsequent requests, through contention for
the occupied controller. Occupancy is more difficult to
represent as an abstract parameter than network latency for
two reasons. First, we have to decide which types of
transactions invoke actions on the controller and, hence,
incur occupancy. Second, the occupancy of a remote miss is
actually distributed between two (or three) of the con-
trollers in the system, and the occupancies of each of the
individual transactions may not be the same. While we
would like to represent occupancy by a single value of o,
occupancy in real machines often depends on the type of
the transaction. Let us examine these issues separately.

Clearly, all events related to internode communication
and protocol processing incur controller occupancy. These
include cache misses that need data from another node,
processor references that require the communication of
state changes to other nodes, and incoming requests and
replies from the network containing data and protocol
information. We assume that cache misses that access local
memory and do not generate any communication, do not
invoke the controller and, thus, incur no occupancy [25].
However, note that we do take into account the contention
between the main processor and the communication
controller in accessing local memory. We also assume that
the state lookup that determines if a local cache miss needs
to invoke the controller is free, and we assume uniprocessor
nodes, so that the communication controller has to handle
the requests of only one local processor. All of these
assumptions minimize the burden on the communication
controller and, hence, expose more fundamental limitations.
Machines with multiple processors per node and machines
where the controller handles local memory references may
perform worse than the results presented in this paper for
the same values of controller occupancy, indicating that, for
some architectures, controller occupancy may be even more
important than we will show it to be.

In many machines, particularly those in which the
communication controller runs software code sequences
for protocol processing, the occupancies of the controller are
different for different types of protocol actions. We make
the following assumptions about occupancy. When the
communication controller is simply generating a request
into the network or receiving a reply from the network, it
incurs occupancy o. When the communication controller is
the home of a network request, it incurs occupancy 2o
because it has to retrieve data from memory and/or
manipulate coherence state information [11]. In this case,
we assume the data memory access happens in parallel
with the operation of the controller. If the state lookup at the
home reveals that the requested line is dirty in the home
node’s cache, the communication controller incurs an extra
fixed occupancy C, while retrieving the data from the
processor’s cache. If the requested line is dirty in a third
processor’s cache, the home node incurs an occupancy of 2o
and forwards the request to that processor, and the
communication controller at that node incurs an occupancy
of 2oþ C. Occupancy is also incurred when the commu-
nication controller at the home node services a write request
and sends invalidations to all nodes that are sharing the
data. In this case, the controller incurs an additional
occupancy of one system clock cycle per invalidation that
it sends. In addition, occupancy is incurred while receiving

acknowledgments corresponding to certain requests (e.g.,
invalidation acknowledgments) and while receiving own-
ership transfer messages (e.g., sharing writebacks). The
controller handles these messages similarly to normal
replies, incurring an occupancy of o.

2.3 Bandwidth or Gap

The gap (g) parameter specifies the reciprocal of node-to-
network bandwidth. It determines how fast data can be
transferred through the network interface (between the
communication controller and the network itself). Our
original study did not vary node-to-network bandwidth.
In this paper, we explore the effect of varying g over a wide
range of values. While studying the effects of l and o only,
we fix 1=g at 400 MB/s peak, which corresponds to MPP
networks on recent machines. For coherence messages that
do not carry data, the occupancy of the communication
controller always dominates this gap limitation. For
messages that carry data, the gap parameter can theoreti-
cally become the bottleneck before controller occupancy for
the two lowest occupancies we examine. We show that this
is actually the case for some applications.

2.4 Design Space

Given these assumptions about l, o, and g, let us examine
the path and cost of a read miss to a cache line that is
allocated on a remote node and is clean at its home. The
request travels through the communication controller on
the requesting node (o), traverses the network (l), travels
through the communication controller at the home where
the request is satisfied (2o), traverses the network again (l)
and, finally, travels back through the communication
controller at the source node (o). Including the fixed
external processor interface and network interface delays
into and out of each controller (PIin, PIout, NIin, and NIout),
leads to a total round-trip latency as seen by the processor
(without any contention) of PIin þ o þNIout þl þNIin
þ2oþNIout þlþNIin þoþ PIout for the miss, or 2lþ 4o
þPIin þ PIout þ2ðNIin þNIoutÞ. If the line were dirty in the
home node’s cache, there would be an extra fixed cost of C
at the home for retrieving the data from the cache. For a line
that is dirty in the cache of a third processor (not the
requester or the home), the latency would be 3lþ 6oþ C þ
PIin þPIout þ 3ðNIin þNIoutÞ. However, this is only the
latency seen by the requester. The controller at the home
node of the request has to handle a subsequent ownership
transfer reply. The total latency of this transaction is given
by NIout at the previous owner, plus l to traverse the
network, plus NIin þ o at the home, leading to a total
latency of lþ oþNIin þNIout.

The network latency l and the controller occupancy o are
the variables in the above costs. In the analysis presented
above, we assume that data transmission/reception
through network interfaces is completely pipelined and is
completely overlapped with other activities in the commu-
nication architecture. Therefore, we do not include g-related
latency terms in this analysis. Additive g-related latency
terms may appear in systems with fast controllers having
very slow network interfaces. But, we will show that this is
most often not the case in practice.

We focus on a range of values for l and o, as shown in
Tables 1 and 2, covering a variety of possible architectural
alternatives. Our latencies (l) vary from tightly coupled,

CHAUDHURI ET AL.: LATENCY, OCCUPANCY, AND BANDWIDTH IN DSM MULTIPROCESSORS: A PERFORMANCE EVALUATION 3

low-latency MPP networks, through physically distributed

MPP networks, all the way to LANs composed of

commodity switches. Table 1 shows the average latency

for 64 processors. Our system cycles correspond to a 100

MHz system clock frequency. Table 2 describes the

controller occupancies in our design space. Small values

of occupancy represent communication controllers that are

tightly integrated, hardwired state machines. Such con-

trollers appear in the MIT Alewife machine [1], the KSR1

machine [15], the Stanford DASH multiprocessor [17], and

the SGI Origin 2000 [16]. As o increases, the controller

becomes less hardwired and more general-purpose, from

specialized coprocessors like those in the Stanford FLASH

multiprocessor [14] and the Sun S3.mp [22], through

inexpensive off-the-shelf processors on the memory bus as

in Typhoon-1 [23], to a controller on the I/O bus of the main

processor like those in SHRIMP [3], and the IBM SP2 [28].

We also vary the node-to-network bandwidth from 400

MB/s (g1) down to 25 MB/s (g16), to analyze the effect of

reducing network bandwidth on the applications under

consideration.

3 FRAMEWORK AND METHODOLOGY

The applications [31] and the base problems sizes that we
use in our simulation study are summarized in Table 3.
They include three complete applications (Barnes-Hut,
Ocean, and Water) and three computational kernels (FFT,
LU, and Radix-Sort). The programs were chosen because
they represent a variety of important scientific computa-
tions with different communication patterns and require-
ments. Descriptions of the applications can be found in:
Barnes-Hut [26], Radix-Sort and Ocean [32], Water [31], and
FFT and LU [24]. The communication characteristics of the
applications can be found in [24], [31]. The applications are
highly optimized to improve communication performance,
particularly to reduce spurious hot-spotting or contention
effects that adversely impact controller occupancy. Even
with these optimizations, we will show that occupancy still
remains an important determinant of performance. The
codes for the applications are taken from the SPLASH-2
application suite [31], although Radix-Sort was modified to
use a tree data structure (rather than a linear key chain) to
communicate ranks and densities efficiently.

We explore the performance effects of varying l; o; g; P
and the problem sizes of these applications. The standard
definition of parallel efficiency is used as the metric to
measure the performance of a particular communication
architecture or a particular problem size. Parallel efficiency
is defined as the speedup over a sequential implementation
of the application on a uniprocessor, divided by the number
of processors (P). Some machine designers argue that cost-
performance is the best overall figure of merit [30]. Though
this may be an important factor in the decision to purchase
machines, it is difficult to pinpoint the costs of machines at
every point in our design space, especially as advances in
technology cause the costs to change over time. Instead, we

4 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 7, JULY 2003

TABLE 1
Network Latencies in the Design Space

TABLE 3
Applications, Communication Patterns, and Base Problem Sizes

TABLE 2
Controller Occupancies in the Design Space

use a pure performance metric and keep the study free of
cost issues. If designers want to spend less money and use
cheaper, slower components, our results will still indicate
the performance of shared memory programs running on
those less aggressive architectures. In fact, cost can be
factored in separately with our performance results to use
cost-performance as a metric.

In this paper, we present simulation results as well as
experimental results gathered from an existing program-
mable DSM prototype. The simulator models contention in
detail within the communication controller, between the
controller and its external interfaces, at main memory, and
for the system bus. The input and output queue sizes in the
controller’s processor interface are uniformly set at 16 and
two entries, respectively, while those for the network
interface are uniformly set at two and 16 entries, respec-
tively. We assume processor interface delays of one system
cycle inbound and four system cycles outbound and
network interface delays of eight system cycles inbound
and four system cycles outbound. We assume that the
latencies through the interfaces remain fixed as controller
and network characteristics are varied. We also fix the
access time of main memory DRAM at 140 ns (14 system
cycles), resulting in a local read miss time of 190 ns, one
system cycle faster than the SGI Origin 2000. Fixing the
interface delays and the memory access time is realistic [11]
and allows us to focus on the performance of the
communication architecture and the effects of varying
l; o; g and P .

The processor controls its own secondary cache, and the
simulator uses 27 processor cycles (5 ns each cycle) for C,
the time it charges the controller to retrieve state informa-
tion from the processor cache when necessary. This latency
is close to the latencies reported in previous studies [11].
There are separate 64 KB primary instruction and data
caches that are two-way set associative and have a line size
of 64 bytes. The secondary cache is unified, 2 MB in size,
two-way set associative, and has a line size of 128 bytes. We
also assume that the processor ISA includes a prefetch
instruction. In our processor model, a load miss stalls the
processor until the first double-word of data is returned,
while prefetch and store misses will not stall the processor
unless there are already references outstanding to four
different cache lines.

4 SIMULATION RESULTS

This section presents and analyzes the simulation results of
all the six SPLASH-2 applications that we are looking at.

4.1 What We Expect To See

As l and o increase for fixed values of g and P with a given
problem size, we expect that parallel efficiency should
decrease. To get a rough idea about how the parallel
efficiency should vary with l and o, we use the model of
parallel efficiency we suggested in [13]:

� ¼ Tcomp

Tcomp þ VcommðTL þ TCÞ
; ð1Þ

where Tcomp is the uniprocessor computation time, Vcomm is
the total volume of communication, and TL and TC are the
average stall times due to latency and contention, respec-
tively, for each communication. We define communication

to be any transaction that incurs occupancy on the
communication controller. Note that TL includes the
latencies for all protocol transactions, not just remote read
misses clean at the home. Equation 1 is considered here,
only to get some intuitive idea about the expected results.
The readers should not take it as a formal definition of
parallel efficiency, although this equation models the
parallel efficiency fairly well under the assumptions of
perfect load-balance and an equal distribution of volume of
communication across the nodes in the system. But, this
equation fails to explain the well-known phenomenon of
superlinear speedup that may happen due to cache effects
related to the problem size on one versus multiple
processors. The parallel efficiency of our simulation runs
is calculated as speedup divided by the number of
processors. We do not use (1) for that purpose.

For a fixed problem size, a fixed number of processors,
and fixed g, both Tcomp and Vcomm are constants. We will
show that TL varies linearly with l and o. To see why this is
true, observe that the uncontended latency of any transac-
tion is given by alþ boþ c, where a and b are constants that
depend on the type of the transaction and c is a constant
that depends on the time spent in various interfaces
between the communication controller, the processor, and
the network. The average over all these uncontended
latencies will have the same linear behavior. Finally, we
turn to TC , the average contention in the communication
controller. If the contention in the controller was fixed at a
constant value as we traverse the design space, we would
see the same parallel efficiency for various values of o as
long as we hold TL at a constant value. On the other hand, if
TC increases with increasing o, we would expect to see a
gradual decrease in parallel efficiency as we move from O1

to O16 for a fixed value of TL.
Next, we explore the question of varying the gap (i.e., the

node-to-network bandwidth). As node-to-network band-
width decreases, we expect to see a decrease in parallel
efficiency. The importance of g depends on the node-to-
network bandwidth requirement of the application under
consideration. Although the average bandwidth require-
ments of the applications reported in [13] were less than the
capacity of the network, we will see that g can still be
important if the communication pattern is bursty.

The next two dimensions in our design space are P and
the problem size. With increasing P , we expect to see a
decrease in parallel efficiency for the same communication
architecture. This is simply because TC increases as P
increases. Further, the average number of hops a message
needs to travel also increases leading to a corresponding
increase in TL. We also expect that increasing problem size,
up to a point, will increase parallel efficiency. But, the effect
of problem size depends on the communication-to-compu-
tation ratio of the application, and the question that remains
is: How big does the problem size need to be for less
aggressive architectures to regain their lost performance, if
it is possible at all?

In the following simulation results, we will focus on both
prefetched and nonprefetched applications. Since prefetch-
ing can introduce extra and, sometimes, unnecessary
communication traffic (if prefetching is not timely), in
Table 4, we show how effective prefetching was for FFT,
Ocean, Radix-Sort, and LU in an L1O1g1 simulation for the
base problem sizes and 64 processors. Prefetching is
effective if the read miss rate is reduced without increasing

CHAUDHURI ET AL.: LATENCY, OCCUPANCY, AND BANDWIDTH IN DSM MULTIPROCESSORS: A PERFORMANCE EVALUATION 5

the write miss rate. For FFT, prefetching was found to be
quite effective because it reduced the L1 data cache read
miss rate from 0.55 percent to 0.33 percent without
significantly changing the L1 data cache write miss rate
(in this case, write miss rate also decreased from 2.1 percent
to 2.06 percent). Also, all the prefetches missed in the L1
data cache, meaning that all of the prefetch instructions
were useful. For Ocean and Radix-Sort, prefetching was
effective for the L1 network latency, but we found that it
could not hide the latency well as the network approached
less aggressive MPP networks and commodity LANs.
Finally, for LU, prefetching did not help in reducing the
read miss rate. This is mostly because of a very small
number of prefetch misses (23,488) compared to the total
number of load misses (1,008,479) in the L1 data cache,
which, in turn, is due to the fact that the total number of
prefetches is small compared to the total number of loads.
Also, prefetched LU may introduce certain hot-spots in the
memory system because, during the perimeter update
phase, all the processors owning the perimeter blocks may
try to send prefetches to the owner of the corresponding
diagonal block at the same time. For all the applications,
almost all prefetches missed in the L1 data cache. Therefore,
prefetching did not introduce any unnecessary instruction
overhead.

4.2 Case Studies: FFT and Ocean

First, we select two representative applications from the
SPLASH-2 application suite to explore, in detail, how l, o, g,
P , and the problem size affect the performance of DSM

multiprocessors. We select FFT because it is an easily
understood application that has a regular communication
pattern, and we select Ocean because it is a complex, large-
scale application.

4.2.1 Experience with FFT

First, we examine the effects of l and o on nonprefetched
and prefetched FFT. In our simulations, the ratio of
processor clock speed to the system clock speed is set to
two. Increasing this ratio is equivalent to increasing the
processor clock rate or, alternatively, to having a more
aggressive superscalar processor that can issue requests to
the memory subsystem at a faster rate [10]. We will vary
this ratio as a part of our case study, and we will see that
higher ratios will result in worse parallel performance due
to a higher TC and a smaller Tcomp for the same problem
size. Fig. 1 plots parallel efficiency against average
communication latency (TL) in processor clock cycles for
nonprefetched and prefetched FFT with the base problem
size (1M points) running on 64 processors. Different curves
for different values of o indicate that we do have
occupancy-induced contention in the node-controller. The
six points along each o-curve corresponds to the six network
architectures ranging from L1 (tightly coupled MPP latency)
to L32 (commodity LAN latency). In this paper, all the
efficiency curves that show effects of only l and o have a
constant node-to-network bandwidth of 400 MB/s (a g1
configuration).

Without prefetching: As already indicated, the multiple
efficiency curves show that the contention component of the

6 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 7, JULY 2003

TABLE 4
Effect of Hand-Inserted Prefetches

Fig. 1. (a) Nonprefetched and (b) prefetched 1M-point FFT running on 64 processors.

controller is indeed important, even without prefetching.
The curves also begin to flatten as o is increased, which
indicates that the controller starts to saturate, and its high
utilization becomes the performance bottleneck in the
machine, regardless of the network latency.

Note that all efficiency curves nearly converge at high
values of l, implying that, at today’s commodity network
latencies, controller occupancy does not have a large impact
on overall performance for this problem size without
prefetching. Conversely, for a range of MPP and distributed
MPP network latencies (small values of l), controller
occupancy is a critical determinant of overall performance.
Increases in TC account for the efficiency lost while
communication latency is held constant and controller
occupancy is increased.

With prefetching: In this case, there are also multiple
parallel efficiency curves that flatten out as o increases.
Unlike the nonprefetched case, the curves no longer
converge at commodity LAN latency because the conten-
tion component of occupancy affects overall performance,
even at high network latencies. At our highest network
latency, an O1 machine is 1.5 times faster than an O16

machine in the prefetched case, but only 1.3 times faster in
the nonprefetched case. Prefetching improves performance
more at low o and low-to-moderate l than it does at higher
values of o and l. At moderate l, prefetching cannot hide all
the network latency and increases in latency begin to hurt
the prefetched case at the same rate as the nonprefetched
case. At medium o, the controller becomes a bottleneck, as it
is unable to match the increased bandwidth needs of

prefetching. We see, therefore, to support prefetching in
DSM machines, it is crucial to keep controller occupancy
low.

Effect of faster processors: The performance gap
between the processor and the memory subsystem is ever-
increasing. Fig. 2 shows the efficiency curves for processor/
memory speed ratios of 3 and 4. As expected, the shapes of
the curves remain unchanged, while the parallel efficiency
correspondingly decreases. Also, note that the decrease in
parallel efficiency is more for slower controllers than the
low-occupancy ones. For example, with an agressive MPP
network (L1 configuration), the parallel efficiency for an O1

controller drops from 0.98 to 0.96 as the system moves from
a speed ratio of 3 to 4. On the other hand, for an O16

controller with the same network, the parallel efficiency
drops from 0.47 to 0.39 as the speed ratio changes from 3 to
4. This drop is significant given that an efficiency of 0.47
corresponds to a speedup of 30.08, while 0.39 corresponds
to a speedup of 24.96 on a 64-processor system, which in
turn translates into a large difference in execution times.
This suggests that, as the gap between the clock rates of the
processor and the memory subsystem continue to increase,
DSM controllers will need to become more tightly inte-
grated and have even lower occupancy. The remainder of
our simulation results uses our base processor/memory
speed ratio of two. This is generous toward less aggressive
controllers and networks, yet, even so, we will see that their
performance in DSM systems is still poor.

Effect of varying node-to-network bandwidth: Next, we
explore the effect of varying g on FFT. Fig. 3 plots the

CHAUDHURI ET AL.: LATENCY, OCCUPANCY, AND BANDWIDTH IN DSM MULTIPROCESSORS: A PERFORMANCE EVALUATION 7

Fig. 2. Prefetched 1M-point FFT with processor/memory speed ratios of (a) 3 and (b) 4 on 64 processors.

Fig. 3. Effect of varying l, o, and g on prefetched 1M-point FFT for (a) 32 and (b) 64 processors.

parallel efficiency of FFT on 1M points for both 32 and
64 processors. The “[L1g1] o” curve exhibits the effect of
varying o as we keep the network and the node-to-network
interface at the fastest possible level (L1g1). The x-axis plots
the factor of variation from 1 to 16. Similar effects of L are
shown in the “[o1g1] L” curve. The effect of slowing down
the node-to-network interface is plotted in the “[L1o1] g”
curve. The point corresponding to x ¼ 0:5 is also plotted,
signifying the parallel efficiency when the node-to-network
bandwidth is 1=g ¼ 800 MB/s. Note that we do not lose any
efficiency when the bandwidth decreases from 800 MB/s to
400 MB/s. Also, the “[L4] o and g” curve plots the effect of
varying o and g together for an L4 network (distributed
MPP). This curve is more relevant to variation in g because
the controller speed and the interface bandwidth normally
go hand in hand, given that it only makes sense to build a
controller with a good balance between controller band-
width and interface bandwidth. These curves clearly bring
out the fact that starting from an L1O1g1 configuration, one
loses most in terms of performance if controller occupancy
is increased. In addition, we see that network latency is the
least important parameter for FFT. In fact, for FFT, the order
of these three architectural parameters in terms of perfor-
mance sensitivity is o, then g, then l.

Effect of varying P and the problem size: Fig. 4 shows
the parallel efficiency curves just like Fig. 1, but now with 32
instead of 64 processors. As expected, the parallel efficiency
for 32 processors is only slightly higher (at most 5 percent
for various values of l) than that for 64 processors for O1; O2,
and O4 controllers. However, for O8 and O16 controllers,
there is a significant gain in efficiency as the number of
processors drops to 32. For example, with an L32O16

configuration on a 64 processor system, prefetched FFT
achieves an efficiency of around 0.5, while a 32 processor
system has an efficiency of around 0.6. This is expected
because for slow controllers, the effect of contention (which
increases with increasing processor-count) is larger as
compared to relatively fast controllers. Finally, we explore
the effect of varying the problem size in FFT. Fig. 5 shows
the parallel efficiency curves for prefetched FFT with a
smaller data size (256K points) running on 64 processors. A
comparison with Fig. 1 reveals that we do gain in terms of
efficiency by increasing the data size from 256K points to
1M points. But, how much do we need to increase the
problem size for less aggressive controllers? We cannot
simulate larger problem sizes for FFT, but we will shed

some light on this question by using a flexible DSM
prototype in Section 6.

4.2.2 Ocean

Fig. 6 plots parallel efficiency against average communica-
tion latency (TL) for nonprefetched and prefetched Ocean
with the base problem size (514� 514 grid). Ocean performs
many iterative nearest-neighbor computations on regular
grids and depends strongly on network latency. However,
its performance is also dependent on controller occupancy,
especially for the prefetched version and for low-latency
networks (Aggressive MPP). The main problem with Ocean
is that it cannot fully exploit the spatial locality of remote
data and, hence, it is highly sensitive to network latency,
even in the prefetched version.

The effect of increasing the processor/memory speed
ratio for Ocean does not have a significant performance
impact and we do not show those results here. This
supports our claim that Ocean is much less sensitive to
controller occupancy than FFT. The effect of varying g is
exhibited in Fig. 7. The important observation is that, in an
L1O1 system with node-to-network bandwidth less than or
equal to 50 MB/s, g becomes significantly more important
than o in an L1g1 system. However, since a tightly
integrated controller (L1O1) is not likely to have such a
poor node-to-network interface, the curve that shows
simultaneous variation in o and g gives a much more
realistic estimate of the performance impact as these
parameters vary. This curve clearly demonstrates the fact
that the combined effect of increasing o and g is much more
devastating than only increasing l. The absolute value of the

8 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 7, JULY 2003

Fig. 4. (a) Nonprefetched and (b) prefetched 1M-point FFT running on 32 processors.

Fig. 5. Prefetched FFT on 256K points and 64 processors.

slope of the latency curve is consistently less than the other
three curves. This also supports the view that latency is less
important than occupancy and bandwidth. The slopes of
the other three curves are similar, although, at some points,
the g-curve has a lower slope compared to the o-curve. This
means that, for Ocean, the message bandwidth of the
controller should be well-balanced with the link bandwidth
of the interface; otherwise, one of them will be under-
utilized and the other one will become the bottleneck.

As we decrease the number of processors from 64 to 32,
we observe the same trend as in FFT—parallel efficiency
increases. In fact, an L1O1 controller achieves superlinear
speedup for prefetched Ocean. However, when we change
the grid size to 258� 258, we observe a big change in
performance (see Fig. 8). With the reduced data set, the
efficiency achieved by an L1O1 controller is less than that of

an L1O8 controller on the bigger grid size. Again, we will
see the effect of occupancy variation with larger problem
sizes in Section 6.

4.3 Other Simulation Results

In the following, we present the remaining simulation
results for Radix-Sort, LU, Barnes-Hut, and Water. Since we
continue to see similar trends when P is decreased from 64
to 32, we mainly focus on results for 64 processors and point
out the effects of varying l, o, and g.

Radix-Sort: The results for Radix-Sort shown in Fig. 9 are
similar to FFT, with a few notable exceptions. Like FFT,
without prefetching, all the efficiency curves almost
converge by today’s LAN latencies (our rightmost points).
While the O1 and O2 controllers have similar performance,
the O8 curve is much flatter than it is in FFT, and the O16

curve is almost totally flat. This indicates that, in Radix-Sort,
contention induced by slower controllers matters even more
than it does in FFT.

In the prefetched version of Radix-Sort, we see a bigger
linear dependence on network latency than that in pre-
fetched FFT (i.e., prefetching is not as successful in Radix-
Sort as it is in FFT for networks slower than the L1

configuration because of the irregular sender-initiated
bursty communication in the permutation phase). Prefetch-
ing helps much more at lower values of o, indicating that it
is critical to keep occupancy low when prefetching, even
with LAN network latencies.

Fig. 10 shows the effect of varying g. For an L1O1

controller, g is much more important than o is for an L1g1
controller. This is because of the permutation phase in

CHAUDHURI ET AL.: LATENCY, OCCUPANCY, AND BANDWIDTH IN DSM MULTIPROCESSORS: A PERFORMANCE EVALUATION 9

Fig. 6. (a) Nonprefetched and (b) prefetched Ocean running on 64 processors and a 514� 514 grid.

Fig. 7. Effect of varying l, o, and g on prefetched Ocean for (a) 32 and (b) 64 processors with a 514� 514 grid.

Fig. 8. Prefetched Ocean on a 258� 258 grid and 64 processors.

Radix-Sort, which requires all-to-all communication con-
sisting of bursty writes. Also, the average bandwidth
requirement for Radix-Sort is the maximum among our
six applications [13]. The combined effect of o and g shows
that the combined controller-link bandwidth is still the most
important determinant of performance (for 64 processors,
L16O1g1 achieves a parallel efficiency of 0.6, while L4O16g16
achieves an efficiency of only 0.25). Again, the same trend
continues to hold for network latency: It is less important
than o and g.

LU: The efficiency curves for LU are presented in Fig. 11.
One significant difference for both prefetched and non-
prefetched LU is that the performance is less sensitive to
both latency and occupancy. The reason is that LU has a

low communication-to-computation ratio, and the domi-
nant bottleneck in such high-performance matrix factoriza-
tions is load imbalance, so its performance is less dependent
on communication costs. The effect of varying g was similar
to Radix-Sort: Network latency remains insignificant com-
pared to combined controller-link bandwidth.

Barnes-Hut and Water: Fig. 12 shows the results of
Barnes-Hut for 8,192 bodies (although the simulation was
run over three time steps, the speedup numbers are
measured for the last time step only) and Water for
1,024 molecules. Neither application includes prefetching
because the high degree of temporal locality (and irregu-
larity in Barnes-Hut) makes it difficult to determine which
particular memory references will miss in the cache. For

10 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 7, JULY 2003

Fig. 9. (a) Nonprefetched and (b) prefetched Radix-Sort running on 64 processors and 2M keys.

Fig. 10. Effect of varying l, o, and g on prefetched 2M-key Radix-Sort for (a) 32 and (b) 64 processors.

Fig. 11. (a) Nonprefetched and (b) prefetched LU running on 64 processors and a 512� 512 matrix.

Barnes-Hut, the O1 and O2 controllers have almost identical
performance. For some values of o (e.g., 16), increasing the
network latency sometimes increases the performance. We
observed that this anomaly happens because of reduced
synchronization stall time with a slow network. With a
relatively slow network and for some particular event
timing the lock accesses from different processors may
become nicely staggered in time leading to lower lock
contention. For Water, the efficiency curves are similar to
those for LU. But, Water shows higher sensitivity to latency
and occupancy than LU. For Barnes-Hut with a reduced
problem size (4,096 bodies), [not shown] there was not as
significant performance loss as in Water with smaller
problem size (512 molecules) [not shown] for fast con-
trollers (O1; O2; O4). For Water with 512 molecules, there
was a significant performance loss. The parallel efficiency
achieved by an O1 controller for all latencies with
512 molecules was consistently less than that achieved by
an O8 controller running on 1,024 molecules. The graphs for
these results are not presented here because of space
constraints, but are available in our technical report [4]. The
gap parameter g was not found to be important for either
application.

Application Summary: As we expected, increasing
network latency uniformly decreases overall performance
across all the applications. Prefetching is often very effective
at improving performance, but requires low occupancy
controllers. Also, we observed that controller occupancy is
much more important than network latency. For some of
the applications (e.g., Radix-Sort), the node-to-network
bandwidth is more important than the controller occupancy
for fast controllers (e.g., hardwired). But, we do not expect
the node-to-network bandwidth to ever become a bottle-
neck because fast controllers are expected to have fast
network interfaces. In other words, the node-to-network
bandwidth may become a bottleneck in certain applications
with bursty communication phases if the message band-
width of the controller is not well-balanced with the
bandwidth of the network interface. We noticed that the
contention effect of controller occupancy is particularly
acute at low values of network latency. In addition, the
point at which the efficiency curves begin to flatten occurs
at relatively small values of occupancy, typically either O4

or O8, and by O16 (communication controller on the I/O
bus), the curves are almost flat. From a design standpoint,

these results show that controller occupancy will become a
bottleneck unless the communication controller is a hard-
wired or customized controller integrated on the memory
bus of the main processor. The only hope for less aggressive
controllers is that larger problem sizes will restore some lost
parallel efficiency. We explore this possibility via experi-
mentation on a DSM prototype in Section 6.

5 ANALYTICAL MODELING

In this section, we develop a mathematical model to further
understand the impact of latency and occupancy-induced
contention on the execution time of an application. We
show that it is easy to model the average communication
latency, but extremely difficult to predict how contention
varies across our design space.

Let the execution time for the L1O1 model be t1 and that
for the LxOy model be t2. We expect that

t2 ¼ t1 þ V T ð�TL þ �TCÞ; ð2Þ

where V T is the per-node average transaction volume, �TL

is the average change in uncontended transaction latency,
and �TC is the average change in communication controller
contention per protocol transaction. If we want to predict t2
from t1, we need three parameters, namely, V T , �TL, and
�TC . We explore each of these parameters separately.

5.1 Modeling �TL

We can predict �TL for prefetched FFT within 2 percent of
our simulation results in most cases. We can achieve similar
accuracy for the other five applications as well. From the
detailed L1O1 simulation of prefetched FFT, we find that the
average transaction latency is given by the equation

TL ¼ 1:42lþ 3oþ 51 ð3Þ

in processor clock cycles. Since the transaction volume and
transaction pattern remain more or less unchanged as l and
o are varied, we expect that this equation holds even for
values of x and y other than 1. Table 5 shows the validity of
this equation as we try to predict the average transaction
latency (in processor clock cycles) using this equation, and
compare them against the real values obtained through
simulation. As can be seen from the table, the predicted
values are, in most cases, within 1 percent of the values

CHAUDHURI ET AL.: LATENCY, OCCUPANCY, AND BANDWIDTH IN DSM MULTIPROCESSORS: A PERFORMANCE EVALUATION 11

Fig. 12. (a) Barnes-Hut (8,192 bodies) and (b) Water (1,024 molecules) running on 64 processors.

obtained from simulation. Since �TL is simply the difference
between two average latencies, we can predict that within
2 percent of error. We must note that (3) is application
dependent, but, for each application, we need to run only
one simulation to predict �TL for the whole design space
(30 points with fixed g, P , and problem size). Having
predicted �TL with high accuracy, we concentrate on the
remaining two parameters.

5.2 Modeling VT

The major problem in measuring the exact volume of
protocol transactions is that some of these transactions are
hidden under computation, while some of these mutually
overlap in time. The former problem is more pronounced in
prefetched applications, while the latter one introduces
double-counting. We want to measure the volume of
transactions that do not overlap with computation (i.e.,
are not hidden), and we also want to avoid double-
counting. We developed two methods for doing this.

Our original study took into account only remote read
misses to measure the volume of transactions. The first
model we examine is an obvious extension to that. We take
into account the dominant transaction type to measure V T .
For example, for FFT, it is remote read misses and, for
Radix-Sort, it is local read misses that are dirty on a remote
node. But, this method, when combined with our prediction
of �TL and �TC , exhibits poor accuracy in predicting the
overall parallel efficiency, and we do not pursue it further.

The second method is more involved and requires two
simulations to calculate V T . Since we want to reduce the
amount of mutual overlap between transactions and the
amount of overlap between computation and communica-
tion, we calculate V T from the L16O1 and L32O1 simulations.
With a slow network, we expect that the amount of overlap
between transactions and computation will be reduced.
From these two simulations, we calculate �TL and �TC

between these two configurations and use (2) to calculate
V T . This method leads to much better overall prediction
accuracy. The results are presented in the following section.

5.3 Modeling �TC and Overall Prediction

Accurately modeling contention in any kind of centralized
or distributed controller is a big challenge. This is simply
because contention can arise due to various direct or
indirect effects in the underlying architecture. The direct
effects come from the service rate of the controller and the
arrival rate of the requests. The indirect effects depend on
how different types of requests and replies interact with
each other, usually in a very unpredictable manner, as the
system operates over time. The obvious way to reason and
understand about the contention in a controller is to see it as
a centralized queue leading to a server.

We model the node controller as an ðM=M=1Þ :
ðFCFS=1=1Þ queuing system. Although the queues in the
real system are of finite capacity, we model them as infinite
queues. We shall comment on this assumption later. We
assume Markovian arrival and departure as it turns out that
this model predicts overall performance well. Since each
node has a single communication controller, the queuing
model has a single server with a First-Come-First-Served
service policy. Also, note that the backpressure flow-control
is not taken into account while modeling the controller and
only the effects of l and o are analyzed for fixedvalues of g and
P . The backpressure flow-control, which is present in any
realistic closed system, mainly arises due to the fact that the
main processor can issue only a finite number of requests. So,
very high contention in the controllerwill eventually lead to a
decrease in the arrival rate, especially for nonprefetched
applications. Tomodel backpressure flow-control, one needs
to consider a finite population of requests instead of the
infinite calling source analysis presented here. But, the main
problem inmodeling a finite population is the determination
of the exact size of the population. It may appear that the size
of the population should be simply the total number of
processors multiplied by the maximum number of out-
standing misses in each processor. But, this value strictly
under-estimates the population because a communication
controller may generate special coherence messages (e.g.,
invalidation requests, intervention messages, i.e., forwarded
requests, ownership transfer messages, sharing writebacks,
etc.). So, we carry out an infinite calling source analysis and

12 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 7, JULY 2003

TABLE 5
Predicting Average Communication Latency

show that this simplemodel is accurate enough in predicting
the contention in the communication controller. Another
reason forusinga simplemodel is thatwewanted (if possible)
to devise an easy way to predict the parallel efficiency.

The contention in the system is measured as the expected
waiting time in the queue, Wq, which is given by [29]:

Wq ¼
�

�ð1� �Þ ; ð4Þ

where � is the effective traffic in the system and is given by
� ¼ �=�, � being the arrival rate (number of requests
arriving per processor clock cycle) and � the service rate
(number of requests serviced per processor clock cycle). We
assume that the arrival rate � is inversely proportion to the
network latency, i.e., for an LxOy model � ¼ KL=x, where
KL is a system and application dependent constant.
Similarly, we assume that the service rate � ¼ KO=y. Thus,
we have

Wq ¼
KLy

2

KOðKOx�KLyÞ
: ð5Þ

Observe that, for fixed occupancy (i.e., fixed y), as latency
increases (i.e., x increases), contention decreases, which is
the expected result. From the contention in the LxO1 model
we try to predict that in LxOy model. LetWq1 andWq2 be the
contention in the LxO1 model and LxOy model, respec-
tively. Therefore, we have

Wq2 ¼ y2
KOx�KL

KOx�KLy

� �
Wq1: ð6Þ

This equation directly follows from (5). It is interesting to
note that growth in contention (i.e., Wq2=Wq1) for fixed
latency (i.e., x) is faster than quadratic in occupancy
because, for y > 1, the bracketed term in (6) is bigger than
1 and this term increases in magnitude as x (i.e., latency) is
kept fixed and y (i.e., occupancy) is increased. Further, note
that, for fixed y (i.e., fixed occupancy), the ratio Wq2=Wq1

does not vary much with x (i.e., latency). So, our claim that
occupancy affects contention more than latency does is born
out analytically. We use (6) to predict the contention of
LxOy configuration from that in LxO1 configuration as y is
varied and x is kept fixed. To carry out this prediction, we
only need to carry out the six simulations (versus the
30 simulations that cover our entire design space) for the
LxO1 model as x takes on values 1, 2, 4, 8, 16, and 32. From
these simulation results, we can calculate the contention for
these six models. The next task is to estimate KL and KO.
We approximate the arrival rate as the total volume of
transactions per communication controller divided by the
parallel execution time. From this, we calculate KL. Next,
we approximate the service rate as the reciprocal of
communication controller occupancy per protocol handler
invocation. From this, we calculate KO.

Using the Analytical Model: For architectures with fast
networks (i.e., low values of x), if the controller is relatively
slow (i.e., relatively bigger values of y), this model will
mispredict contention. Whether it will underpredict or
overpredict contention depends on the communication
structure of the underlying application. The main reason for
this misprediction is that the fast network exposes the finite
queue length limitation and the system behaves more like an
ðM=M=1Þ : ðFCFS=N=1Þ model, where N is the maximum

number of outstanding requests in the system.At this point, a
linearwaiting timemodel (for fixedx, e.g., forL1 network, the
contention increases linearly with y) works quite well. To be
more precise, in the linear model the contention for LxO2

configuration is exactly double that ofLxO1 configuration for
fixed x. For prefetched FFT, the linear waiting time model
predicts theparallel efficiencywithin1percent error forL1O2,
L2O2, L1O4, L2O4, L1O8, and within 5 percent for L1O16

configurations (see Fig. 13; the simulated curves are in solid
lines, while the predicted ones are in dotted lines). V T is
predicted by the second method described in Section 5.2.
However, we observed that the prediction error of the linear
model for prefetched Radix-Sort is as big as 5 percent to
10 percent for the low-latency configurations (interested
readers are refered to [4]). The reason for this is mainly the
lack of knowledge about the exact V T . With low-latency
networks, prefetching can hide latency, and our model
mispredicts V T , especially when the communication struc-
ture is irregular andbursty.Ourexperience says thatdifferent
queuing models are necessary to predict the performance of
different applications due to the vastly different communica-
tion structures of different applications. Our dual queuing
model (to be introduced shortly) predicts the parallel
efficiency of our applications within a small percentage for
all our configurations.

We now present a mathematical proof to explain why a
linear waiting time model works well for the low-latency
network configurations. As we have already pointed out. for
these configurations the system behaves more like an
ðM=M=1Þ : ðFCFS=N=1Þmodel. For thismodel, the expected
system queue length is given by [29]:

Ls ¼
�½1� ðN þ 1Þ�N þN�Nþ1�

ð1� �Þð1� �Nþ1Þ : ð7Þ

The average queue length is given by

Lq ¼ Ls �
�eff

�
; ð8Þ

where effective arrival rate, �eff is given by

�eff ¼ � 1� 1� �

1� �Nþ1

� �
�N

� �
: ð9Þ

For a fast network and a slow controller, it is reasonable to
assume that � is large. So, for reasonable values of N (e.g.,
16 for the PI inbound queues in our simulator), it is logical

CHAUDHURI ET AL.: LATENCY, OCCUPANCY, AND BANDWIDTH IN DSM MULTIPROCESSORS: A PERFORMANCE EVALUATION 13

Fig. 13. Prediction accuracy of the linear model for prefetched FFT on 64

processors.

to assume that 1=�Nþ1 is negligible. With these simplifica-
tions, we obtain

�eff ¼ � 1� 1=�� 1

�1

� �� �
; ð10Þ

i.e., �eff ¼ �, which is expected because now the arrival rate
is governed by the service rate since the queue remains full
most of the time and there is no space to accommodate new
requests until a pending request gets serviced. Therefore,

Wq ¼
Lq

�eff
; ð11Þ

which, from (8) and the relation �eff ¼ �, reduces to

Wq ¼
1

�
ðLs � 1Þ ¼ 1

KO
ðLs � 1Þy: ð12Þ

Now, for a fixed network model (i.e., fixed x), it is
reasonable to assume that Ls remains constant as y is
varied. This assumption is justified by the fact that for a fast
network and relatively slow controller, Ls is almost always
close to N and it is more affected by the arrival rate than by
the service rate since the service rate is much smaller than
the arrival rate. We present an approximate analysis to
support this view. In (7), assuming that � is large, we obtain

Ls ¼
�

�� 1

� �
N �N þ 1

�

� �
; ð13Þ

which we can approximate to

Ls ¼ N �N þ 1

�
¼ N �N þ 1

�
�; ð14Þ

with the assumption that � >> 1. Now, if � is large, then
ðN þ 1Þ=� is small, and multiplying it by a small � will not
change Ls much as we decrease � from L1O1 to L1O16. Thus,
(12) precisely describes the linear waiting time model—the
contention varies linearly with occupancy factor y for fixed
x. This completes our proof. Also, note that, for a fixed
occupancy, as latency increases, the arrival rate decreases
and Ls also decreases leading to less contention. But, this
equation fails to hold as latency increases beyond that of an
L2 network because this model dictates a faster decrease in
contention than actually occurs in practice.

As thenetworkgets slower, finite queue length isno longer
a problem and our original quadratic contention model (6)

works quite well. For example, in prefetched FFT, we found
that this model predicts the parallel efficiency within
6 percent error for L4O4, L4O8, L8O8, L2O16, L4O16, L8O16,
and L16O16 configurations (see Fig. 14a). To predict parallel
efficiency for the other points, Fig. 14a uses the linear waiting
timemodel. The combination of these twomodels give rise to
a hybrid queuingmodel, whichwe call theDSM dual queuing
model.

As the network gets even slower, a completely new
phenomenon takes over. Now, network contention comes
into play and the outbound queue length becomes a
bottleneck. As the outbound queues fill up, the controller
stalls more frequently and is unable to send out messages.
As a result, the service rate gets affected and the input
queues start filling up, once again exposing the finite length
of inbound queues. Again, the linear contention model
works well, as can be seen from Figs. 13 and 14.

The failure of the linear waiting time model to predict
the efficiency for Radix-Sort at low latency indicates a major
problem in modeling the contention of a CC-NUMA
system. The difficulty is in perfectly calculating the volume
of protocol transactions that really cannot be hidden under
computation. Also, a problem arises in using only the
transactions that do not overlap in time so that we avoid
double-counting. However, for nonprefetched FFT, we
observed that the linear waiting time model predicts the
efficiency curves quite well (see Fig. 14b). The maximum
prediction error is 1 percent. This is expected since
contention in the communication controller will be less
without prefetching than with prefetching. But, still, for O16,
the linear waiting time model under-predicts the contention
for moderate values of l. This is why we observe higher
values of predicted efficiency for L4O16 and L8O16 as
compared to the simulated efficiency. This means that even
without latency hiding techniques, the growth rate of
contention tends to be faster than linear in occupancy as
the communication controller moves more toward com-
modity microprocessors on the memory or I/O bus.

Finally, we summarize our findings about modeling the
contention in the communication controller. The system
switches between two models as we traverse the design
space and we call it the DSM dual queuing model. The exact
points where the system moves from one model to another
are highly dependent on the communication structure of
the running application. But, our experience says that, for
O4; O8 and O16 controllers, the system switches from the

14 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 7, JULY 2003

Fig. 14. (a) Prediction accuracy of prefetched FFT with the DSM dual queuing model and (b) prediction accuracy of nonprefetched FFT with the

linear model.

linear model to the quadratic model around L2 network
latency and reverts back to the linear model at L32 network
latency and above. Overall, contention is much more
important than latency since the latter scales only linearly
with l and o.

6 VARYING OCCUPANCY ON A DSM PROTOTYPE

In this section,wepresent the effects of varyingoccupancy for
larger problem sizes (that we could not simulate). Normally,
it is not possible to increase occupancy in a DSM machine
once it is built. However, we have the luxury of using the
programmable protocol processor of a 16 and 32-node
Stanford FLASH multiprocessor for this purpose. The
75 MHz communication controller has an embedded RISC
protocol processor that runs software handlers to satisfy
protocol requests. The main processor is a 225 MHz MIPS
R10000. Although we can vary occupancy, we cannot vary l
and g on FLASH because the message send/receive mechan-
ism in FLASH is hard-wired and integrated into the network
interface.

6.1 Locating FLASH in the Design Space

To properly interpret the results obtained from the
programmable protocol engine, we first try to locate FLASH
in our design space using the parallel efficiency obtained
from a 16-node FLASH multiprocessor. FLASH uses an SGI
Spider router [8] that takes eight network cycles to get the
header through the chip. The data payload, if any, follows
pipelined at four bytes per network clock. The network
clock speed of the current FLASH prototype is 150 MHz.
Thus, the peak node-to-network bandwidth is 600 MB/s.
Since the communication controller (MAGIC) is running at
75 MHz, the network hop time is four system cycles, i.e.,
approximately 50ns. In our design space, for a 64-processor
mesh topology, the L1 network latency is 25 system cycles.
Since the average number of hops for a mesh topology on
64 nodes is 5.33, the average per-hop time is approximately
five system cycles, i.e., 50ns at 100 MHz system clock
frequency. Therefore, the FLASH network is close to L1 and
the node-to-network interface is also greater than g1 (which
is 400 MB/s), though we have seen that this does not
improve performance for our applications. To figure out the
occupancy of FLASH, we ran simulations for prefetched

FFT and Ocean with our base problem sizes on a 16-node
configuration with processor/memory speed ratios of 3 and
4, and tried to map the corresponding results from FLASH
onto our simulation results. While doing this comparison,
we had to be careful in our choice of compiler. For a target
architecture of an R10000, the MipsPro cc compiler
produces better code than gcc. But, since our simulation
environment uses gcc to compile the applications, we used
the same compiler for compiling the applications for
FLASH that we use in this comparison. Fig. 15a shows the
normalized execution times of FFT (1M points) and Ocean
(514� 514 grid) on a single processor. All times are
normalized to uniprocessor FLASH execution time of FFT
with gcc compiler. A comparison between the simulations
with speed ratio 4 and FLASH gcc results tells us that a
speed ratio of 4 in our simulations models the FLASH
machines fairly well. This was also found to be true in [10].
Using a speed ratio of 4 on 16 processors to locate FLASH in
our design space, we find that L1O2g1 simulation results are
closest to the 16 processor FLASH results. To see how well
they match, we present the results for FFT (1M points) and
Ocean (514� 514 grid) in Fig. 15b. All times are again
normalized to 16 processor FLASH execution time of FFT
with gcc compiler. Thus, we have calibrated FLASH as an
L1O2g1 system in our simulation study using the same
compilers. But, in the results presented below, to show how
occupancy affects performance on FLASH, we use the
MipsPro cc compiler with O2 optimization because it
produces better code than gcc.

6.2 Effect of Increasing Occupancy

Since FLASH is a working DSM prototype, we can run
bigger problem sizes than we can simulate and, therefore,
we can examine the performance of controllers with large
occupancy at these larger problem sizes. We are able to
model higher occupancy machines on FLASH by increasing
the occupancy of the handlers run by the programmable
protocol processor. To vary the occupancy of the commu-
nication controller, we doubled the occupancy of each
protocol handler at every step by inserting the appropriate
number of NOPs in the handler code. We checked that the
communication controller instruction cache miss rate
remains unchanged for the instrumented code and does
not cloud our results. Figs. 16 and 17 show the results for

CHAUDHURI ET AL.: LATENCY, OCCUPANCY, AND BANDWIDTH IN DSM MULTIPROCESSORS: A PERFORMANCE EVALUATION 15

Fig. 15. (a) Calibration of uniprocessor simulations against FLASH and (b) locating FLASH in the design space.

FFT, LU, Radix-Sort, and Ocean on a 32-node FLASH. Fig. 18
shows the results for Water on both a 16 and 32-node
FLASH. Due to shortage of space, we do not show the
graphs of 16-node runs for FFT, LU, Radix-Sort, and Ocean.
We only mention the salient observations from these runs.
Interested readers are refered to [4].

Although prefetched FFT scales well up to an O8

controller on 16 processors (not shown), only O2 and O4

controllers scale well for 32 processors (Fig. 16a). On
16 processors, an O8 controller achieves a parallel efficiency
of 0.66 with 16M points, while on 32 processors, the parallel
efficiency is only 0.5. Also, the O16 controller with 16M
points fails to achieve even the efficiency achieved by
FLASH on 256K points for both the processor counts. A
careful examination of the slopes of the O8 and O16 curves
clearly tells us that the performance gap between these two

controllers will continue to increase (the curves diverge) as
we keep quadrupling the problem size. This, in turn, means
that, to regain the lost performance on an O16 controller, we
need an extremely fast growth rate in problem size. FFT has
a computation time of Oðn lognÞ and a communication
volume of OðnÞ, where n is the number of points. Thus, the
computation-to-communication ratio is OðlognÞ, which
clearly increases with problem size. But, just as in many
structured applications, communication in FFT is isolated in
different phases from local computation. As a result,
although the overall computation-to-communication ratio
over the whole application increases with problem size,
within the communication phases the ratio remains con-
stant as problem size grows.

Prefetched LU (Fig. 16b) shows some interesting proper-
ties which are not present in FFT. In FFT, we see a big drop in

16 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 7, JULY 2003

Fig. 16. (a) Prefetched FFT and (b) prefetched LU on 32-processor FLASH.

Fig. 17. (a) Prefetched Radix-Sort and (b) prefetched Ocean on 32-processor FLASH.

Fig. 18. Water on (a) 16 and (b) 32-processor FLASH.

performance as we go from an O4 to an O8 controller,
indicating that there is a minimum level of controller
performance necessary to achieve good performance. But,
for LU this is not the case. A comparison of the slopes of the
curves in FFT and LU tells us that occupancy is not as big a
problem for LU as for FFT, which, in turn, supports our
simulation findings. LU requires a much smaller growth rate
in problem size as compared to FFT. But, still, in a 32-node
system, LU’s performance increases relatively slowly with
increasingproblemsizes for anO16 controller as the controller
starts to saturate. The slower growth rate in problem size for
LU as compared to FFT is explained by the fact that LU has a
linear growth rate in computation-to-communication ratio
(computation of Oðn3Þ and communication of Oðn2Þ), while
FFT has only a logarithmic growth rate in computation-to-
communication ratio.

The performance of prefetched Radix-Sort (Fig. 17a) has
a striking similarity to that of FFT. However, a careful
examination of the problem sizes of Radix-Sort actually tells
us that its performance is much worse than FFT. Its
performance is not very encouraging for high-occupancy
controllers. Even with a problem size of 128M keys, the O16

controller achieves an efficiency of only 0.3 on 16 processors
and 0.23 on 32 processors. It is difficult to scale Radix-Sort
because of its bursty write behavior [31]. As the problem
size grows, these writes also tend to be remote, which, in
effect, doubles the number of protocol transactions and
leads to excessive contention. Also, the irregular commu-
nication pattern causes hot-spots in the memory system,
resulting in even worse performance. Finally, Radix-Sort
has a constant overall computation-to-communication ratio.

Prefetched Ocean (Fig. 17b) scales well up to an O4

controller, but the efficiency curve has a very small slope for
an O16 controller. At O16, Ocean achieves a parallel
efficiency of only 0.3 for a grid size of 2; 050� 2; 050 on
16 processors and 0.19 on 32 processors. We continue to see
a big gap between O4 and O8 curves, in addition to the big
performance gap between O8 and O16 curves. Although
Ocean has a linear growth rate in computation-to-commu-
nication ratio, it also communicates data in structured
phases leading to a constant computation-to-communica-
tion ratio within those phases. One final scaling problem in
Ocean is that a larger number of grid points causes more
time to be spent in the multigrid equation solver, which has
the lowest computation-to-communication ratio and the
worst load-imbalance in the application.

Water scales well for all controller architectures on
16 nodes (Fig. 18a), but we observe a clear saturating trend
in performance for O8 and O16 controllers on 32 nodes
(Fig. 18b). This result helps us establish the fact that, as the
system moves toward even larger DSM multiprocessors,
controller occupancy will become even more important for
parallel performance.

Overall, significant increases in problem size are neces-
sary for the less aggressive controllers to achieve the desired
efficiency on 16 and 32-processor systems with a fast MPP
network. There are many important classes of applications
(transform methods, sorting, multigrid equation solver) for
which the efficiency lost by a less aggressive architecture—-
in latency or occupancy—is extremely difficult or impos-
sible to regain by increasing problem size. In most of the
applications, contention owing to the occupancy of the
controller played an important role in determining the

required growth in problem size. We observed a general
trend that all applications scaled reasonably well up to an
O4 controller. But, for an O16 controller, none of the
applications showed promising performance on a 32-node
system. As we scale the number of processors further, we
expect similar subpar performance for O8 controllers.
Therefore, as the network becomes slower and the system
grows toward even larger DSM multiprocessors, we expect
that only the more tightly integrated, aggressive commu-
nication controllers will achieve acceptable DSM perfor-
mance, regardless of problem size.

7 CONCLUSIONS

DSM machines can be characterized in terms of four
fundamental parameters: network latency, controller occu-
pancy, node-to-network bandwidth, and the number of
processors. Through simulation, analytical modeling, and
experimentation on a flexible DSM prototype, we evaluated
the performance impact of latency, occupancy, node-to-
network bandwidth, and processor count over a range of
representative scientific applications. Our results showed
that it is possible to achieve good parallel efficiency for a
range of applications on machines with low-occupancy,
hardwired or special-purpose communication controllers,
and low-latency MPP networks. As expected, network
latency impacted overall performance, but its importance
diminished with high-occupancy controllers, or when
applications employed latency hiding mechanisms. We also
observed that, for a fast hardwired controller or a
customized coprocessor used as the communication con-
troller, node-to-network bandwidth can become important,
especially for applications with bursty communication
phases. Stated differently, for these applications the
controller message bandwidth should be well-balanced
with the link-bandwidth of the interface so that neither
becomes a bottleneck. However, the node-to-network inter-
face speed is typically related to the controller speed,
therefore, we do not expect the node-to-network bandwidth
to be a problem for aggressive controller designs.

Our main result is that the occupancy of the commu-
nication controller is critical to good performance in DSM
machines and, in most cases, is more important than both
network latency and node-to-network bandwidth. For
machines with tightly coupled MPP networks, we found
that controller occupancy has a large performance impact
regardless of whether or not applications incorporated
latency hiding techniques. For machines with loosely-
coupled networks, we showed that while without latency
hiding occupancy did not matter to overall performance,
with latency hiding, controller occupancy once again
became a performance bottleneck. Since machines with
high-latency networks will need to incorporate latency
hiding whenever possible to obtain good performance,
these results show that it is important to use low-occupancy
communication controllers at any network latency. Recal-
ling that controller occupancy is the reciprocal of controller
bandwidth (in messages), we found that it was easier to
hide network latencies than it was to overcome commu-
nication bandwidth shortage.

Moreover, it was not the latency component of the higher
occupancy controllers that caused performance degrada-
tion, but rather the contention component, even without

CHAUDHURI ET AL.: LATENCY, OCCUPANCY, AND BANDWIDTH IN DSM MULTIPROCESSORS: A PERFORMANCE EVALUATION 17

latency hiding. We introduced a DSM dual queuing model
to analytically describe this contention. This model showed
that the growth rate of contention is more than quadratic in
occupancy for moderate-latency networks (e.g., distributed
MPP and fast LANs). Thus, our model showed analytically
that occupancy is more important than latency because of
its impact on contention in the system.

Finally, a thorough study on a real DSMmachine showed
that for many classes of applications it is extremely difficult
for architectures with higher values of controller occupancy
to achieve high parallel efficiency. The problem sizes needed
to achieve high parallel efficiency quickly become unreason-
able. For the applications we have considered here, it is
impossible to regain the lost performance as one moves
beyond hardwired and customized controllers and more
toward general purpose microprocessors on the memory or
I/O bus. On the other hand, the occupancies of specialized or
hardwired controllers on the memory bus were low enough
toachievegoodefficiency forall theapplications in this study.

The tendency among DSM designers has been to focus on
latency and network bandwidth as the important perfor-
mance issues in the communication architecture. Our results
demonstrate that the occupancy of the communication
controller is the most important architectural parameter that
affects the parallel performance of aDSMmultiprocessor and
that the message bandwidth of the controller should be well-
balanced with the link bandwidth of the network interface to
achieve good parallel performance.

REFERENCES

[1] A. Agarwal et al. “The MIT Alewife Machine: Architecture and
Performance,” Proc. 22nd Int’l Symp. Computer Architecture, pp. 2-
13, June 1995.

[2] A. Bilas and J.P. Singh, “The Effects of Communication Para-
meters on End Performance of Shared Virtual Memory Clusters,”
Proc. 1997 Supercomputing Conf. High Performance Networking and
Computing, Nov. 1997.

[3] M.A. Blumrich et al. “A Virtual Memory Mapped Network
Interface for the SHRIMP Multicomputer,” Proc. 21st Int’l Symp.
Computer Architecture, pp. 142-153, Apr. 1994.

[4] M. Chaudhuri et al. “Latency, Occupancy, and Bandwidth in DSM
Multiprocessors: A Performance Evaluation,” Technical Report
CSL-TR-2002-1025, Computer Systems Laboratory, Cornell Univ.,
Ithaca, NY 14853. Available at http://www.csl.cornell.edu/TR/
CSL-TR-2002-1025.ps, July 2002.

[5] F.T. Chong et al. “The Sensitivity of Communication Mechanisms
to Bandwidth and Latency,” Proc. Fourth Int’l Symp. High
Performance Computer Architecture, pp. 37-46, Feb. 1998.

[6] D. Culler et al. “LogP: Toward a Realistic Model of Parallel
Computation,” Proc. Fourth Symp. Principles and Practice of Parallel
Processing, pp. 1-12, May 1993.

[7] D. Dai and D.K. Panda, “Building Efficient Limited Directory-
Based DSMs: A Multidestination Message Passing Based Ap-
proach,” Technical Report OSU-CISRC-4/96-TR21, Dept. of
Computer and Information Science, Ohio State Univ., Columbus,
OH 43210-1277, 1996.

[8] M. Galles, “Spider: A High-Speed Network Interconnect,” IEEE
Micro, vol. 17, no. 1, pp. 34-39, Jan.-Feb. 1997.

[9] K. Gharachorloo et al. “Architecture and Design of AlphaServer
GS320,” Proc. Ninth Int’l Conf. Architectural Support for Program-
ming Languages and Operating Systems, pp. 13-24, Nov. 2000.

[10] J. Gibson et al. “FLASH vs. (Simulated) FLASH: Closing the
Simulation Loop,” Proc. Ninth Int’l Conf. Architectural Support for
Programming Languages and Operating Systems, pp. 49-58, Nov.
2000.

[11] M. Heinrich et al. “The Performance Impact of Flexibility in the
Stanford FLASH Multiprocessor,” Proc. Sixth Int’l Conf. Architec-
tural Support for Programming Languages and Operating Systems,
pp. 274-285, Oct. 1994.

[12] M. Heinrich and E. Speight, “Providing Hardware DSM Perfor-
mance at Software DSM Cost,” Technical Report CSL-TR-2000-
1008, Computer Systems Lab., Cornell Univ., Ithaca, NY 14853,
2000.

[13] C. Holt et al. “The Effects of Latency, Occupancy, and Bandwidth
in Distributed Shared Memory Multiprocessors,” Technical
Report CSL-TR-95-660, Computer Systems Laboratory, Stanford
Univ., Stanford, CA 94305, 1995.

[14] J. Kuskin et al. “The Stanford FLASH Multiprocessor,” Proc. 21st
Int’l Symp. Computer Architecture, pp. 302-313, Apr. 1994.

[15] Kendall Square Research, “KSR1 Technical Summary,”technical
report, Waltham, MA, 1992.

[16] J. Laudon and D. Lenoski, “The SGI Origin: A ccNUMA Highly
Scalable Server,” Proc. 24th Int’l Symp. Computer Architecture,
pp. 241-251, June 1997.

[17] D. Lenoski et al. “The Stanford DASH Multiprocessor,” IEEE
Computer, vol. 25, no. 3, pp. 63-79, Mar. 1992.

[18] R.P. Martin et al. “Effects of Communication Latency, Overhead,
and Bandwidth in a Cluster Architecture,” Proc. 24th Int’l Symp.
Computer Architecture, pp. 85-97, June 1997.

[19] M. Michael at al. “Coherence Controller Architectures for SMP-
Based CC-NUMA Multiprocessors,” Proc. 24th Int’l Symp. Com-
puter Architecture, pp. 219-228, June 1997.

[20] A.K. Nanda et al. “High-Throughput Coherence Controllers,”
Proc. Sixth Int’l Symp. High-Performance Computer Architecture,
pp. 145-155, Jan. 2000.

[21] C.C. Niessen and D.G. Meyer, “High Performance Network
Interfaces,” Proc. First Midwest Workshop Parallel Processing, Aug.
1999.

[22] A. Nowatzyk et al. “The S3.mp Scalable Shared Memory Multi-
processor,” Proc. 24th Int’l Conf. Parallel Processing, pp. 1-10, Aug.
1995.

[23] S.K. Reinhardt, R.W. Pfile, and D.A. Wood, “Decoupled Hardware
Support for Distributed Shared Memory,” Proc. 23rd Int’l Symp.
Computer Architecture, pp. 34-43, May 1996.

[24] E. Rothberg, J.P. Singh, and A. Gupta, “Working Sets, Cache Sizes,
and Node Granularity for Large-Scale Multiprocessors,” Proc. 20th
Int’l Symp. Computer Architecture, pp. 14-25, May 1993.

[25] I. Schoinas et al. “Fine-Grain Access Control for Distributed
Shared Memory,” Proc. Sixth Int’l Conf. Architectural Support for
Programming Languages and Operating Systems, pp. 297-306, Oct.
1994.

[26] J.P. Singh et al. “Load Balancing and Data Locality in Adaptive
Hierarchical N-Body Methods: Barnes-Hut, Fast Multipole and
Radiosity,” J. Parallel and Distributed Computing, vol. 27, no. 2,
pp. 118-141, June 1995.

[27] D.J. Sorin et al. “Analytic Evaluation of Shared-Memory Systems
with ILP Processors,” Proc. 25th Int’l Symp. Computer Architecture,
pp. 380-391, June 1998.

[28] C.B. Stunkel et al. “The SP2 High-Performance Switch,” IBM
Systems J., vol. 34, no. 2, pp. 185-204, Feb. 1995.

[29] H.A. Taha, Operations Research: An Introduction, sixth ed. 1996.
[30] D.A. Wood and M.D. Hill, “Cost-Effective Parallel Computing,”

IEEE Computer, vol. 28, no. 2, pp. 69-72, Feb. 1995.
[31] S.C. Woo et al. “The SPLASH-2 Programs: Characterization and

Methodological Considerations,” Proc. 22nd Int’l Symp. Computer
Architecture, pp. 24-36, June 1995.

[32] S.C. Woo, J.P. Singh, and J.L. Hennessy, “The Performance
Advantages of Integrating Block Data Transfer in Cache-Coherent
Multiprocessors,” Proc. Sixth Int’l Conf. Architectural Support for
Programming Languages and Operating Systems, pp. 219-229, Oct.
1994.

[33] Y. Zhou et al. “Relaxed Consistency and Coherence Granularity in
DSM Systems: A Performance Evaluation,” Proc. Sixth Symp.
Principles and Practice of Parallel Programming, pp. 193-205, June
1997.

[34] Z. Zhou, W. Shi, and Z. Tang, “A Novel Multicast Scheme to
Reduce Cache Invalidation Overheads in DSM Systems,” Proc.
19th IEEE Int’l Performance, Computing, and Comm. Conf., pp. 597-
603, Feb. 2000.

18 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 7, JULY 2003

Mainak Chaudhuri received the Bachelor of
Technology degree with honors in electronics
and electrical communication engineering from
the Indian Institute of Technology, Kharagpur, in
1999, and the MS degree in electrical and
computer engineering from Cornell University,
Ithaca, New York in 2001, where he is currently
working toward his PhD degree. His research
interests include parallel computer architecture,
cache coherence protocol design, and cache-

aware parallel algorithms for scientific computation. He also has special
interests in theoretical computer science and applied mathematics. He is
a student member of the IEEE and the IEEE Computer Society.

Mark Heinrich received the PhD degree in
electrical engineering from Stanford University in
1998, the MS degree from Stanford University in
1993, and the BSE degree in electrical engineer-
ing and computer science from Duke University
in 1991. He is an assistant professor in the
School of Electrical and Computer Engineering
at Cornell University and a cofounder of its
Computer Systems Laboratory. His research
interests include novel computer architectures,
parallel computer architecture, data-intensive

computing, scalable cache coherence protocols, active memory and I/
O subsystems, multiprocessor design and simulation methodology, and
hardware/software codesign. He is the recipient of a US National
Science Foundation CAREER Award supporting novel research in data-
intensive computing. He is a member of the IEEE and the IEEE
Computer Society.

Chris Holt received the MS degree from
Stanford University in 1992, and the BSE degree
in computer engineering from Carnegie Mellon
University in 1990. He works at Transmeta
Corporation. His interests include dynamic bin-
ary compilation, computer architecture, garbage
collection, and operating systems.

Jaswinder Pal Singh received the PhD degree
from Stanford University in 1993, and the BSE
degree from Princeton University in 1987. He is
an associate professor in the Computer Science
Department at Princeton University. His re-
search interests are on the boundary of parallel
and distributed applications and multiprocessor
systems, both architecture and software, and in
applications of high-performance and distributed
computing. At Stanford, he participated in the

DASH and FLASH multiprocessor projects, leading the applications
efforts there. He has led the development and distribution of the
SPLASH and SPLASH-2 suites of parallel programs, which are widely
used in parallel systems research. At Princeton, he has led the PRISM
research group, which does application-driven research in supporting
programming and communication models on a variety of communication
architectures, as well as in novel applications of high-performance
computing such as simulating the immune system. He has coauthored a
graduate textbook called “Parallel Computer Architecture: A Hardware-
Software approach.” He is a Sloan Research Fellow and a recipient of
the Presidential Early Career Award for Scientists and Engineers
(PECASE). He is a member of the IEEE and the IEEE Computer
Society.

Edward Rothberg received the PhD degree in
computer science from Stanford University in
1993, the MS degree in computer science from
Stanford University in 1989, and the BS degree
in mathematical and computational sciences
from Stanford University in 1986. He manages
the development of the CPLEX mathematical
programming package for ILOG, Inc. His inter-
ests include linear and integer programming,
sparse linear algebra, and parallel numerical

computing.

John Hennessy, President of Stanford Univer-
sity, received the BE degree in electrical
engineering from Villanova University in 1973.
He received the Masters and PhD degrees in
computer science from the State University of
New York at Stony Brook in 1975 and 1977,
respectively. Since September 1977, he has
been a faculty member at Stanford University,
where he is currently a professor of Electrical
Engineering and Computer Science. Prior to

becoming President, Professor Hennessy served as the University
Provost, the Dean of the School of Engineering, and was chairman of
the Computer Science Department. He is the recipient of the 1983 John
J. Gallen Memorial Award, awarded by Villanova University to the most
outstanding young engineering alumnus. He is the recipient of a 1984
US National Science Foundation Presidential Young Investigator Award
and, in 1987, was named the Willard and Inez K. Bell Professor of
Electrical Engineering and Computer Science. In 1991, he received the
Distinguished Alumnus Award from the State University of New York at
Stony Brook. He is a fellow of the IEEE, a member of the National
Academy of Sciences, a member of the National Academy of
Engineering, a Fellow of the American Academy of Arts and Sciences,
and a Fellow of the Association for Computing Machinery. He is the
recipient of the 1994 IEEE Piore Award, the 2000 ASEE R. Lamme
Medal, the 2000 John Von Neumann Medal, the 2001 Eckert Mauchly
Award, and the 2001 Seymour Cray Award. In 2001, he received an
honorary doctorate from Villanova, and an honorary degree of science
from SUNY Stony Brook.

. For more information on this or any other computing topic,
please visit our Digital Library at http://computer.org/publications/dlib.

CHAUDHURI ET AL.: LATENCY, OCCUPANCY, AND BANDWIDTH IN DSM MULTIPROCESSORS: A PERFORMANCE EVALUATION 19

