
Integrated Memory Controllers
with Parallel Coherence Streams

Mainak Chaudhuri, Member, IEEE, and Mark Heinrich, Senior Member, IEEE

Abstract—Previous work in scalable hardware distributed shared memory (DSM) multiprocessors has established the critical and

dominant role that protocol processing bandwidth (or its inverse, occupancy) plays in determining overall performance in architectures

with standalone memory/coherence controllers. However, with recent architectural trends toward integrated (on-chip) memory

controllers and the well-known fact that processor frequency is increasing more rapidly than memory systems’, we must ask whether

parallel coherence processing engines (either multiple integrated protocol processors/cores or multiple protocol threads) are needed in

DSM machines constructed from modern processor architectures and, if so, when. We construct a useful analytical model to give the

designer insight into when parallel coherence streams will improve performance and verify our model via detailed simulation on

64-threaded microbenchmarks and parallel applications and on single-node multiprogrammed workloads. Surprisingly, and contrary to

related work, we find that, in these architectures, adding a second coherence engine has almost no impact on performance. Further,

for less-tuned applications that suffer from hot spots (contentious requests to the same memory line), additional engines offer no

benefit whatsoever. Even with double the memory bandwidth (or channels), an additional coherence processing stream yields only

slight performance improvement. Only for a special class of DSM machines employing directoryless broadcast protocols over

unordered interconnects does parallel “snoop” processing offer reasonable performance improvement for communication-intensive

applications. Overall, given the architectural trends, this is good news for DSM designers who want to minimize the resources

necessary (protocol threads or integrated protocol processor cores for maintaining internode coherence, respectively) to create

SMTp-based or multi-CMP-based scalable DSM machines using directory protocols.

Index Terms—Distributed shared memory multiprocessor, directory protocol, multiple coherence controllers, coherence bandwidth,

integrated memory controller.

Ç

1 INTRODUCTION

INTEGRATED memory controllers appearing in several high-
end microprocessors such as the Alpha 21364 [6], the IBM

POWER5 [11], the AMD Opteron [12], and the Sun
UltraSPARC III and IV [30], [31] provide a direct solution
to reducing the round-trip memory transaction latency.
Multiprocessor systems built from microprocessors with
integrated memory controllers are naturally distributed
memory machines (each processor has its own local
memory) as opposed to symmetric multiprocessors (SMPs).
A “snoop-based” cache coherence protocol in such ma-
chines requires that a point-to-point message be sent to all
processors in the system to complete even a simple remote
read miss when the cache line is clean at the home node [2].
Therefore, a high-performance and bandwidth-thrifty solu-
tion would employ a scalable directory-based cache
coherence protocol.

Research on directory-based coherence controller design
has led to two different high-performance architectures.
Hardwired coherence controllers, found in the MIT Alewife
[1], the KSR1 machine [13], the SGI Origin 2000 [18], and the
Stanford DASH [19], offer fast handling of coherence

transactions but no flexibility in choice of the coherence
protocol. On the other hand, customized programmable
protocol processors embedded in memory controllers,
found in the Piranha chip-multiprocessor [3], the Opteron-
Horus [15], the Stanford FLASH multiprocessor [9], [17], the
STiNG multiprocessor [20], and the Sun S3.mp [26], execute
coherence protocol handlers in the form of optimized
sequences of instructions or microcode. Due to higher
protocol processor occupancy, these designs may offer
degraded performance, depending on the speed of the
protocol processor. However, this kind of design allows late
binding of the protocol, flexibility in the choice of the
protocol, and, in most cases, an easier and faster protocol
verification phase. Despite these compelling reasons, lower
performance has led the designers of commercial DSM
multiprocessors not to consider programmable coherence
controllers. In fact, prior research [9] has shown that there
can be as much as a 12 percent performance gap between
hardwired controllers and customized protocol processors
and that coherence controller occupancy is the most
important determinant of performance [4].

Designs employing multiple coherence engines offer
low-occupancy coherence. What is surprising is that, with
multiple coherence engines, even hardwired controllers
show significant performance improvement in DSM multi-
processors built out of SMP nodes [24], [27]. In such
systems, a single coherence engine in a standalone memory
controller is not sufficient to handle all coherence transac-
tions efficiently. However, we note that none of these
studies have explored multiprocessors with integrated
memory controllers, clocked at the main processor fre-
quency, that have the potential of considerably reducing
protocol processor occupancy.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 8, AUGUST 2007 1

. M. Chaudhuri is with the Department of Computer Science and
Engineering, Indian Institute of Technology, Kanpur 208016, India.
E-mail: mainakc@cse.iitk.ac.in.

. M. Heinrich is with the School of Computer Science, University of Central
Florida, Orlando, FL 32816. E-mail: heinrich@cs.ucf.edu.

Manuscript received 23 Nov. 2005; revised 25 June 2006; accepted 22 Sept.
2006; published online 9 Jan. 2007.
Recommended for acceptance by A. Gonzalez.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-0488-1105.
Digital Object Identifier no. 10.1109/TPDS.2007.1044.

1045-9219/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society

In this paper, we reconsider customized programmable
protocol processors in light of integrated memory con-
trollers and explore the extensions to memory controller
hardware and coherence protocol software for enabling
multiple coherence engines in such systems. Since simulta-
neous multithreading (SMT) [32], [33] is common in high-
end microprocessors today [11], [14], [16], [22], in this study,
we consider directory-based DSM multiprocessors of up to
16 nodes with each node built from an SMT processor
capable of running four application threads. This aspect,
along with integrated memory controllers, makes our work
quite different from prior research in this direction.
Although, in this paper, we squarely focus on SMT nodes,
we believe that the trends presented here will apply equally
to the internode coherence controllers in DSM multi-
processors built out of chip multiprocessor (CMP) nodes.
We consider two classes of directory-based programmable
coherence controller design. One class consists of one or
more customized protocol processors embedded in the
integrated memory controller, while the other exploits the
recently proposed SMTp architecture [5], which executes
the coherence protocol handlers on one or more of the
hardware thread contexts of the main SMT processor,
thereby entirely eliminating the embedded protocol pro-
cessor. For both designs we present the architectural
extensions needed to support concurrent handling of
multiple independent coherence transactions, which we
will refer to as parallel coherence streams.

Simulation results on two carefully crafted microbench-
marks, a selected set of shared memory scientific applica-
tions, and single-node multiprogrammed workloads show
that the designs with SMTp extensions or with embedded
protocol processors running at full processor frequency do
not suffer from a shortage of protocol bandwidth. Even
when the embedded protocol processor is operated at half
the main processor frequency we find that adding a second
protocol processor does not improve performance signifi-
cantly, although it does reduce the average waiting time of
coherence transactions. Only for a frequency ratio of 4
between the main processor and the protocol processor do
we start seeing performance gains when adding a second
protocol processor. To explain our results, we develop a
simple, yet generic, analytical model. In the model, we
derive the relationships between DRAM bank behavior of a
batch of concurrent coherence requests, DRAM access
latency, protocol processor occupancy, and memory chan-
nel bandwidth for which adding a second protocol
handling engine may improve performance.

In this paper, we focus on scalable directory-based
coherence processing. A different class of broadcast proto-
cols over unordered interconnects, namely, AMD Hammer
[2] and Token Coherence [21], eliminates the directory
indirection, but increases the volume of coherence mes-
sages. While presenting the results, for completeness, we
briefly discuss our experience with a Hammer-like protocol
in the context of parallel snoop processing.

In summary, this paper contributes in the following two
major ways:

. This paper presents a thorough evaluation of two
different classes of customized programmable co-
herence controller architectures with integrated
memory controllers and simultaneous multithread-
ing. Surprisingly, the results suggest that customized
protocol processors do not suffer from a shortage of
protocol bandwidth in modern systems. This is very

different from the previously published results on
off-chip hardwired coherence engines [24], [27].
Parallel coherence stream processing turns out to
be beneficial only for directoryless broadcast proto-
cols over unordered interconnects.

. This paper develops a simple and generic analytical
model to decide whether adding a second coherence
engine will improve performance in a directory-
based protocol.

The next section describes the baseline architecture, and
Section 3 explains the few necessary microarchitectural
extensions and coherence protocol software modifications
for enabling parallel coherence streams. We also present our
analytical model in this section. In Sections 4 and 5, we
present our simulation results. Section 6 briefly discusses
prior research in this area, and Section 7 presents conclud-
ing remarks and future directions.

2 BASELINE MEMORY CONTROLLER

In this section, we first discuss a DSM architecture with an
embedded protocol processor and we then describe the
salient architectural modifications needed to realize the
SMTp architecture. In the next section, we extend this
baseline architecture to enable multiple protocol processing
streams.

Our memory controller architecture shown in Fig. 1 is
derived from the Memory And General Interconnect
Controller (MAGIC) of the Stanford FLASH multiprocessor
[17]. However, its design is closer to the hub of the SGI
Origin 2000 [18] with the exception that it is programmable
and can execute any cache coherence protocol. Coherence
messages arrive at the inbound processor interface (PI) or
the inbound network interface (NI) and wait for the
dispatch unit to schedule them. The dispatch unit carries
out a round-robin scheduling among the PI queue, four NI
input queues (corresponding to four virtual networks or
lanes), and the software queue (see below) by examining the
heads of the six queues. After selecting a message, a table
lookup decides which protocol message handler should be
invoked to serve the scheduled message. Also, the outcome
of the table lookup speculatively initiates a DRAM access at

2 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 8, AUGUST 2007

Fig. 1. Memory controller architecture. PI, NI, PPWQ, OMB, and MRQ

stand for processor interface, network interface, protocol processor wait

queue, outstanding message buffer, and memory reorder queue,

respectively.

the requested address if the message expects a data reply.
The speculative DRAM access potentially hides the protocol
processing latency under the memory access latency. The
dispatched message waits in the Protocol Processor Wait
Queue (PPWQ) until the protocol processor extracts it for
execution. Each PPWQ entry contains the requested
address, the starting PC of the handler, and the header of
the message. The speculative memory request is sent to the
memory reorder queue (MRQ) and can start accessing
DRAM immediately if it does not have a bank conflict with
any outstanding requests. After the memory read is
completed, the cache line is transferred over a free memory
channel to a data buffer, allocated by the PI or NI when the
message arrived. The contents of the data buffer are sent to
the requester only after the protocol processor instructs the
outgoing interface to do so. The protocol processor starts
serving a message by extracting a new entry from the head
of the PPWQ, storing it in the Outstanding Message Buffer
(OMB), marking the PPWQ entry free, and transferring
control to the PC stored in the OMB. The software queue
provides a self-scheduling mechanism for the protocol
processor and plays an important role in the deadlock
avoidance mechanism related to outgoing NI queue space
needed to send invalidations to the sharers (see [17] for
details).

Our reasonably aggressive memory controller is orga-
nized to have a four-stage macropipeline, namely, PI/NI
inbound, handler dispatch, protocol processor, and the PI/
NI outbound. These four units can operate concurrently on
four different messages in a pipelined fashion. The protocol
processor itself has a statically scheduled dual-issue five-
stage in-order MIPS pipeline with some additional custom
instructions to accelerate directory-specific bit manipula-
tions. It has dedicated protocol instruction and data caches
backed by main memory.

The full-map write-invalidate bitvector coherence proto-
col used in this study is derived from the SGI Origin 2000
protocol [18]. A typical protocol handler (e.g., a local read
miss handler) starts by calculating the address of the
directory entry corresponding to the requested cache line
through a one-to-one hash function on the requested
address. Next, the handler loads the directory entry in a
register (the protocol processor has a MIPS-like ISA with
32 registers) and carries out some integer arithmetic on this
register to decide appropriate coherence actions. The
protocol handler uses send instructions to instruct the send
unit to initiate message transfer operations via the PI or NI,
as appropriate.

2.1 The SMTp Architecture

We now briefly discuss the salient features of the SMTp
architecture [5] used in this study. The SMTp architecture
replaces the embedded protocol processor in the baseline
memory controller described above by a hardware thread
context in the SMT processor core. The handler dispatch
hardware sets the Protocol PC Valid (PPCV) bit in the
fetcher when a message is ready to be serviced and the
fetcher has completed fetching the current handler. At the
same time the dispatch hardware sets the protocol handler
PC. This lets the fetch policy (ICOUNT in this study)
consider the protocol thread as a potential fetch candidate.
When the fetcher completes fetching the current handler it
probes the PPWQ to see if some message is waiting to be
serviced at the head. If not, it turns off the PPCV bit. Thus,
the protocol thread can start fetching a handler while the
previous handler is still executing. This helps in hiding

some of the latency imposed by long front-end pipeline on
short critical handlers.

All protocol instructions go through the pipeline
resources shared with the application threads, including
the two-level cache hierarchy. Note that the protocol thread
does not have a separate cache hierarchy and this is a major
advantage in terms of complexity over embedded protocol
processors. A protocol L2 miss does not invoke another
protocol thread recursively. Instead, the dispatch hardware
recognizes the protocol address space and enqueues the
request into the MRQ directly.

In an SMTp architecture, the forward progress of an
application thread’s L2 miss depends on the forward
progress of the protocol thread. This creates dependence
cycles involving the shared pipeline resources such as the
front-end queue buffers, branch stack space, integer
registers, integer queue slots, load/store queue slots,
speculative store buffers, and miss status holding registers
(MSHRs). Since, in this design, we consider per-thread
active lists (or reorder buffers), they are not involved in this
kind of resource deadlock. We avoid any deadlock
involving these resources by maintaining at least one
reserved instance that is usable by the protocol thread only.
For performance reasons more instances may be reserved.
To break a subtle deadlock cycle involving cache index
conflicts between the application and the protocol threads, a
number of cache line-sized bypass buffers are reserved for
the protocol thread [5].

The coherence protocol software requires no modifica-
tions when switching from an architecture with an
embedded protocol processor to SMTp. However, we
optimized the SMTp protocol code by eliminating the
unnecessary NOPs generated by the static dual-issue
scheduler of the embedded protocol processor.

3 MULTIPLE COHERENCE STREAMS

In this section, we explain the necessary modifications to
both the hardware and coherence protocol software for
enabling multiple coherence streams. The modifications are
essentially independent of whether the parallel coherence
engines are multiple embedded protocol processors or
multiple protocol threads. The basic difference between the
two architectures is that the former has a much higher
hardware cost due to the complete replication of protocol
processor. SMTp only requires that multiple hardware
thread contexts be reserved for protocol execution. In the
following, we focus our discussion on multiple protocol
processors only. We conclude this section with a simple
performance model applicable to both embedded protocol
processors and SMTp.

3.1 Multiple Protocol Processors

With multiple protocol processors, the memory controller’s
dispatch unit must be modified to ensure mutual exclusion
for directory accesses. Before selecting a message from the
heads of the six incoming queues, the dispatch unit
compares the address requested by the message with
addresses of the requests waiting in the PPWQ and OMB.
The size of the OMB is increased to be equal to the number
of protocol processors, and one OMB is logically assigned to
one protocol processor. For a fast dispatch, we make the
address CAMs in the PPWQ and OMB six-ported so that all
six potential message addresses can be compared simulta-
neously and the winner chosen through round-robin
priority. Once a message is selected, it is enqueued in the

CHAUDHURI AND HEINRICH: INTEGRATED MEMORY CONTROLLERS WITH PARALLEL COHERENCE STREAMS 3

PPWQ. The dispatch unit can write only one message to the
PPWQ per cycle (it needs only one write port). Whenever a
protocol processor is free, it arbitrates for the PPWQ read
port. The read port is granted to the protocol processor
having the lowest identifier among the contenders with the
help of a priority encoder. Thus, the kth protocol processor
gets a message to work on only if the protocol processors 0
to k� 1 are busy. Thus, assignment of a message to a
protocol processor is completely dynamic and is based
solely on availability of protocol processors. In every cycle,
a new protocol handler can be started on a free protocol
processor.

Under pathological conditions, the dispatch unit may
find that all the six potential messages are suffering from an
address conflict with some outstanding request. This leads
to idle dispatch cycles. As a way to reduce the number of
idle dispatch cycles, we explore the potential of out-of-order
dispatch by making five out of the six queues collapsible
and organizing them as CAMs (the software queue cannot
be made collapsible without significant performance pen-
alty, since it is not implemented in hardware). The dispatch
hardware considers all the requests (instead of only the
head) in a queue before selecting one.

To enable concurrent execution of coherence protocol
handlers, the coherence protocol code must be modified so
that critical sections are protected via locks. We experi-
mented with two types of spin locks, namely, atomic test
and set (requires a special test-and-set instruction) and
LL/SC. For high-throughput, the test and set lock bit is
maintained on-chip in a special register instead of in
memory. The LL/SC lock is implemented in the conven-
tional manner by allocating the lock in the protocol address
space. The access to the shared software queue data
structure is the only major critical section in our protocol
code. The running occupancy of the software queue is also a
shared variable among the protocol processors. This
variable is read by read-exclusive and upgrade handlers
before starting to send invalidations, if any. Access to this
variable is also protected by locks. In summary, the
coherence protocol executed on a system supporting
parallel coherence streams will exhibit increased dynamic
instruction count leading to an increased average handler
occupancy. Thus, we are trading the increase in occupancy
of individual handlers with concurrency across different
handlers (an usual latency versus throughput trade-off).

In the baseline (non-SMTp) architecture, the protocol
instruction and data caches are not replicated per protocol
processor due to coherence problems involving directory
entries. The shared caches are made dual ported to support
accesses from two protocol processors at the same time.
However, each cache can have only one outstanding miss.
While a miss is outstanding, the caches can continue to
service hits to different lines. We chose such a design
because the number of misses (other than cold misses) in
the protocol instruction and data caches is small for the data
sizes we consider. As a result, supporting one outstanding
miss for each cache does not significantly affect perfor-
mance but does obviate the need for complex circuitry
associated with multiple outstanding misses. This modifi-
cation does not apply to the SMTp architecture since the
protocol threads already share the lockup-free cache
hierarchy of the main SMT processor core.

The protocol processors (or the protocol threads) arbi-
trate for writing to the header and address registers in the
send unit. We found that the frequency of multiple
concurrent sends does not justify the complexity of having

multiple header and address registers. The send unit has
the best case occupancy of one cycle and, therefore, can
initiate a new message every cycle.

Finally, the boot handler of the protocol code requires
some minor modifications. The boot handler is responsible
for initializing various memory controller state and the
protocol processors’ (or protocol threads’) registers. With
multiple protocol processors per memory controller only
one protocol processor needs to initialize the memory
controller states. Each of the remaining protocol processors
executes a much shorter boot handler containing only the
code to initialize its own architectural register file.

3.2 A Performance Model

In this section, we present a simple analytical model to help
decide whether more than one coherence controller is
helpful. We analyze the time spent in the memory system
by a batch of concurrently arriving coherence requests with
one and two coherence controllers. The applicability of the
model is not limited to architectures with integrated
memory controllers, but is equally applicable to any
multiprocessor system exercising directory-based cache
coherence. To keep the model simple, we focus on
architectures with one or two coherence controllers, but it
can be trivially extended to any number of coherence
controllers. As pointed out in other work [4], the handlers
running on the home node handling read, read-exclusive,
and upgrade requests contribute the most toward the total
occupancy of the coherence controller. Further, the number
of upgrade requests is usually far fewer than the number of
read and read-exclusive requests. Therefore, a system can
potentially enjoy a considerable amount of performance
improvement with two coherence controllers if there are
multiple independent read or read-exclusive requests
available at the home node at the same time. One common
property of these request handlers is that they require cache
line replies and, hence, DRAM reads. In the following
discussion, we focus on these types of requests only. As we
have already described, the DRAM access is initiated
speculatively by the dispatch unit as soon as a request is
selected and it can start long before the handler actually
executes. Of course, at a later point, the directory lookup
may reveal that the data is stale in memory, and the result
of the speculative DRAM access may never be used.

There are three parts in the life of a request after it is
dispatched, namely, the DRAM occupancy or the DRAM
access latency ðOmÞ, the protocol handler occupancy ðOpÞ,
and the memory channel occupancy or the transfer time of
the cache line from DRAM to the memory controller ðOcÞ.
Fig. 2 (scale used: Om ¼ 6, Op ¼ 4, Oc ¼ 3) shows the timing
diagrams explaining the performance model. We show only
the case Om > Op since we did not encounter the case

4 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 8, AUGUST 2007

Fig. 2. Timing diagram of the performance model for bank-parallel

requests.

Om < Op, even in the case of the slowest protocol processor
that we consider. We show the timing of two requests
scheduled back-to-back at the home node. Time increases
on the x-axis from left to right. The starting time of the
request i is Si. Here, we assume that S1 ¼ S2, although, in
practice, there may be a slight time gap due to scheduling
delays. The time at which the DRAM access of the
ith request finishes is Mi and the time at which the protocol
handler for this request finishes is Oi. As soon as the DRAM
access finishes, the cache line transfer can start if there is a
free channel. We show timing diagrams for single-channel
and dual-channel memory controllers. The finishing time of
this transfer is denoted by Ci. The single protocol processor
case is labeled 1PP while the dual protocol processor case is
labeled 2PP. In the 1PP model, the handler for the second
request cannot start until timestamp O1, but the two DRAM
accesses can start at the same time (e.g., at S1 or S2) as long
as they do not suffer from bank conflicts. In Fig. 2, we have
assumed this to be the case. Bank conflicts are discussed
later. Thus for a single-channel controller O1� S1 ¼ Op,
M1� S1 ¼ Om, and C1�M1 ¼ Oc. Similar relations exist
for the second request. The only difference is that for the
1PP model O2�O1 ¼ Op, since the second protocol handler
cannot start until the first one finishes. It is clear that there is
no gain in adding a second protocol processor because in
both the 1PP and 2PP models the total time required by two
requests is the same (i.e., C2� S1). However, for the 1PP
model in cases where O2 > C2 (this is not the case in the
figure shown), the 2PP model will enjoy performance
improvement because the total protocol processing latency
in 1PP can no longer be hidden under the memory access
and transfer latency. For single-channel memory controllers
this condition can be restated as 2Op > Om þ 2Oc. In this
situation the amount of time saved by the 2PP model would
be 2Op � ðOm þ 2OcÞ. For a dual-channel architecture the
equivalent condition is 2Op > Om þOc and the gain for the
2PP model would be 2Op � ðOm þOcÞ.

Requests typically arrive at the memory controller in
bursts. Therefore, it would be useful to extend this model to
a larger number of concurrent requests. Let us assume that
at a certain point in time there are k independent requests
for read or read-exclusive misses present at the home
memory controller. All these k DRAM accesses can be
scheduled at the same time as long as k does not exceed the
maximum MRQ occupancy and the number of DRAM
banks. In the 1PP model, the k coherence protocol handlers
must execute sequentially. Therefore, if we want all the
protocol processing to take longer than the DRAM accesses
and the cache line transfers (this is the situation when 2PP
can offer improvement), we must have kOp > Om þ kOc for
a single-channel architecture. In this situation the k requests
spend a total time of kOp in the memory controller. With
2PP, we can execute the coherence protocol handlers in
pairs and, therefore, the total time for k requests is
maxðk2Op;Om þ kOcÞ, which is less than kOp if

Op >
1

k
Om þOc: ð1Þ

Note that, for k ¼ 2, this bound is exactly as discussed
above. Similarly, for a dual-channel architecture, we can
derive the inequality kOp > Om þ k

2Oc or, equivalently,

Op >
1

k
Om þ

1

2
Oc: ð2Þ

The amount by which Op actually exceeds the right-hand
side will be referred to as the occupancy margin. The
occupancy margin gives us an indication about the
overall gain to expect from adding a second protocol
processing unit. Interestingly, as k becomes large (e.g., in
heavily banked memory systems with large MRQs
running applications with high burstiness), the contribu-
tion of DRAM occupancy to these inequalities diminishes.
As a result, the usefulness of parallel coherence streams
becomes constrained by the proper balance between
protocol bandwidth (characterized by Op) and memory
bandwidth (characterized by Oc). Further, observe that, if
burstiness is low (i.e., small k), a large positive occupancy
margin is unlikely and adding a second protocol
processor would not be helpful. These inequalities also
bring out the fact that, when adding extra memory
bandwidth (or channels), the protocol processing band-
width may become a bottleneck if the application actually
uses the added memory bandwidth (the scaling factor of
Oc in (2) is the reciprocal of the total number of memory
channels). Thus, this performance model offers a simple
way to determine protocol bandwidth requirements. From
a designer’s viewpoint, one can carry out simulations
with single protocol processor, evaluate the average
values of Op and Om and the maximum value of k
(which captures the maximum burstiness), and find out if
(1) or (2) holds (note that the value of Oc is fixed by the
channel bandwidth). Unless the appropriate condition
holds, there would be no benefit of adding a second
coherence controller. We will rely on (1) and (2) for
analyzing our simulation results.

We conclude the discussion of the model by commenting
on cases where consecutive requests access the same DRAM
bank, generating a bank conflict and delaying the second
DRAM access. We note that, when a hot spot forms at the
home node, this is possibly the most common case, since all
requests will access the same cache line. Referring back to
Fig. 2, we find that in this case the second memory request
cannot start until timestampM1 (in practice, a little later due
to bank turnaround time). In such a situation,M2 will always
be greater than O2 for 1PP, since Om > Op on average.
Further, we cannot start transferring the second cache line
until the timestamp M2. Thus, in this case, the memory
latency and transfer latency hide the entire protocol proces-
sing latency. Therefore, with bank-conflicting requests two
protocol processors will not, in general, provide a visible
performance improvement. However, in cases where the
second request enjoys a row buffer hit, there may be some
benefit if M2 < O2�Oc. But since on average Om > Op, M2
is typically greater than O2.

In summary, for bank-parallel requests, having two
protocol processors improves performance only if the
average occupancy with a single protocol processor exceeds
a certain limit determined by the average DRAM latency,
memory bandwidth, and burstiness of the application. For
applications with high burstiness, only the proper balance
between the protocol and the memory bandwidth is
important. On the other hand, for bank-conflicting requests,
there is little or no benefit from adding a second protocol
processor.

4 EVALUATION FRAMEWORK

This section discusses the simulation environment and the
applications we use to evaluate the coherence controller
architectures. We simulate DSM multiprocessors with

CHAUDHURI AND HEINRICH: INTEGRATED MEMORY CONTROLLERS WITH PARALLEL COHERENCE STREAMS 5

16 nodes, each of which contains an out-of-order SMT
processor with four application thread contexts and two
additional protocol thread contexts that we enable only in
our SMTp results. Therefore, the results present the
performance of 64-threaded execution of the application
programs discussed in this section. Table 1 shows the MIPS
ISA-based simulated processor configuration along with
SMTp-specific reserved or extra resources.

The number of physical registers is decided as follows: In
addition to the number of active list entries, we provide
32 registers per thread. Thus, for an n-way SMT machine,
we provide 32nþ 128 physical registers. Therefore, 128 extra
registers are provided for renaming purposes. We configure
the register file for a six-way SMT and do not scale it down
even if the protocol threads are not active in the embedded
protocol processor architectures. Given the large size of the
register file, we conservatively select a shallow pipe
(14 stages) clocked at 1.6 GHz and simulate a two-cycle
pipelined register read. However, at this frequency we can
accommodate a 32 KB L1 cache with a two-cycle hit latency,
and we found this to be much more beneficial than having a

faster clock, a deeper pipeline, and a smaller cache. We will
briefly comment on results for higher frequencies in the
next section. The number of reserved resources for SMTp
shown in the table is decided through simulation.

The details of the memory system are listed in Table 2.
The router is assumed to be integrated on chip. We simulate
three different memory controller frequencies (reflecting its
integration level) when studying the performance of
embedded protocol processors: 1.6 GHz, 800 MHz, and
400 MHz. However, the absolute SDRAM access latency,
the SDRAM bandwidth, the network hop time, and the
network link bandwidth remain unchanged across these
configurations. For SMTp, we always assume the integrated
memory controller to be clocked at 1.6 GHz, the full
processor frequency. We explore the performance of one
and two embedded protocol processors. Note that adding a
protocol processor does not increase either the SDRAM
bandwidth or network bandwidth; it only increases proto-
col processing bandwidth. We found that more than one
PPWQ entry does not affect performance and, therefore, we
present results with a one-entry PPWQ.

6 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 8, AUGUST 2007

TABLE 1
Simulated Processor Configuration

TABLE 2
Memory System Configuration

We simulate a 400 MHz SDRAM module and explore
configurations with one and two logical channels each
capable of transferring 64 bits on both edges of the clock
(DDR), the critical 64 bits being the first transfer packet.
This leads to an aggregate bandwidth of 6.4 GB/s per
channel. A 40-bit physical address is divided into the
following parts and decoded accordingly by the memory
controller. The least significant 3 bits are offset into an
8-byte column, the next 12 bits are used as the column
number, the next 4 bits are the bank address for simulated
16 banks, the next 13 bits are the row address. The upper
8 bits signify the home node number. The mapping of
address bits to row, column, and bank is similar to the one
suggested in [29]. To avoid bank conflicts between a miss
request and a writeback originating from the eviction due to
the same miss, the bank number is calculated by XORing
the bits [18:15] with bits [21:18] of the address, the latter
being the least significant four bits of the L2 tag [35].

Table 3 lists the six explicitly parallel shared memory
programs that we use in this paper. FFTW is a 3D Fast
Fourier Transform kernel operating on complex double
points [8]. The other five applications are chosen from the
SPLASH-2 suite [34]. The programs are chosen such that
they represent a variety of important scientific computa-
tions with different communication patterns and synchro-
nization requirements. The input sizes are chosen to capture
realistic machine behavior for these highly scalable shared
memory programs (recall we are running 64 threads). All
the applications use proper page placement to minimize
remote memory accesses, and, where possible, all applica-
tions other than Water and FFTW use hand-inserted

prefetch and prefetch exclusive instructions to hide cache
miss latency.

In addition to these applications, we use two micro-
benchmarks (we will refer to them as Micro1 and Micro2).
These microbenchmarks read a matrix of size 4;096� 4;096
with 8-byte elements. The matrix is divided among 64 threads
so that each thread gets 64 contiguous rows. The matrix size
is chosen so that the amount of data assigned to each node
(i.e., four threads) does not fit in the L2 cache. In Micro1,
all pages assigned to a node are allocated locally and the
access pattern is such that every access suffers a cache
miss. This puts maximum pressure on the coherence
controllers. Micro1 accesses one element of consecutive
cache lines leading to high amount of DRAM bank
conflicts within each thread. However, consecutive ac-
cesses from a thread enjoy row buffer hits unless an
intervening access from a different thread leads to a row
buffer miss. A high amount of bank parallelism is
observed across threads. Micro2 accesses data in the same
way as Micro1, but pages of the matrix are placed round
robin across the nodes. Therefore, only 1=N amount of
accesses are local, where N is the number of nodes. Note
that these microbenchmarks do not have any cross-thread
data sharing. Also the data are read-only; therefore, there
are no invalidations or interventions during the execution
of these microbenchmarks. The microbenchmarks are
intentionally kept simple so that we can get some insight
into our performance model.

5 SIMULATION RESULTS

This section details the simulation results and explains
them with the help of the performance model developed in
Section 3.2. We first discuss the results for the two
microbenchmarks and then present, in detail, the perfor-
mance of the shared memory parallel applications. We close
this section with some results on single-node multipro-
grammed workloads and a directoryless broadcast protocol
over unordered interconnects.

5.1 Microbenchmarks

In Fig. 3a, we present the results for Micro1 and Micro2
with single and dual coherence stream processing for
systems with integrated protocol processors clocked at

CHAUDHURI AND HEINRICH: INTEGRATED MEMORY CONTROLLERS WITH PARALLEL COHERENCE STREAMS 7

TABLE 3
Applications and Problem Sizes

Fig. 3. (a) Performance of single and dual coherence streams in single-channel memory systems. (b) Comparison of wait cycles spent by the

dispatch unit with single and dual coherence stream processing.

400 MHz and 1.6 GHz (results with 800 MHz protocol
processors do not add anything new). We also show the
results for SMTp. In all cases, the main processor is clocked
at 1.6 GHz. The execution time with two protocol proces-
sing streams (2PP for embedded protocol processor models
and 2PT for SMTp) is normalized to one protocol processing
engine (1PP or 1PT, as appropriate). The execution time is
broken down into two parts, namely, memory stall cycles
and nonmemory cycles. The latter includes busy commit
cycles, synchronization cycles, and other resource stall
cycles. Although across the coherence controller configura-
tions we expect only the memory stall cycles to vary, the
nonmemory cycles may also vary slightly due to different
amount of synchronization cycles. Surprisingly, we observe
only small gains when adding the second coherence
processing engine. To explain this, we present the measured
values of Op, Om, and kmax for one protocol processing unit
(1PPU; can be 1PP or 1PT depending on the architecture),
and Op and kmax for 2PPU (can be 2PP or 2PT depending on
the architecture) in Table 4. The values of Om for 2PPU are
similar to those with 1PPU. The value of Oc is fixed at 20 ns,
which is the transfer time of a 128-byte cache line over
a 6.4 GB/s memory channel. Here Op is the handler
occupancy averaged over all handler invocations across
all of the 16 nodes. In Table 4, we notice that, while going
from a 400 MHz memory controller to a 1.6 GHz memory
controller, Op decreases roughly by a factor of 4, as
expected. Although the protocol threads in SMTp execute
at 1.6 GHz, for such a system, Op is midway between
400 MHz and 1.6 GHz protocol processors. Resource
contention in the SMT core, especially involving the front-
end buffers, is the main reason for this. In addition, we
observe that Op of a dual protocol thread (2PT) system is
more than that of 1PT. This results from further increased
resource contention. Recall that the amount of resources
given to 1PT and 2PT systems is the same. The drop in the
value of Om seen in SMTp for Micro1 results from
reordering of cache miss requests due to timing differences
leading to a larger number of row buffer hits.

Table 4 shows that for Micro1, only the architecture with
a 400 MHz protocol processor satisfies (1) of Section 3.2, and
that too with a small occupancy margin (2.8 ns). Therefore,
we expect only a small benefit from adding a second
protocol processor in this case. But, in SMTp or 1.6 GHz
protocol processor, the performance of Micro1 will not
improve by adding a second protocol processor due to large
negative occupancy margins. This corroborates the results
shown in Fig. 3a. Micro2 does not satisfy (1) for any of the
three architectures. However, we find that, if we calculated
Op by considering only the requests received by home
nodes (Micro2 suffers from a large number of remote misses
due to round-robin page placement), the situation becomes
similar to Micro1. To further analyze the results, in Table 5,

we show the percentage of coherence transactions handled
by the second protocol processor or protocol thread in 2PP
or 2PT configuration averaged across 16 nodes. The rest of
the transactions are handled by the first protocol processing
unit. Recall that the second protocol processor/thread gets a
request only if the first protocol processor/thread is busy at
the time of the scheduling decision. Except for Micro2 at
1.6 GHz, we find that, in all cases, the second protocol
processing unit is moderately loaded. In SMTp for Micro1,
the second protocol thread handles almost 50 percent of the
requests, but still we do not see much performance
improvement with 2PT. This is because, as predicted by
our performance model, the low absolute value of Op is the
important determinant of overall performance, and not how
often the second protocol processor is invoked.

Fig. 3b shows the number of cycles spent by a request in
the PPWQ of the dispatch unit waiting for a free protocol
processor or a protocol thread. We present the average
across all the nodes normalized to 1PP or 1PT. On top of
each bar, we also show this wait cycle count as a percentage
of the total execution time. We make two important
observations from this figure. First, as expected, the wait
cycle count decreases dramatically after adding a second
protocol processing unit. Second, even with a single
protocol processing unit, the percentage of the wait cycles
is always less than 10 percent of the total execution time;
Micro1 on a 400 MHz controller is the largest at 7.5 percent.
This essentially means that even these microbenchmarks
(note from Fig. 3a that these applications spend almost their
entire execution time waiting for memory) cannot make
protocol processing the bottleneck in the architectures with
integrated memory controllers.

Finally, we present the performance results for a dual-
channel memory system in Fig. 4. Note that both 1PP/1PT
and 2PP/2PT execute with two memory channels. Com-
pared to a single-channel system, Micro1 clearly benefits
more from 2PP or 2PT for all three architectures (e.g.,
3.7 percent reduction in execution time compared to
2.7 percent in Fig. 3a for 400 MHz memory controllers).
Referring back to Table 4 we find that Op now satisfies (2)
by a larger margin for 400 MHz. For SMTp, (2) is also now
satisfied by Micro1. Further, Micro2 satisfies this relation

8 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 8, AUGUST 2007

TABLE 4
Measured Parameters for Single-Channel Systems (Oc Fixed at 20 ns)

TABLE 5
Coherence Transactions Handled by the Second Protocol

Processing Unit (Percentage of All Transactions)

for 400 MHz. All these are correctly reflected in the
improved performance, as shown in Fig. 4, thereby
validating our model. Intuitively, a larger aggregate
memory bandwidth can make protocol processing band-
width a bottleneck more rapidly, but even when doubling
the memory bandwidth there is only a minor performance
improvement in using multiple coherence processing
engines.

5.2 Shared Memory Parallel Applications

In this section, we present and analyze the simulation
results for the six shared memory parallel applications
presented in Table 3. First, we present the simulation results
for architectures with embedded protocol processors run-
ning at 400 MHz, 800 MHz, and 1.6 GHz, and for SMTp. We
close this section with an analysis of the results through our
performance model.

Fig. 5a shows the execution time for each of the six
applications normalized to 1PP for 400 MHz integrated
memory controllers. For each application we present results
for 1PP, 2PP, 2PP with out-of-order scheduling of coherence
requests (labeled 2PP+OOO), and 2PP with test-and-set lock
(labeled 2PP+TS). The embedded protocol processors in the
2PP configuration, by default, use a conventional LL/SC
lock to protect the critical regions in the coherence protocol
code. Radix-Sort enjoys the maximum benefit from multiple

protocol processors, although execution time decreases only
by 8 percent compared to 1PP. FFT and FFTW observe less
than 5 percent improvement in execution time. There is no
noticeable gain with out-of-order memory request schedul-
ing. Out-of-order scheduling would be beneficial when the
messages at the heads of all the six incoming dispatch
queues are suffering from an address conflict with some
other outstanding request and there is at least one request
in one of these queues that accesses a different address.
However, we found that the number of idle dispatch cycles
resulting from address conflicts is negligible. The test-and-
set lock only nominally improves the execution time of FFT,
which means that no special support is needed beyond
LL/SC locks.

Table 6 summarizes the percentage of coherence transac-
tions handled by the second protocol processing unit for all
four flexible coherence controller architectures. This percen-
tage does not vary much between 2PP, 2PP+OOO, and
2PP+TS. The first column of Table 6 shows that for 400 MHz
controllers, in FFT and Ocean the second protocol processor
handles roughly 40 percent of all the coherence transactions.
These two applications seem to put maximum pressure on the
protocol processors, with FFTW and Radix-Sort following
closely. Although FFT, FFTW, and Radix-Sort benefit from
the addition of a second coherence controller (see Fig. 5a), the
overall gain in Ocean is almost zero. We found that, in Ocean,
the most frequent coherence transaction is a writeback
coming from its large data footprint. As a result, with two
protocol processors, even though the overall protocol
occupancy decreases, the requests in the critical path do not
get accelerated. The exact mix of requests that execute

CHAUDHURI AND HEINRICH: INTEGRATED MEMORY CONTROLLERS WITH PARALLEL COHERENCE STREAMS 9

Fig. 4. Performance of single and dual coherence streams in dual-

channel memory systems.

Fig. 5. (a) Performance of one and two protocol processors in single-channel memory systems with 400 MHz integrated memory controllers.

(b) Dispatch wait cycles for 400 MHz integrated memory controllers.

TABLE 6
Coherence Transactions Handled by the Second Protocol

Processing Unit (Percentage of All Transactions)

concurrently on the protocol processors is also important for
determining the end-performance. Fig. 5b presents the wait
cycle count of the dispatch unit normalized to 1PP for
400 MHz memory controllers. Interestingly, the test-and-set
lock does reduce the wait cycles noticeably for all applica-
tions. This results from reduced protocol occupancy when
LL/SC locks are replaced by test-and-set locks. However, this
reduction in protocol occupancy fails to make a noticeable
impact on execution time. The percentage of wait cycles as
shown in Fig. 5b is always less than 5 percent and is much less
compared to Micro1 in Fig. 3b. Radix-Sort shows the
maximum percentage of wait cycles (4.1 percent) with 1PP,
and Ocean (3.8 percent) and FFT (3.6 percent) follow closely.
This clearly explains why Radix-Sort enjoys the maximum
gain when a second protocol processor is introduced. Radix-
Sort is known to experience bursty read-exclusive requests
during the histogram permutation phase.

Fig. 6 presents the results for integrated memory
controllers running at 800 MHz. Compared to the 400 MHz
memory controller configuration (as was shown in Fig. 5a),
we observe that the speedup of Radix-Sort has dramatically
decreased. This is expected because a faster protocol
processor naturally reduces the protocol occupancy lead-
ing to a lower occupancy margin. Other than Radix-Sort,
only FFT observes a small speedup after introduction
of a second coherence controller. Out-of-order coherence

request scheduling and test-and-set locks fail to improve
performance. In fact, due to an increase in the synchro-
nization time, out-of-order scheduling hurts the perfor-
mance of Ocean. Although not shown, we found that, as
expected, the wait cycle count percentages were roughly
half of that shown in Fig. 5b. In fact, for Radix-Sort the wait
cycle percentage went down by more than half indicating a
nonlinear improvement in protocol occupancy with fre-
quency of the protocol processor.

Figs. 7a and 7b show the results for integrated memory
controllers running at 1.6 GHz, which is the processor core
frequency. From Fig. 7a, it is clear that there is no need for a
second protocol processor in such an architecture. The
performance of Ocean degrades after introduction of a
second coherence controller due to an altered synchroniza-
tion timing leading to an increase in the nonmemory cycles.
Referring back to Table 6, we see that, with 1.6 GHz
controllers for all applications, the pressure on the protocol
processing unit has decreased dramatically compared to
400 MHz. This is directly visible from the percentage of
requests handled by the second protocol processor. In fact,
for compute-bound LU and Water, the second protocol
processor remains idle most of the time and handles
5 percent and 10 percent of all transactions, respectively.
Ocean continues to be the most heavyweight application in
terms of protocol processing bandwidth requirements.
However, addition of a second protocol processor does
not improve its execution time. Fig. 7b shows the average
dispatch wait cycles normalized to 1PP. Although the
introduction of a second coherence controller decreases the
wait time significantly, the absolute wait cycle percentages
are near-zero (less than 1 percent of total execution time for
all applications). This clearly explains the performance
results of Fig. 7a. Also, we observe that LL/SC locks result
in the same level of protocol occupancy as the test-and-set
locks at 1.6 GHz.

Figs. 8a and 8b show the results for SMTp. Fig. 8a shows
that a second protocol thread does not offer any perfor-
mance advantage. Table 6 shows that the second protocol
thread in SMTp is moderately busy for all the applications.
In fact, it is busier than the second protocol processor in
800 MHz embedded protocol processor architecture. This
higher occupancy in SMTp results from resource contention
among the threads. Fig. 8b shows the average dispatch wait
cycles normalized to 1PT. The test-and-set lock offers

10 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 8, AUGUST 2007

Fig. 6. Performance of one and two protocol processors in single-

channel memory systems with 800 MHz integrated memory controllers.

Fig. 7. (a) Performance of one and two protocol processors in single-channel memory systems with 1.6 GHz integrated memory controllers.

(b) Dispatch wait cycles for 1.6 GHz integrated memory controllers.

slightly reduced dispatch wait cycle count in FFT and FFTW
only. The percentages of the wait cycles for 1PT are larger
than those with 1.6 GHz embedded protocol processor
(compare with 1PP in Fig. 7b), with Ocean showing the
maximum of 2.4 percent, still too small to justify the need
for a second protocol thread. However, introduction of a
second protocol thread does reduce the wait cycles
significantly, as is clearly visible in Fig. 8b.

5.2.1 Model Validation

Having presented all the simulation results, we proceed to
analyze these with the help of our performance model.
Table 7 presents the measured parameters for all four
flexible coherence controller architectures with a single-
channel memory controller. In these applications we found
quite uneven distribution of kmax across nodes. So we
present average kmax in this table. As protocol bandwidth
increases (either by frequency doubling or by addition of

protocol engines), kmax increases resulting from reduced
backpressure on the application threads. We observe that
FFT, FFTW, and Ocean show similar values of Om while LU
and Water have Om close to the row buffer hit latency
(40 ns). Due to extremely small data footprints per node and
regular sequential accesses in LU and Water, a few row
buffer reads are sufficient to satisfy all the memory requests
with high hit rates. The value of Op with one protocol
processing unit is consistently smaller than that with two
protocol processing units. The main reason for this is a
larger number of executed instructions resulting from
synchronization overhead in the protocol for dual coher-
ence streams. As discussed in Section 3.1, write contention
at the send unit also slightly contributes to this overhead.

Now, we turn to see which applications and configura-
tions satisfy our model relations (1) and (2). From Table 7,
we find that only FFTW, Ocean, and Radix-Sort satisfy (1)
for a 400 MHz memory controller with one protocol
processor while none of the applications satisfy the relation

CHAUDHURI AND HEINRICH: INTEGRATED MEMORY CONTROLLERS WITH PARALLEL COHERENCE STREAMS 11

Fig. 8. (a) Performance of one and two protocol threads in single-channel memory systems employing SMTp. (b) Comparison of wait cycles spent by

the dispatch unit with one and two protocol threads in SMTp.

TABLE 7
Measured Parameters for Single-Channel Systems

for memory controllers faster than that, or for SMTp.
Further, at 400 MHz, Ocean satisfies the relation by the
largest occupancy margin (8.8 ns), followed by Radix-Sort
(2.3 ns) and FFTW (1.6 ns). However, we have already
mentioned that Ocean fails to benefit from dual protocol
processing units due to the presence of a large number of
writebacks in the request mix which does not follow the
assumed request mix of our performance model. Among
Radix-Sort and FFTW, as predicted by the model, Radix-Sort
achieves the maximum performance gain from dual
coherence streams (as was shown in Fig. 5a). Interestingly,
FFT is able to convert a near-zero negative occupancy margin
(�0:6 ns) into a performance gain of roughly 4 percent (see
Fig. 5a). Compared to this, LU and Water show relatively
large negative margins (�1:4 ns and �1:9 ns) and fail to get
any performance improvement from 2PP, as expected.
Although according to the model, Radix-Sort should not
benefit from dual protocol processing at 800 MHz, the
simulation results show a nominal 3 percent reduction in
execution time for 2PP (see Fig. 6). The dominant request
type in Radix-Sort is remote read-exclusive. The small
amount of parallelism achieved by the concurrent short
remote handlers at the requester accounts for this speedup.
Our model is not yet equipped to capture this concurrency
at nonhome nodes. In summary, it is encouraging to note
that the trends dictated by our performance model and the
simulation results closely track each other.

5.2.2 Summary of Results

In Fig. 9, we summarize all the results for four commu-
nication intensive applications. For each application, we
show the execution time for one and two protocol
processing units corresponding to each of the four
architectures (400 MHz, 800 MHz, and 1.6 GHz embedded
protocol processors, and SMTp). For each application, the
execution time is normalized to the 400 MHz one protocol
processor case. We observe that doubling the protocol
processor frequency is always more beneficial than adding
a second protocol processor. This essentially means that
reducing the absolute protocol occupancy of every request
is much more important than reducing the total occupancy
of a burst of requests depending on the mix of the burst.
The most interesting case is Ocean, which does not get any
benefit from multiple coherence streams but enjoys large
gains from doubling of frequency. This result brings out the
importance of proper burst mix.

Interestingly, in the SMTp architecture, FFT and Radix-
Sort do not perform as well as the 1.6 GHz protocol
processor case, though the performance gap is within
4 percent. The major bottleneck in SMTp comes from
contention for one specific front-end queue (between the
renamer and the issue queue allocator) and an increased
volume of L1 data cache misses. What is noteworthy,
however, is that there is never any benefit from adding a
second protocol thread in SMTp systems.

In summary, we observe that as the frequency of the
protocol processor increases, the relative gain saturates.
This is clearly seen in the case of FFT. To investigate this
trend further, we doubled the processor core frequency to
3.2 GHz and experimented with two architectures, one with
a 1.6 GHz integrated memory controller and the other with
a 3.2 GHz integrated memory controller. We found that the
speedup achieved by the 3.2 GHz memory controller
compared to the one with 1.6 GHz was, at most, 3 percent
(for Radix-Sort). Therefore, at this point, replacing the
customized programmable protocol processor or the proto-
col thread in SMTp by a more powerful hardwired protocol
engine (with lower Op) will not improve overall perfor-
mance. The option of programmable protocol processing
therefore becomes even more attractive in emerging chip-
multiprocessor designs where a core can be dedicated to
protocol processing.

We also explored the performance of these applications
with a dual-channel memory controller (results not shown).
There was no major impact of two channels on dual
coherence stream architectures compared to single coher-
ence stream architectures. As predicted by our model, FFT,
FFTW, and Radix-Sort showed slightly better speedup for
2PP over 1PP at 400 MHz when the second channel is
enabled.

Until now we have focused on 16-node systems running
64 application threads. For completeness, in Fig. 10, we
present the results for eight nodes (32 application threads)
and one node (4 application threads). We make one
important observation from these figures: The protocol
processor or protocol thread occupancy is much less a
problem in single-node systems compared to 8-node or
16-node systems (see FFTW and Radix-Sort). Although a
single-node system puts more pressure on the available
processor cache capacity and, hence, incurs more misses
compared to an eight-node system, the memory access
latency hides the protocol processing occupancy. But, in a
multinode system, the occupancy of processing dataless
coherence requests cannot be hidden. This is most
prominent in Radix-Sort, as seen in Fig. 10.

5.3 Single-Node Multiprogramming

In the previous section, we have seen that protocol
processing is not a bottleneck for single-node systems. In
this section, we present some results on single-node 4-way
multiprogrammed workloads to reinforce this finding.
These workloads have much larger volume of cache misses
than 4-way threaded parallel applications. We prepared all
possible fifteen 4-way multiprogrammed workloads from
the six applications presented in Table 3, namely, FFT (F),
FFTW (FW), LU (L), Ocean (O), Radix-Sort (R), and Water
(W). The same problem sizes shown in Table 3 are used
here. We present the results for six selected workloads in
Fig. 11. The other workloads do not add anything extra to
the explanation of the results. The workload time (shown on
the y-axis normalized to 400 MHz 1PP model) is the total
time to complete the workload. Among all 15 workloads,

12 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 8, AUGUST 2007

Fig. 9. Summary of results for four communication-intensive applications

on single-channel memory controllers.

SMTp performs worst on the mix of FFT, LU, Ocean, Water
(the second workload in Fig. 11b) when compared to a
1.6 GHz protocol processor configuration. We make two
major observations from these results: First, SMTp is
performing satisfactorily compared to 1.6 GHz protocol
processor models. Second, as expected, a second protocol
processing unit (processor or thread) does not help improve
the performance significantly. However, increasing the
protocol processor’s frequency up to 800 MHz continues
to be beneficial for all of the workloads except the mix of
FFT, LU, Radix-Sort, Water (the first workload in Fig. 11b).

5.4 Directoryless Broadcast Protocols

For completeness, in this section, we present some results
on the impact of parallel snoop engines for a Hammer-like
broadcast protocol [2], which sends every request to the
home node and the home node broadcasts the request to all
other nodes. Every node sends a reply to the requester
indicating its local snoop result, which may carry data if the
cache block is dirty in that node. The home node also sends
a reply either from its local cache (if dirty) or from main
memory. The requester combines all these replies appro-
priately (i.e., uses home’s reply if no other node replies with
data or uses data from the dirty node). We simulate a
16-node DSM machine running this protocol, each node

executing four application threads. Both the main processor
and the snoop engines are clocked at 2.4 GHz (mimicking
the recent models of the AMD Opteron).

We find that, averaged over the four communication-
intensive applications (FFT, FFTW, Radix-Sort, Ocean), this
system experiences 13.9 times more coherence processing
invocations (including requests, snoop responses, and other
coherence messages) than the directory-based protocol.
Addition of a second snoop engine, on average, improves
performance by 16.1 percent compared to one snoop engine.
However, out-of-order request scheduling does not offer
much performance improvement in this protocol either.
Interestingly, the number of endpoint messages per L2
cache miss in the broadcast protocol is, on average, 26.1, as
opposed to 2.5 in the directory-based protocol for these four
applications. Therefore, as expected, due to a reasonable
amount of message concurrency, this class of protocols
finds parallel coherence streams much more beneficial than
the traditional directory-based protocols.

6 RELATED WORK

Programmable coherence controllers have been studied and
designed by several research groups. Some of these are
customized protocol processors e.g., the Piranha chip

CHAUDHURI AND HEINRICH: INTEGRATED MEMORY CONTROLLERS WITH PARALLEL COHERENCE STREAMS 13

Fig. 10. Summary of results for four communication intensive applications on single-channel memory controllers: (a) Eight nodes (32 application

threads). (b) One node (4 application threads).

Fig. 11. Summary of results for selected six multiprogrammed workloads on single-channel memory controllers.

multiprocessor [3], Opteron-Horus [15], Stanford FLASH
multiprocessor [17], Sequent STiNG [20], and Sun S3.mp
[26], while others use commodity off-the-shelf processors
e.g., Typhoon [28]. The Stanford FLASH team reported a
12 percent performance loss compared to a hardwired
controller while for the Wisconsin Typhoon the correspond-
ing gap was less than 20 percent. None of these studies,
however, considered an integrated memory controller with
embedded protocol processors.

An exhaustive study of several address partitioning
schemes for static and dynamic mapping of transactions to
multiple off-chip coherence controllers in DSM multi-
processors with SMP nodes has been presented in [27]. A
performance comparison of multiple hardwired coherence
controllers and multiple off-the-shelf protocol processors
has been presented in [24]. Finally, the advantage of
pipelining [24], superpipelining, nonblocking execution,
and directory/tag prefetches has been explored in the
context of coherence controller microarchitecture [25]. All
these studies consider coherence controllers much slower
than what can be achieved if they are integrated on-chip.
Multiple coherence engines with local/remote address
partitioning are studied in [23], [24] and are implemented
in the Opteron-Horus [15], the Sequent STiNG [20], and the
Sun S3.mp [26]. Some of these studies include a large
L3 cache per node to confine the capacity-related remote
traffic to local nodes as much as possible. Our analytical
model continues to hold for such systems, where the value
of k may decrease depending on the burstiness of the
remaining requests leading to a smaller occupancy margin
compared to a similar system without L3 caches.

A parallel dispatch queue programming model is
presented in [7] for expressing the mutual exclusion among
shared resources in fine-grain software coherence protocols
at dispatch time as opposed to in-handler synchronization
with spin locks. In our study, we explore the use of two
standard spin lock mechanisms for protecting the critical
sections in coherence handlers.

7 CONCLUSIONS

For the first time, this paper presents and validates through
simulation a useful analytical model to determine protocol
processing bandwidth requirements in contemporary dis-
tributed shared memory multiprocessors with integrated
memory controllers and programmable coherence protocol
engines (either protocol cores or protocol threads) that
implement directory-based coherence protocols. The analy-
tical model reveals two important insights. First, a system
suffers from a protocol processing bandwidth shortage only
when the average protocol occupancy exceeds a value
determined by the average DRAM access latency, the
memory bandwidth, and the burstiness of the applications.
For applications with high burstiness, the proper balance
between protocol processing bandwidth and memory
bandwidth is the important determinant of performance.
In such cases, the DRAM latency is not a critical factor.
Second, request streams with large amounts of DRAM bank
parallelism benefit most from parallel coherence handling
provided the first condition holds, i.e., the application is
already in need of more protocol processing bandwidth.
Interestingly, bank-conflicting request streams enjoy little
benefit from parallel coherence processing. Unfortunately,
this is the most frequent case when a hot spot arises at a

node due to accesses to a single cache line possibly holding
a “hot” variable such as a lock or a flag. Parallel coherence
engines cannot reduce this hot spot in modern systems with
integrated memory controllers.

Simulation results with 64-threaded parallel applications
validate these hypotheses and show that, in a 16-node DSM
multiprocessor built from 1.6 GHz 4-way SMT nodes with
integrated memory controllers, there is little or no benefit
from adding a second protocol processing engine when the
memory controller is clocked at the same frequency or at
half the frequency of the processor core. Only when the
processor core’s frequency is at least four times the memory
controller’s do we see minor performance benefits (at most,
8 percent) from adding a second protocol engine. Further,
when the balance between the protocol bandwidth and the
memory bandwidth is slightly upset by adding an extra
DRAM channel, we also observe some minor performance
improvement, but only when the application itself can take
advantage of the added memory bandwidth. Finally, as
expected, we find that systems running directoryless
broadcast protocols enjoy a significant performance benefit
from parallel snoop engines (on average, 16.1 percent) for
four of our communication-intensive applications.

In summary, the major contribution of this work is that it
shows a directory-based DSM designer a systematic,
simple, and abstract way to determine protocol bandwidth
requirements when designing future parallel architectures.
Since, in modern architectures running scalable directory-
based coherence protocols, one protocol engine clocked at
the main processor frequency is sufficient in terms of
protocol processing bandwidth, a DSM designer can
optimize the amount of resources devoted to protocol
processing by using a single SMTp-based or CMP-based
protocol engine.

We would like to mention two important extensions to
this work that are worth exploring. Inclusion of embedded
DRAMs on the die may require reengineering of the
proposed model depending on the position of the coherence
controller(s) in the path of a cache/coherence miss. More
importantly, our model will find applications to determin-
ing the appropriate number of coherence controllers in a
directory-based shared nonuniform L2 cache of a chip
multiprocessor with private L1 caches. As far as the
analytical model is concerned, one major difference in such
an architecture compared to what we have presented in this
paper is that the L2 bank access latency is much smaller
than the DRAM bank access latency ðOmÞ. Similarly, Oc is
also much smaller. According to our model, in such
architectures the occupancy margin per L2 bank may be
quite large depending on the value of k, thereby requiring
more than one coherence controller per L2 bank.

ACKNOWLEDGMENTS

Mainak Chaudhuri would like to thank Anshuman Gupta
and Varun Khaneja for help with the initial simulations and
development of the broadcast protocol, respectively. The
authors extend special thanks to the Security Center of IIT
Kanpur for offering a quad Opteron used to run some of the
simulations.

14 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 8, AUGUST 2007

REFERENCES

[1] A. Agarwal et al., “The MIT Alewife Machine: Architecture and
Performance,” Proc. 22nd Int’l Symp. Computer Architecture, pp. 2-
13, June 1995.

[2] A. Ahmed et al., “AMD Opteron Shared Memory MP Systems,”
Proc. 14th Hot Chips Symp., Aug. 2002.

[3] L.A. Barroso et al., “Piranha: A Scalable Architecture Based on
Single-Chip Multiprocessing,” Proc. 27th Int’l Symp. Computer
Architecture, pp. 282-293, June 2000.

[4] M. Chaudhuri et al., “Latency, Occupancy, and Bandwidth in
DSM Multiprocessors: A Performance Evaluation,” IEEE Trans.
Computers, vol. 52, no. 7, pp. 862-880, July 2003.

[5] M. Chaudhuri and M. Heinrich, “SMTp: An Architecture for
Next-Generation Scalable Multi-Threading,” Proc. 31st Int’l Symp.
Computer Architecture, pp. 124-135, June 2004.

[6] Z. Cvetanovic, “Performance Analysis of the Alpha 21364-Based
HP GS1280 Multiprocessor,” Proc. 30th Int’l Symp. Computer
Architecture, pp. 218-228, June 2003.

[7] B. Falsafi and D.A. Wood, “Parallel Dispatch Queue: A Queue-
Based Programming Abstraction to Parallelize Fine-Grain Com-
munication Protocols,” Proc. Fifth Int’l Symp. High-Performance
Computer Architecture, pp. 182-192, Jan. 1999.

[8] M. Frigo and S.G. Johnson, “FFTW: An Adaptive Software
Architecture for the FFT,” Proc. 23rd Int’l Conf. Acoustics, Speech,
and Signal Processing, pp. 1381-1384, May 1998.

[9] M. Heinrich et al., “The Performance Impact of Flexibility in the
Stanford FLASH Multiprocessor,” Proc. Sixth Int’l Conf. Architec-
tural Support for Programming Languages and Operating Systems,
pp. 274-285, Oct. 1994.

[10] Z. Hu, M. Martonosi, and S. Kaxiras, “Timekeeping in the
Memory System: Predicting and Optimizing Memory Behavior,”
Proc. 29th Int’l Symp. Computer Architecture, pp. 209-220, May 2002.

[11] R. Kalla, B. Sinharoy, and J.M. Tendler, “IBM Power5 Chip: A
Dual-Core Multithreaded Processor,” IEEE Micro, vol. 24, no. 2,
pp. 40-47, Mar.-Apr. 2004.

[12] C.N. Keltcher et al., “The AMD Opteron Processor for Multi-
processor Servers,” IEEE Micro, vol. 23, no. 2, pp. 66-76, Mar.-Apr.
2003.

[13] “KSR1 Technical Summary,” technical report, Kendall Square
Research, 1992.

[14] P. Kongetira, K. Aingaran, and K. Olukotun, “Niagara: A 32-Way
Multithreaded Sparc Processor,” IEEE Micro, vol. 25, no. 2, pp. 21-
29, Mar.-Apr. 2005.

[15] R. Kota and R. Oehler, “Horus: Large-Scale Symmetric Multi-
processing for Opteron Systems,” IEEE Micro, vol. 25, no. 2,
pp. 30-40, Mar.-Apr. 2005.

[16] D. Koufaty and D.T. Marr, “Hyperthreading Technology in the
Netburst Microarchitecture,” IEEE Micro, vol. 23, no. 2, pp. 56-65,
Mar.-Apr. 2003.

[17] J. Kuskin et al., “The Stanford FLASH Multiprocessor,” Proc. 21st
Int’l Symp. Computer Architecture, pp. 302-313, Apr. 1994.

[18] J. Laudon and D. Lenoski, “The SGI Origin: A ccNUMA Highly
Scalable Server,” Proc. 24th Int’l Symp. Computer Architecture,
pp. 241-251, June 1997.

[19] D. Lenoski et al., “The Stanford DASH Multiprocessor,” IEEE
Computer, vol. 25, no. 3, pp. 63-79, Mar. 1992.

[20] T.D. Lovett and R.M. Clapp, “STiNG: A CC-NUMA Computer
System for the Commercial Marketplace,” Proc. 23rd Int’l Symp.
Computer Architecture, pp. 308-317, May 1996.

[21] M.M.K. Martin, M.D. Hill, and D.A. Wood, “Token Coherence:
Decoupling Performance and Correctness,” Proc. 30th Int’l Symp.
Computer Architecture, pp. 182-193, June 2003.

[22] C. McNairy and R. Bhatia, “Montecito: A Dual-Core, Dual-Thread
Itanium Processor,” IEEE Micro, vol. 25, no. 2, pp. 10-20, Mar.-Apr.
2005.

[23] M.M. Michael et al., “Coherence Controller Architectures for SMP-
Based CC-NUMA Multiprocessors,” Proc. 24th Int’l Symp. Com-
puter Architecture, pp. 219-228, June 1997.

[24] A.K. Nanda et al., “High-Throughput Coherence Controllers,”
Proc. Sixth Int’l Symp. High-Performance Computer Architecture,
pp. 145-155, Jan. 2000.

[25] A.-T. Nguyen and J. Torrellas, “Design Trade-Offs in High-
Throughput Coherence Controllers,” Proc. 11th Int’l Conf. Parallel
Architectures and Compilation Techniques, pp. 194-205, Sept.-Oct.
2003.

[26] A. Nowatzyk et al., “The S3.mp Scalable Shared Memory
Multiprocessor,” Proc. 24th Int’l Conf. Parallel Processing, vol. 1,
pp. 1-10, Aug. 1995.

[27] I. Pragaspathy and B. Falsafi, “Address Partitioning in DSM
Clusters with Parallel Coherence Controllers,” Proc. Eighth Int’l
Conf. Parallel Architectures and Compilation Techniques, pp. 47-56,
Oct. 2000.

[28] S.K. Reinhardt, R.W. Pfile, and D.A. Wood, “Decoupled Hardware
Support for Distributed Shared Memory,” Proc. 23rd Int’l Symp.
Computer Architecture, pp. 34-43, May 1996.

[29] S. Rixner, “Memory Controller Optimizations for Web Servers,”
Proc. 37th Int’l Symp. Microarchitecture, pp. 355-366, Dec. 2004.

[30] “An Overview of UltraSPARC III Cu,” white paper, Sun
Microsystems, http://www.sun.com/processors/whitepapers/
USIIICuoverview.pdf, Sept. 2003.

[31] “UltraSPARC IV Processor Architecture Overview,” white paper,
Sun Microsystems, http://www.sun.com/processors/white
papers/us4_whitepaper.pdf, Feb. 2004.

[32] D.M. Tullsen, S.J. Eggers, and H.M. Levy, “Simultaneous Multi-
threading: Maximizing On-Chip Parallelism,” Proc. 22nd Int’l
Symp. Computer Architecture, pp. 392-403, June 1995.

[33] D.M. Tullsen et al., “Exploiting Choice: Instruction Fetch and
Issue on an Implementable Simultaneous Multithreading Proces-
sor,” Proc. 23rd Int’l Symp. Computer Architecture, pp. 191-202, May
1996.

[34] S.C. Woo et al., “The SPLASH-2 Programs: Characterization and
Methodological Considerations,” Proc. 22nd Int’l Symp. Computer
Architecture, pp. 24-36, June 1995.

[35] Z. Zhang, Z. Zhu, and X. Zhang, “A Permutation-Based Page
Interleaving Scheme to Reduce Row-Buffer Conflicts and Exploit
Data Locality,” Proc. 33rd Int’l Symp. Microarchitecture, pp. 32-41,
Dec. 2000.

Mainak Chaudhuri received the PhD degree
from Cornell University in 2004. He is an
assistant professor of computer science and
engineering at the Indian Institute of Technol-
ogy, Kanpur. His primary research interest is in
parallel computer architectures. He is a member
of the IEEE and the IEEE Computer Society.

Mark Heinrich received the PhD degree in
electrical engineering from Stanford University in
1998, the MS degree from Stanford in 1993, the
BSE in electrical engineering and computer
science from Duke University in 1991. He was
a principal designer of the FLASH multiproces-
sor. He is an associate professor and the
associate director of the school of electrical
engineering and computer science at the Uni-
versity of Central Florida (UCF), and a founder

of its Computer Systems Laboratory. His research interests include
novel computer architectures, parallel computer architecture, high-
throughput computing, scalable cache coherence protocols, and active
memory and I/O subsystems. He is the recipient of an NSF CAREER
Award, an IBM Faculty Award, and he is a senior member of the IEEE
and the IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

CHAUDHURI AND HEINRICH: INTEGRATED MEMORY CONTROLLERS WITH PARALLEL COHERENCE STREAMS 15

