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This paper discusses an approach for the development of visualizations intended to support cognitive pro-
cesses deemed fundamental in the maintenance of Situation Awareness under conditions of uncertainty.  
We integrate ideas on external cognition from the cognitive sciences with methods for interactive visualiza-
tion to help cognitive engineering examine how visualizations, and interacting with them, alter cognitive 
processing and decision-making. From this, we illustrate how designers and researchers can study princi-
pled variations in visualizations of uncertainty drawing from extended and enactive cognition theory.  
 

INTRODUCTION 
 
 Nearly two decades ago, the Government Accounting 
Office (2001) addressed changes military organizations need-
ed to undergo to satisfy the demands of operations in complex 
environments. A key challenge of a successful operational 
transformation rests on the ability of research and develop-
ment (R&D) to improve capabilities associated with the de-
sign of decision support systems. Visualization tools support-
ing decision making that are not sufficiently interactive can 
diminish the utility of such systems. Yet, there still exists a 
critical gap in scientific understanding of the relationships 
between visualization and complex cognition. The study of 
visualizations and their influence on higher-order cognitive 
processes is relatively limited (Meyer et al., 2010). While 
some recommendations for the implementation of uncertainty 
visualization are available, the extant literature is still sparse 
(MacEachren et al., 2012). To contribute to this area of in-
quiry, we suggest that interactive visualizations of uncertainty 
need to be more thoroughly studied by cognitive engineers as 
a means of supporting situation awareness (SA).  
 SA remains an important research topic with numerous 
studies showing that SA is critical in complex operational con-
texts drawing on higher-order cognition (Patrick & Morgan, 
2010; Zsambok & Klein, 1997). Additionally, models of SA 
have been used to inform the development of design guide-
lines for various systems, following the proposition that such 
design will enhance SA and improve performance (Durso & 
Sethumadhavan, 2008; Stowers et al., 2016). In this paper, we 
draw from Endsley’s model of SA, comprised of three distinct 
levels: “[L1] perception of elements in the environment, [L2] 
comprehension of current situation, and [L3] projection of 
future status” (Endsley & Jones, 2011, p. 14).  
 An important sub-area of research is the relationship be-
tween SA and uncertainty.  Within the SA literature, research-
ers have identified how uncertainty differentially influences 
various levels of SA. At L1, uncertainty is characteristic of the 
data collected in complex environments, often lacking com-
pleteness, credibility, reliability, congruency, temporal prox-
imity, or interpretability. At L2, uncertainty is linked to an 
individual’s confidence in the classification and aggregation of 
the data underlying their comprehension of the current situa-
tion. Uncertainty is an inherent aspect of L3, projections, and 
is also linked to an individual’s ability to make predictions 
(Endsley & Jones, 2011). This brief summary forms the foun-

dation for how we discuss visualizations in relation to SA.  In 
the remainder of this paper, we first describe theorizing on 
enactive and extended cognition. From this, we illustrate how 
advanced methods for visualizing uncertainty can be studied. 
We show how principled variations in visualization can be 
designed such that cognitive engineering can better examine 
their influence on different levels of SA.  
 

EXTENDED AND ENACTIVE COGNITION FOR SA 
 
 One way to support cognition in the face of uncertainty is 
through the use of externalized cognition manifest in varied 
representations (cf. Fiore & Wiltshire, 2016). At a general 
level, representation is concerned with how information is 
displayed such that it supports efficient perceptual and cogni-
tive processing (Bisantz et al., 2011; Kirschenbaum et al., 
2013; Sedig & Parsons, 2013). Interaction with representa-
tions adds another dimension to the manipulation of visualiza-
tions. Interaction design, in the context of representations, 
takes the form of determining what actions a user should be 
able to take to engage with the represented information. Taken 
together, this creates a multi-dimensional taxonomical space 
that can guide cognitive engineers in the study of how visuali-
zations (both static and interactive) support decision makers. 
Table 1 presents a simplified factorial breakdown of how cog-
nitive engineering research can conceptualize representation 
and interaction. This is illustrative of how such features can be 
varied with visualizations of uncertainty to study their impact 
on multiple forms of cognition. 
 
Table 1. Framework for Studying Variations in Visualizations 

 
 Each element in this framework is theoretically grounded 
in research from cognitive science on externalized cognition 
(Clark, 2001; Clark & Chalmers, 1998). In such accounts, 
artifacts and representations in the environment not only aid, 
but also constitute, a part of an individual’s cognitive reper-
toire. One facet of this is extended cognition theory. Here, 
cognition can be viewed as distributed across the social and 
technical components of the environment (Fiore et al., 2010; 

C
op

yr
ig

ht
 2

01
7 

by
 H

um
an

 F
ac

to
rs

 a
nd

 E
rg

on
om

ic
s 

So
ci

et
y.

 D
O

I 1
0.

11
77

/1
54

19
31

21
36

01
78

2

Proceedings of the Human Factors and Ergonomics Society 2017 Annual Meeting 1198



Hutchins, 1995). Representations in the environment serve a 
cognitive purpose in that what traditionally might be thought 
of as a cognitive process occurring within the head, is, instead 
offloaded or scaffolded via representations (Clark, 2008). 
From the cognitive sciences, “external representations are de-
fined as knowledge and structure in the environment… and as 
external rules, constraints, or relations embedded in physical 
configurations” (Zhang, 1997, p. 180). In the present context, 
visualization technologies enable a vast array of external rep-
resentations for cognitive engineering to study how these sup-
port complex cognition when dealing with uncertainty.  
 This work is also theoretically driven by the notion of 
enactive cognition. Here, there is a necessary distinction to be 
made between cognition merely as the processing of infor-
mation, and cognition in action. In the enactive account, the 
environment is argued to be perceived in terms of the action 
possibilities that are available to an organism (Gallagher & 
Varga, 2014). Associated with this is the idea that an embod-
ied and active engagement with the visualization is more like-
ly to lead to better comprehension of information when com-
pared to lower degrees of embodied interaction (Johnson-
Glenberg et al., 2014). This drives, in part, the distinction be-
tween passive and interactive forms of representations.  
 We note that extended and enactive views of cognition 
are somewhat related to the principles of Ecological Interface 
Design (EID; Vicente, 2002) in that proponents emphasize the 
role of interaction in supporting decision-making. We similar-
ly suggest that an interface should afford interaction with vis-
ualizations to support understanding of a situation when deal-
ing with uncertainty. But we suggest it is the actual interaction 
itself that constitutes cognition; that is, it is not simply afford-
ing interaction, it is the interaction that fosters understanding 
of uncertainty. Furthermore, we go beyond mere affordance 
based theories of interaction to refine these and other potential 
design recommendations for SA in terms of the constructs of 
enactive and extended cognition. 
 
Interaction as Enactive Cognition in Support of SA 
 Our goal is to develop a theoretical framework that inte-
grates the aforementioned perspectives to expand research on 
uncertainty. What is needed is theoretically derived manipula-
tions, and carefully controlled experimentation, to understand 
how to better augment cognition in the context of uncertainty. 
Sources of uncertainty, when viewed through the lens of the 
enactive cognition design dimensions of our framework, may 
provide insight to the development of new forms of human-
machine interactive systems. Further, by focusing on the un-
certainties attributed to the levels of SA, we offer a starting 
point for the application of our framework. As a starting point, 
we next consider a set of illustrative examples of how visuali-
zations design guidelines might be derived from the integra-
tion of these views.  
 In support of SA L1, designers of visualizations may aim 
to make the most relevant information corresponding to data 
uncertainty available to the user. This data might be best rep-
resented by a static image or dynamic simulation requiring 
only passive interaction supporting efficient perceptual pro-
cessing. A passive dynamic visualization may be best suited in 
environments where data is collected continuously as the visu-

alization can allow users to perceive across time. In other en-
vironments, where data collection occurs periodically or even 
sporadically, the data may be best represented by a static visu-
alization. Although it could be argued that animations are 
more appropriate, some caution is warranted. Specifically, 
animations imply temporal information that can lead a user to 
make erroneous assumptions about causality perceived in the 
visualization (Zuk & Carpendale, 2007). 
 As noted, active engagement with the visualization is 
more likely to lead to better comprehension of information 
when compared to lower degrees of embodied interaction 
(Johnson-Glenberg et al., 2014). On this basis, designers of 
visualizations should consider when a static or dynamic visu-
alization with which the user can actively interact is appropri-
ate in support of SA L2. Further, the interactions made availa-
ble to the user may be multi-modal so as to provide a truly 
embodied interaction. For example, a user might interact with 
the visualization via a touchscreen, when engaged in SA L2, 
in such a way that the visualization truly supports the cogni-
tive process of comprehension. In the enactive cognition view, 
the tight coupling between cognitive and sensorimotor pro-
cesses is proposed to enable higher order cognitive processes 
(Goodwin, Wiltshire, Fiore, 2015). In other words, the under-
standing comprising SA L2 can be thought of as emerging 
from the brain and body’s interaction with the environment 
such that a system facilitating interaction subsequently sup-
ports comprehension.  
 Interactive, dynamic visualizations may support a user’s 
SA L3 in a manner consistent with the enactive cognition 
view. Much like visualizations for SA L2, designers should 
recognize that interactive visualizations for L3 can directly 
support cognitive process. Specifically, they should be devel-
oped to support users thinking through and/or seeing across 
possibilities. Here, our ideas coincide with the design principle 
of direct manipulation described in EID theory. That is, an 
interface should afford interaction with visualizations to sup-
port users’ understanding of a situation during unanticipated 
events (Vicente, 2002). We suggest that interaction itself con-
stitutes cognition and does not simply afford interaction. Inter-
action fosters comprehension of the uncertainty, over and 
above what would be possible through merely passive view-
ing, enabling prediction for L3.  
 
Color Mapping as Extended Cognition in Support of SA 
 A key part of our theorizing is understanding the cogni-
tive processes supported by visualizations of uncertainty.  As 
such, we next discuss what was introduced earlier as extended 
cognition theory and how it provides a potential explanatory 
mechanisms for how visualizations support processes associ-
ated with SA. First, we differentiate between offloading and 
scaffolding (Clark, 2008; Fiore & Wiltshire, 2016) using visu-
alizations designed to support differing cognitive processes. 
Then we illustrate these with the visualization technique of 
color mapping.  
 Offloading is generally the act of using the environment 
as a semi-permanent archive for information that can be readi-
ly available and accessed when needed, and is also used to 
mitigate encoding and short-term memory demands (Wilson, 
2002). As such, offloading primarily serves the purpose of a 
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memory aid that can free up cognitive resources that can then 
be allocated towards other processes. Scaffolding takes the 
form of externalizations of cognition that directly support op-
erational processes by helping to mediate and support cogni-
tive activity. Scaffolding, in this sense, supports more complex 
cognitive processing such as the analysis and interrogation of 
data, and, when appropriate, discussion and debate of items 
relevant to the task. In brief, we argue that technologically 
produced artifacts allow for the representation and evaluation 
of uncertain information. These do so by providing storage 
and differential access to uncertain information, thus allowing 
for more informed comparisons and evaluations among deci-
sion options (cf. McLoughlin & Luca, 2002). 
 We use color mapping as a feature of visualization that 
can be connected with our theorizing on extended cognition 
and in the context of uncertainty associated with levels of SA. 
Color mapping is used as an inclusive term encompassing a 
collection of color attributes. And there are a variety of ways 
to manipulate presentations of color, for example, gradient, 
saturation, hue, opacity, and density. Our point is that design-
ers of visualizations can use variations of these and apply 
them to sources of uncertainty to support SA. For illustrative 
purposes, we focus on a representative form of uncertainty for 
each level of SA: data uncertainty in L1, confidence levels in 
L2, and projections in L3. Initial design recommendations can 
be drawn from the uncertainty types influencing SA, either 
offloading for L1 or scaffolding the cognitive processes of L2 
and L3 in the visualization.  

Offloading to support SA. Uncertainty associated with the 
first level of SA is designated data uncertainty. This is a gen-
eral term that captures a large number of factors. For the sake 
of brevity, we focus on a subset to show how they can be 
linked to color mapping. First, consider the temporal proximi-
ty of the data. This is critical to SA in that data can be fully 
accurate at one point, but, due to the passage of time, the situa-
tion changes and data can become obsolete. Specifically, when 
data is collected at discrete time points, uncertainty emerges 
from the changes in the system that have occurred (i.e., data 
not collected continually, will not reflect temporal changes).  

Visualizations of wind speeds in a region affected by a 
hurricane are well suited to illustrate how designers of visuali-
zation for SA can implement color mapping for uncertainty. 
Levels of color saturation can represent the uncertainty stem-
ming from the timeliness of hurricane wind measurement. In a 
visualization of hurricane winds, the highest intensity of a 
color can reflect low uncertainty in timeliness of the data, 
meaning one is more certain in its recency. Conversely, the 
lowest intensity can reflect high uncertainty, meaning the data 
is more out-of-date. By this method, color saturation can re-
veal the uncertainty associated with the temporal proximity of 
data. Another feature of uncertainty is reliability of the data. 
As an example, sensor functioning can contribute to reliabil-
ity. Sensors may be limited in capability or they may malfunc-
tion for many reasons. Similar to the saturation technique for 
timeliness, designers for SA can use visualizations represent-
ing reliability of the data with a gradient technique. Gradients 
can entail the use of distinct color hues or saturation levels of 
a single color, or both.   

 Uncertainty can also result from ambiguity in data. Cer-
tain environments can produce copious data such that a defini-
tive interpretation of the data is not feasible. Opacity of a color 
can be used to visually represent the uncertainty resulting from 
ambiguous data. To demonstrate the implementation of this 
color attribute for designers of SA visualization, we can again 
consider the hurricane wind example (see Figure 1).  

 
Figure 1. Color opacity and ambiguity of data.  
 
 The opacity of the colors used to represent numerical 
ranges of wind speed in such a visualization can be adjusted 
according to how the level of ambiguity has influenced the 
interpretation of existing data. It follows that higher levels of 
ambiguity will result in higher levels of uncertainty. In the 
hurricane wind visualization, a highly transparent color is in-
dicative of high uncertainty that hurricane force winds will be 
found in a particular region on a map. Accordingly, a highly 
opaque color is indicative of low uncertainty in the likelihood 
of hurricane force winds in the same region of the map. The 
noisiness of data is another contributing factor that can pro-
duce uncertainty. The utilization of a color’s granularity (i.e., 
coarse or fine) in visualization can represent uncertainty that 
arises from noisy data. 
 An important distinction for designers of visualizations is 
the relationship between levels of SA and how a system can 
enable progressive offloading for the decision maker. What we 
mean by progressive offloading is that the tool, within a level, 
allows the decision maker to make a set of assumptions about 
the data uncertainty (e.g., timeliness, reliability), and move 
forward with that decision externalized or offloaded into the 
tool. We can demonstrate this notion in considering a decision 
maker (DM) engaged in a course of action (COA) selection 
task which requires they locate a ship in a region, determine 
ship specifications, and how the ship is differentially affected 
by current and future environmental variables. For example, at 
L1, the DM might not know what and where for a given ship 
so there is uncertainty about what kind of ship it is, what it 
contains, and where it is exactly. The visualization would pro-
vide probabilities for each unknown and the DM will make an 
‘informed’ decision about that ship. This decision transitions 
to SA L2 when the DM offloads his/her assumptions about the 
situation into the tool, that is, they have used the various visu-
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alizations to ‘comprehend’ what is going on with a ship in a 
given area and point in time. This offloading transition to L2 
will need to be done for all elements in that decision context. 
The population of these coalesce to a set of COAs that the DM 
considers. When done, the DM will use this to transition to 
L3, and make predictions about future states so that a COA 
can be chosen. In similar ways, at L2 and L3, the DM’s cogni-
tive processes can be supported by scaffolding in the visuali-
zation.  
 Scaffolding to support SA. The second level of SA, com-
prehension, is linked to uncertainty resulting from a user’s 
confidence levels in data categorization and aggregation 
methods. Confidence levels emerge from user understanding 
of the current system state. The categorization of data used to 
evaluate the state of the system can influence these confidence 
levels and create uncertainty. The aggregation of data can sim-
ilarly influence a user’s confidence, resulting in uncertainty. 
For the next example, we focus on confidence levels influ-
enced by categorization capabilities of data sources. Categori-
zation is used to describe a semantic labeling of objects in the 
environment. To support cognitive processes, designers of 
visualizations for SA can scaffold the user’s comprehension 
and facilitate management of existing uncertainty resulting 
from their confidence in the categorization of pertinent data.  
 To illustrate, we can consider a setting in which multiple 
sensors are used to collect data in a region of interest, data 
which is then compiled for further analysis. From the aggre-
gated data, a distinct object may be identified, or categorized, 
as a boat. Due to the imperfect nature of the sensors, the capa-
bility of the sensors and corresponding algorithms used to 
categorize an object as a boat may come into question. Thus, 
the user’s confidence is influenced. Returning to the hurricane 
wind speed example, we have a visualization that includes 
representations of data uncertainty in SA L1. The careful inte-
gration of color mapping techniques in a visualization of hur-
ricane wind speeds may be of use in scaffolding cognitive 
processes and in turn influence the user’s confidence in the 
likelihood of a small boat being in a region affected by hurri-
cane force winds. Designers can include the option to manipu-
late color attributes used for SA L1 as it is a potentially pow-
erful means of supporting L2. In line with enactive cognition 
theory, adjusting the visualization, to reflect alternative possi-
ble environmental conditions, can aid the user in understand-
ing the contingencies affecting the current state. From this, the 
user can develop appropriate levels of confidence in compre-
hension. 
 Uncertainty is inherent in the third level of SA. As L3 is 
concerned with making a decision about what to do next based 
upon predictions about future states, a visualization designed 
to simulate future states may scaffold decision making and 
support SA L3. Visualization can be used to aid this process 
by varying the size dimension of a COA tool.  Here, after a 
DM has addressed SA L1 and L2, where they have dealt with 
the various forms of uncertainty around data, they can make 
comparisons across COAs. In earlier phases, the user has 
drilled down on different spaces within some environment. 
Now, the visualization can expand their perspective and see 
those options in parallel. With this, the enriched comprehen-
sion (i.e., greater detail of understanding afforded by the gran-

ular visualization), is now used for comparative purposes. In 
this way, a potentially superior COA can be chosen. 
 The exact means by which the color mapping techniques 
might best scaffold cognitive processes in SA L2 and L3 re-
mains an open question. However, our framework can help 
illuminate the possibilities available for scaffolding cognitive 
processes in visualizations. In the final section, we illustrate 
how a complex visualization – dynamic and interactive – pro-
vides a foundation for varying color mapping and additional 
features that can be adapted in service of research on SA.  
 Dynamic and interactive visualizations to support SA. To 
illustrate a portion of the dimensions of our framework, we 
next examine a scientific visualization that is interactive and 
dynamic and implements color mapping techniques. The sci-
entific visualization example we discuss in this section was 
developed by visualization researchers at Brown University as 
part of a larger initiative on the development of the Brown 
Widget Library (LaViola et al., 2009).   
 

 
Figure 2. User interacting with a dataset in IVR-based inter-
active visualization system. 

 
 LaViola and colleagues (2009) constructed a dynamic 
scientific visualization for scientists to interactively visualize 
air flow data around a space shuttle (Figure 2). While this vis-
ualization was not designed to represent uncertainty, their use 
of color plane techniques illustrate how visualizations can 
serve to offload information and scaffold cognitive processes. 
Color planes are interactive tools that let users see data by 
presenting a plane that can be moved through a 3D space 
showing a color mapped representation of data within a given 
dataset.  As such, a color plane allows features of the problem 
environment to be exploited to support comprehension. For 
example, a color plane could be used to see the different ve-
locities in a fluid flow simulation that represent air flowing 
past an airplane wing at a particular location. In such a case, 
the color plane could map different shades of green to lower 
flow velocities and different shades of red to higher velocities. 
The color plane itself is a general visualization primitive in 
that it can visualize a variety of different types of data using 
many different color schemes. Different shades of the same 
color, different colors, or a combination of the two could be 
used to map data in the color plane. Color planes can also be 
resized so the plane could show a large region of data or a 
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small area of focus. In addition, different resolutions can be 
employed in the color plane. Higher resolutions can present 
greater detail while lower provide a coarse representation of 
the visualized data.  
 Regardless of color mapping used, color planes have the 
following key characteristics that make them ideal for study-
ing uncertainty: (1) they are interactive; (2), they can be 
moved in 2D or 3D space; and, (3) they present information to 
the user dynamically (i.e., as the user moves the plane, the 
visualization updates in real time). This particular visualiza-
tion supports several modes of interaction via its multimodal 
interface situated in an immersive VR. The color plane tool 
grants the user the ability to manipulate, or interact with, vari-
ous attributes to learn more detail about the visualization. This 
visualization is dynamic because it shows change and it is 
interactive because the user has the option to choose the com-
ponents of the visualization on which they want to focus. With 
this brief illustration, we can see how the features it enables 
represent important opportunities for R&D on uncertainty 
visualizations supporting differing levels of SA. 
 

CONCLUSION 
 
 Uncertainty plays a large role in influencing individual 
decision-making and the underlying cognitive processes in 
human-machine interactive systems. Visualizations can serve 
to mitigate the deleterious effects resulting from uncertainty 
and loss of SA. We suggest that new visualization types char-
acterized by varying representations and degrees of interaction 
can support complex cognitive processes in human-machine 
interactive systems. We drew from external cognition theory 
and described enactive cognition and its role in complex cog-
nitive processes. We elaborated on the ways visualization re-
searchers can draw from extended cognition to augment de-
signs to better offload information uncertainty and scaffold the 
cognitive processes of SA affected by uncertainty. From this, 
we have described how advanced methods for visualizing un-
certainty can be studied. We expanded on design recommen-
dations proposed to support SA through an integration of 
computer science with theorizing in the cognitive sciences.  
 In sum, we demonstrate how the constructs of extended 
and enactive cognition can inform the development of princi-
pled variations in visualization to specifically examine their 
influence on different levels of SA. From this, we move cogni-
tive engineering closer to the realization of developing truly 
hybrid human-machine teams.  
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