
Efective 2D Stroke-based Gesture Augmentation for RNNs
Mykola Maslych

maslychm@knights.ucf.edu
University of Central Florida

Orlando, Florida, USA

Mostafa Aldilati
mad51@knights.ucf.edu

University of Central Florida
Orlando, Florida, USA

Eugene M. Taranta II
etaranta@gmail.com

University of Central Florida
Orlando, Florida, USA

Joseph J. LaViola Jr.
jjl@cs.ucf.edu

University of Central Florida
Orlando, Florida, USA

Original Points Gaussian Noise (5%) Uniform Noise (10%) Spatial Resampling Rotate Translate

Scale GPSR Shearing Rsmpl w. temporal Jitter Bezier and Spline All Variability Chain

Figure 1: Examples of gesture augmentation technique applied to the "delete" symbol from $1 − ��� dataset

ABSTRACT
Recurrent neural networks (RNN) require large training datasets
from which they learn new class models. This limitation prohibits
their use in custom gesture applications where only one or two
end user samples are given per gesture class. One common way
to enhance sparse datasets is to use data augmentation to syn-
thesize new samples. Although there are numerous known tech-
niques, they are often treated as standalone approaches when in
reality they are often complementary. We show that by intelligently
chaining augmentation techniques together that simulate diferent
gesture production variability types, such as those afecting the
temporal and spatial qualities of a gesture, we can signifcantly
increase RNN accuracy without sacrifcing training time. Through
experimentation on four public stroke-based 2D gesture datasets,
we show that RNNs trained with our data augmentation chaining

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specifc permission
and/or a fee. Request permissions from permissions@acm.org.
CHI ’23, April 23–28, 2023, Hamburg, Germany
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9421-5/23/04. . . $15.00
https://doi.org/10.1145/3544548.3581358

technique achieves state-of-the-art recognition accuracy in both
writer-dependent and writer-independent test scenarios.

CCS CONCEPTS
• Human-centered computing → Gestural input; User in-
terface programming; • Theory of computation → Pattern
matching.

KEYWORDS
datasets, neural networks, gesture recognition and customization,
data augmentation

ACM Reference Format:
Mykola Maslych, Eugene M. Taranta II, Mostafa Aldilati, and Joseph J.
LaViola Jr.. 2023. Efective 2D Stroke-based Gesture Augmentation for RNNs.
In Proceedings of the 2023 CHI Conference on Human Factors in Computing
Systems (CHI ’23), April 23–28, 2023, Hamburg, Germany. ACM, New York,
NY, USA, 13 pages. https://doi.org/10.1145/3544548.3581358

1 INTRODUCTION
Gestural interfaces present an intuitive way to interact with soft-
ware, such as through swipes on mobile devices and application-
specifc shortcuts. However, for general acceptance, they require
high classifcation accuracy. User tolerance for errors towards gestu-
ral interfaces in the presence of a reliable alternative input method
was found to be approximately 40% [25], and it was indicated that

https://doi.org/10.1145/3544548.3581358
https://doi.org/10.1145/3544548.3581358
mailto:permissions@acm.org
mailto:jjl@cs.ucf.edu
mailto:etaranta@gmail.com
mailto:mad51@knights.ucf.edu
mailto:maslychm@knights.ucf.edu
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3544548.3581358&domain=pdf&date_stamp=2023-04-19

CHI ’23, April 23–28, 2023, Hamburg, Germany Maslych et al.

gesture recognizer accuracy should be much greater than 90% to
"appear indistinguishable from a perfect system" [3]. Such accu-
racy is possible with predefned gestures using robust recognizers
trained with lots of data, but more difcult with custom gestures
where only a few samples per gesture are given. One common
approach that overcomes this limitation are k-NN based pattern
matching algorithms [48, 58, 62, 73]. However, the draw back of
k-NN recognizers is that they rely on manual feature extraction
or resample each input trajectory to a constant number of points,
which limits their robustness to variability.

Approaches based on recurrent neural networks (RNNs) are
more robust to gesture variability, allow for variable-length inputs,
and require no hand-crafted feature extraction [28, 35]. However,
RNNs have two shortcomings which prevent their adoption as the
go-to for customizable gesture recognizers: (1) they require a large
amount of data to outperform alternative approaches, and (2) with a
large number of samples, they take long to train. Data augmentation
techniques [22, 24, 40, 56, 75] ofer a solution to the lack of training
samples problem. However, solutions to the signifcant training
time for RNNs have not been previously explored. Because RNN
training time depends primarily on the number of training samples,
the two issues are related. The more data is used for training, the
higher the resulting recognition accuracy will be, but at the cost of
a longer training time.

In this work we evaluate the efectiveness of various data aug-
mentation approaches on training highly accurate RNN gesture
recognition systems. We show that highly accurate custom gesture
recognition is possible with just one or two original training sam-
ples per class, given that appropriate augmentation techniques are
used to generate more samples. We tested each technique applied
separately and in combinations with others in writer-dependent
and writer-independent experiments which simulate real-world
use-cases. We also introduce multiple augmentation chaining meth-
ods which outperform the alternative approaches in the literature.
These chaining methods apply a sequence of augmentation methods
from diferent categories to the data, which works better than apply-
ing a single or only a few categories of variability at a time. Lastly,
we show that it is possible to train an RNN gesture recognizer with
no original validation data, by generating a synthetic validation
dataset which helps with selecting a good training stopping point
before the model is overft.

2 RELATED WORK

2.1 Gesture recognition and customization
Early stroke gesture classifcation algorithms relying on hand-
crafted features go back to Rubine’s 1991 [48] recognizer, with
its original feature set later being expanded [5] and adapted for
3D gestures [51]. The features are extracted from training samples
(templates), and candidate gestures are classifed using a linear clas-
sifer [48], support vector machines (SVM) [63], linear discriminant
classifers (LDA) or other classical machine learning approaches.
This allowed the end user to specify gestures by example and to
associate them with software functions, thereby enabling gesture
customization. User preference for customizable gesture interfaces
was also explored. For example, Nacenta et al. found that user-
designed gestures are more memorable than pre-designed gesture

sets [41], which can be helpful when gestures are used as shortcuts
for opening applications or speed dialing [10].

Another popular class of gesture recognizers is the $-family
[1, 2, 32, 66, 73], and those inspired by them [58, 62, 64]. These
approaches focus on ease-of-implementation and rapid prototyping
for gesture customization. They utilize local cost functions, such
as euclidean distance (ED) for points or the inner product (IP) for
vectors to measure the degree of dissimilarity between a new input
and each of the templates. Some perform pairwise comparisons
[1, 58, 73], others use dynamic time warping (DTW) [62], and some
are articulation-invariant, representing gestures as point clouds
[65, 66, 68]. These approaches are direct competition for RNNs, and
when it comes to custom gesture recognition, they are considered
state-of-the-art; much more work was done in the space than with
other approaches. For a survey on 2D stroke gesture recognition
we direct the reader to a recent survey by Magrofuoco et al. [37].

Approaches which process a single point at a time and support
variable-length and continuous inputs without resampling include
Hidden Markov Models (HMMs) [26, 29, 34], RNNs [6, 7, 28, 35],
and continuous dynamic programming (CDP) [49, 57, 61]. These are
relevant because they allow starting the classifcation process while
the input is still being produced by the user. The segmentation
problem lies in identifying the gesture starting and ending points
within the continuous data sequences containing them. RNN, CDP
and other case-specifc approaches have been successful in solving
this issue [6, 8, 29, 34, 49, 57, 61].

In this work we are evaluating the usefulness of augmentation
techniques for position-based time-series RNN approaches. Rel-
evant work in the space of RNN approaches includes DeepGRU
[35], which consists of an encoder network, attention module, and
a classifcation module. It was shown to achieve and outperform
state-of-the-art approaches across many datasets. Similarly, multi-
ple sizes of single-task and multi-task LSTM-based networks were
evaluated by Ledda and Spano [28]. They were trained on syn-
thetic versions of the single-stroke $1 [73] and multi-stroke $N [1]
datasets generated with Gestures a Go Go [30], and tested on the
original dataset’s gestures.

These approaches work well for cases where customization is
not a concern, but related work in this domain reported long train-
ing times [28, 35, 36], which may not be suitable for customization.
Another concern with these existing approaches is the amount of
original data required for achieving high accuracy. Data sets of
such large sizes are not available in real-world customization sce-
narios, so our solution with chaining the augmentation approaches
is distinct in that it works well even with a very limited amount of
original training data.

2.2 Gestural data augmentation
To improve performance of Neural-Network-based approaches, in
many felds practitioners and researchers turn to data augmentation,
which refers to the practice of synthetically generating samples used
for training the models. A slew of techniques have been used for
images [11, 39, 53], voice [14, 50, 52] and video sequences [38, 81].
Vision-based optical character recognition (OCR) and handwriting
recognition methods similarly rely on data augmentation [13, 19,
74]. While the mentioned approaches were not originally designed

Efective 2D Stroke-based Gesture Augmentation for RNNs CHI ’23, April 23–28, 2023, Hamburg, Germany

for gestural data, some of them work with sequential data, so can
be applied to gestures.

For gestures, there have been methods to improve the classifca-
tion accuracies through synthesizing new samples, however, they
are heavily focused on gesture realism. Leiva et al. introduced a
web application called Gestures à Go Go [30] to produce synthetic
samples from real data based on kinematic theory of rapid human
movement [44] and a Sigma-Lognormal (ΣΛ) model [4, 45]. Taranta
et al. released Gesture Path Stochastic Resampling (GPSR) [59], which
performs resampling, random point removal, and between-point
vector normalization to synthesize new samples. Gestures à Go Go
and DeepNAG [36] experimentally found that their methods syn-
thesize gesture which participants take for real ones. However, in
data augmentation, gesture realism is not the main goal, so here
we focus on the techniques that will result in the biggest accuracy
boost, not the beautifcation of the synthesized gestures.

DeepGRU [35] accuracy results were reported with utilizing
random scaling, translations, rotations, and GPSR [59]. Further,
LSTM-based architectures applied local resampling to make the
distance between each pair of points constant, and subsequently
applied random scaling and translations [28]. In comparison, au-
thors of DeepNAG [36] compared their GAN (generative adversarial
network) and NAG (non-adversarial generation) approaches with
random Gaussian noise and GPSR, and found that their methods
improved model accuracy more than the alternatives. Although
the above mentioned RNN-based approaches have specifed the
details of augmentation they applied [28, 35, 36], it remains unclear
whether the best combinations of methods are being utilized. In this
work we aim to fll this gap by conducting a series of experiments
targeted at studying specifcally the various gestural augmentation
methods and how they can be combined.

3 METHODS

3.1 System overview
All experiments that we conduct in this paper use one of the two
pipelines shown in Figure 2. The pipeline on the left (a, Regular
pipeline) represents a usual RNN training pipeline, where an origi-
nal dataset is split into three sets: training, validation and testing,
with no overlap between them. The training set is augmented using
augmentation techniques under evaluation. The pipeline on the
right (b, Synthetic validation pipeline) difers in that it simulates
a scenario where the testing set is extremely limited; this pipeline
generates a synthetic validation dataset in place of a real dataset. To
optimize the RNN architecture and select parameters for the evalu-
ated augmentation techniques, we use the Regular pipeline. This
covers Experiment 1 (Section 4.2) and Experiment 2 (Section 4.3).
To measure the performance of our combined augmentation tech-
niques in a scenario which approximates a real-world use-case, we
use the Synthetic validation pipeline. We use it in our Experiment 3
(Section 4.4), Experiment 4 (Section 4.5), Experiment 5 (Section 4.6),
and in the experiment that we present as part of the discussion
(Section 5.1).

3.2 Data Preprocessing
In this work we are focusing on enabling real-time (mid-gesture)
classifcation, which is achieved by re-using and updating the "hid-
den state" of the RNN from one point to the next. We use the last
hidden state for classifcation, and due to the limited pre-processing
steps that we apply, practitioners can pass a single point at a time to
the model and still get a classifcation result. We ran empirical tests
on subsets of the $1-dataset [73] and found that only translation of
the frst trajectory point to the origin resulted in improved perfor-
mance when combined with data augmentation. This computation
does not require parameter extraction and can be easily applied in
real-time, by subtracting the value of the frst point of the trajectory
input from each subsequent point. As a result, the model becomes
translation-invariant. However, the scale, rotation, and point count
invariances are handled through the data augmentation process.
All results are reported with the point representation of trajectories
with translation invariance as just described.

Our approach is diferent from most literature on gestures, where
some commonly removed variability categories include translation,
rotation, scale, and point count variabilities. In those cases, an
entire gesture’s trajectory is available at classifcation time, and
to achieve partial invariance, the trajectory can be resampled to
a fxed number of points, rotated by an indicative angle [32], its
bounding box scaled to a fxed size, and its centroid translated
to the origin. Instead of scaling and translating, trajectories can
also be z-normalized. Alternatively, after the uniform resampling
step, the trajectories can be represented by normalized direction
vectors, which helps deal with scaling and translation. Rotation
around the frst vector [64] can also be applied to help with rotation
invariance. Since our goal is mid-gesture classifcation, where the
full trajectory is not available at classifcation time, we apply only
limited preprocessing and show that our model is still able to learn
other variability categories through the process of augmentation.

DATASET

TRAIN VAL TEST

AUGM.
TRAIN

RNN

Save
Accuracy

Test at lowest
validation loss

(a) Regular Pipeline

Train with
augm. set

DATASET

TRAIN AUGM.
VAL TEST

AUGM.
TRAIN

RNN

Save
Accuracy

Test at lowest
validation loss

(a) Synthetic Validation Pipeline

Train with
augm. set

Figure 2: Overview of the evaluation pipeline. Left (a): Regu-
lar pipeline, used in Experiment 1 (Section 4.2) and Experi-
ment 2 (Section 4.3); right (b): Synthetic validation pipeline
used in Experiment 3 (Section 4.4), Experiment 4 (Section 4.5),
Experiment 5 (Section 4.6), and in the test presented in Dis-
cussion (Section 5.1). Pipeline (b) generates a synthetic vali-
dation dataset for cases where original data set is extremely
limited.

CHI ’23, April 23–28, 2023, Hamburg, Germany Maslych et al.

3.3 Data Augmentation Techniques
We are interested in data augmentation from the perspective of
model classifcation accuracy, not beautifcation of synthesized ges-
tures. Even the simplest changes to the original gesture trajectory,
such as applying rotations, translations or scaling are valid augmen-
tation techniques — as long as the new data improves the model
performance.

In Section 2.2 we provided an overview of the data augmenta-
tion approaches used in research and practice. In this section, we
summarize the approaches selected for evaluation. To fnd aug-
mentation techniques which could potentially be used for gestures,
we searched the literature for specifcally gesture-related data aug-
mentation and synthetic data generation approaches, as well as for
those approaches which were not originally intended for gestures,
but could be applied to sequential data (for example, techniques
originally designed for non-gesture time-series data such as video
or voice). Table 1 provides a summary of the identifed approaches
with citations to their respective sources1.

For our main evaluation in Experiments 1, 2 and 3, we only
focus on augmentation methods that can be described by simple
transformations and require a single original sample per class. In
Experiment 4, we also compare our best combined augmentation
method to two alternative gesture generation methods: GPSR [59]
and Sigma-Lognormal (ΣΛ) [4, 30, 45] methods. We considered in-
cluding DeepNAG in Experiment 4, but training a deep generative
model requires thousands of original samples in the frst place, and
this amount of data is not available in a customization scenario,
therefore we only evaluated approaches that can generate new
samples without pre-training a model. Fusion and averaging meth-
ods [15, 77] were also excluded because they require more original
samples per class than aforded in our experiments. Lastly, augmen-
tation using random translations [28, 35] was also not used because
our pre-processing steps make our model translation-invariant.

Table 1: Gesture augmentation techniques selected for evalu-
ation.

Technique Name Reference
(1) Noise (Uniform/Gaussian/Perlin) [12, 36]
(2) Scaling [28, 35]
(3) Rotation [11, 28, 35, 53, 73]
(4) Slanting (shearing) [11, 17, 46]
(5) Camera direction change (perspective) [47, 71, 78]
(6) Spatial resampling [28, 66, 73]
(7) Temporal resampling [33, 55, 76]
(8) Temporal jitter [18, 81]
(9) Time stretching (point duplication) [24, 54, 72]
(10) Frame skipping [20]
(11) Bezier and spline deformation [16, 31, 69, 77, 79]
(12) Random erasing (replacing with 0s) [53, 80]

The following list is a detailed description of each of the tech-
niques in the order they are presented in the table.
1This table does not identify the frst mention or use of each technique, but instead
lists the most relevant (subjectively) references for each technique’s usage.

(1) Noise: Diferent kinds of random noise can be added to
sequence data, including uniform, Gaussian [36] and Perlin
[12] noises. Adding random noise to training data allows the
model to learn a more robust representation.

(2) Scaling: Scaling each feature (dimension) by a percentage of
its own bounding box generates synthetic data which helps
the trained model perform better with test samples of vary-
ing scales. This is valuable for models which are not scale-
invariant. There are examples of scaling being successfully
applied in training trajectory-based gesture RNNs [28, 35].

(3) Rotation: Rotating 2D trajectories around their centroids
allows the trained model to account for when users input
gestures at diferent angles. This approach has been suc-
cessfully applied in both nearest-neighbor [73] and RNN
approaches [28, 35].

(4) Shearing: Shearing is a transformation that results in "stretch-
ing" of the original trajectory along a line in the trajectories’
coordinate system. Points which lie farther from the origin
are afected more. To the best of our knowledge, this aug-
mentation technique has not been tested with RNN-based
gesture recognizers, however it has been extensively used
in the feld of handwriting recognition [17, 46].

(5) Perspective change: Changing the perspective on the ges-
ture trajectory can be thought of as pointing a camera at the
trajectory from a diferent angle. This technique is often used
with 3D skeletal data to achieve view-invariance [47, 71, 78].
When working with 2D gestures drawn on an �� coordinate
plane, perspective change refers to rotating the trajectory
around the � and � axes. In practice this is done by adding
a third dimension to the 2D data and multiplying the points
of an original trajectory by the � and � rotation matrices.

(6) Spatial resampling: Spatially resampling the trajectory
refers to generating a list of distance intervals and using
such a list to sample points along the original trajectory.
The resulting points form a trajectory which looks similar
to the original, but with modifed distances between sub-
sequent points. Uniform spatial resampling fxes the num-
ber of points to describe a trajectory to a constant, which
forces the between-point intervals along the original path
to be equal for a given gesture. Such uniform approach has
been extensively used in k-nearest-neighbor classifers to
account for variability in gesture completion time and point
counts [32, 58, 73]. An alternative approach to uniform ges-
ture resampling was used with LSTMs [28], where the inter-
vals’ length was fxed to a constant value.

(7) Temporal resampling: Temporal resampling is similar to
spatial resampling in a sense that a list of intervals is gener-
ated, except the intervals are in the time domain. By assum-
ing that the sampling rate in the original data is constant, it is
possible to extract the velocity information of the trajectory
without the actual timestamps. Sampling at the generated
interval lengths along such a velocity profle produces points
along the original gesture path. Data augmentation methods
similar in concept have been used with noticeable perfor-
mance gains in LSTM-based full-body skeleton human action
recognition tasks [33, 55, 76].

Efective 2D Stroke-based Gesture Augmentation for RNNs CHI ’23, April 23–28, 2023, Hamburg, Germany

(8) Temporal jitter: Resampling with temporal jitter (frame
jitter) was applied to gestural video data [18, 81]. The idea is
to sample frames at indices � ± � position, where r is random
ofset for each new index (for example, when � = 5 and
� = 2 keep each 5�ℎ ± ����� (−2, 2) point). This approach can
be though of as a special case of temporal resampling with
varying intervals.

(9) Time stretching: Through duplicating a random subset of
points in the trajectory we can simulate a scenario where
software samples faster than hardware, resulting in repeated
sampling of the same value. Point duplication method has
been used for generating synthetic datasets for DTW algo-
rithms [24, 54, 72], and it could potentially be useful for
training RNNs to have robust performance under noisy sam-
pling. This technique can also be thought of as a special
case of temporal resampling with allowing for zero-length
intervals.

(10) Frame skipping: The opposite of point duplication is the
complete removal of some of the points from the trajectory.
In this way, frame skipping has the opposite efect from
point duplication, each point has a non-zero chance of being
deleted. This approach was mentioned in a survey on human
action recognition [20] and could be useful for improving
robustness to noise in gesture classifcation RNNs.

(11) Bezier and Spline deformation: Many approaches which
use Bezier curves and splines were proposed for synthetic
data generation for drawings [16, 77, 79] and gestures [31,
69]. The generation steps consist of fnding reasonable con-
trol points (knots), then perturbing them, and fnally ftting
the new points to a spline curve. To learn more about the im-
plementation details of such approaches, we direct the reader
to the cited literature in the Bezier and spline deformation
row of Table 1.

(12) Random Erasing: Sometimes a system can lose tracking of
where the user pointer/pen tip is, resulting in some trajec-
tory points being recorded as 0s. This can be dealt with by
fltering out such values, but an alternative way is to train
a model to handle this kind of input. Loosely inspired by
an augmentation method for CNNs, where blocks of image
pixels are "blacked-out" [53, 80], we replace some of the tra-
jectory with values of 0 in hopes for the model to learn a
potentially lossy trajectory representations.

4 EVALUATION

4.1 RNN model and implementation details
We tried to make our RNN architecture as generic as possible, while
keeping in mind a few requirements. The model has to be (1) as small
as possible with (2) no sacrifce in performance2, and (3) easily mod-
ifable in size (add/remove layers, neurons per layer). The frst and
second requirements ensure that the model fts the customization
requirement: the user will beneft from high classifcation accuracy
and short model training times. The third requirement allows us
to quickly scale up the model if that is required. We started our
implementation by creating a model similar to ST-S [28], and then

2As compared to the larger model that we started with

x0

GRU GRU GRU

GRU GRU GRU

x1 xL- 1 ?

Classifier

FC3

2
x

96

32

Encoder

FC3

64

FC3

96

Figure 3: RNN Architecture used in the evaluation of aug-
mentation techniques. Encoder consists of two gated recur-
rent unit (GRU) [9] layers and the classifer consists of three
stacked feed-forward linear layers with batch normalization
[23] and dropout [21] between them. The input is a sequence
of 2D vectors of arbitrary length x = (�0, �1, ..., ��−1) and the
output ŷ is the predicted class label.

progressively decreased its size during the implementation of aug-
mentation techniques, until further reduction in size was hurting
performance. During this phase, we utilized only a subset of the
1-GDS [73] dataset, which is one of the limitations of our work,
however classifcation results in our Evaluation Section 4.4 show
that the model works well for multiple datasets. As part of this
process, we ran an informal test to fnd a trade-of between training
time (which depended on the number of synthesized samples) and
accuracy, and found that 300 synthetic samples per class worked
well for all augmentation techniques. At frst, we had ReLU [42]
layers in the classifer (see Figure 3), but replacing them with batch
normalization [23] and aggressive dropout [21] values yielded bet-
ter results than using non-linear layers. Our resulting model is
modest in size and consists of two components: a double GRU layer,
connected to a stack of three Linear layers.

We implemented our model using PyTorch Lightning3, a wrapper
around the PyTorch framework [43]. The model takes raw unpro-
cessed (no normalization, no standardization, no fltering) input
trajectories from the evaluated datasets. We utilized the Adam op-
timizer [27] with learning rate set to 10−3, batch size of 512, and
Cross Entropy Loss criterion. During the development and for tim-
ing the trial runs we used a machine running Windows 10 with a
single NVIDIA GeForce GTX 1080 GPU, Intel Core-i7 7700K proces-
sor and 16 GB RAM. We ran the repeated experiments in parallel (8
at a time) on a GPU cluster (single GPU per experiment). Reference
implementation of the model and augmentation techniques will be
available with the camera-ready version.

Earlier in Section 3.3 we listed all individual augmentation tech-
niques that we implemented. To fnd optimal parameters for each
one of them, we utilized a subset of the $1-GDS dataset and ran a
series of iterative searches over the ranges of possible parameters.
To reduce the number of variables in our evaluation, we used these
parameters across all our further experiments and datasets. For

3https://www.pytorchlightning.ai/

https://www.pytorchlightning.ai/

CHI ’23, April 23–28, 2023, Hamburg, Germany Maslych et al.

70 80 90

BASELINE (None)

Frame idx jitter

Bezier

Spatial resampling

Point duplication

Temporal resampling

Scale

Perspective change

Rotate

Shear

Frame skip

Uniform noise

Gaussian noise

Te
st

 (a
t b

es
t v

al
 lo

ss
)

70.29

71.03

71.50

71.56

72.21

72.98

73.87

74.37

74.86

75.21

75.88

76.43

77.72

num_participants = 1

70 80 90

82.48

81.64

81.56

82.68

83.01

84.29

85.10

84.12

85.57

85.56

85.62

86.08

86.82

num_participants = 2

Figure 4: Experiment 1: accuracy results for a writer-
independent experiment (train with one participant, test
with another) over varying augmentation technique and the
number of training participants. A single original sample per
participant per class used as a seed samples for generating
synthetic samples. Bars indicate a 95% confdence interval.

exact parameters, please refer to the supplementary material and
to the reference implementation4.

4.2 Experiment 1: Performance of individual
techniques

4.2.1 Experiment 1 Setup: Part one of our evaluation is dedicated
to testing the efect of individual augmentation techniques applied
to the data. The question it answers is to what extent synthetic data
generated by each augmentation techniques represents the real
data. This experiment is similar to a standard writer-independent
experiment protocol used widely in the gesture customization lit-
erature [58, 62, 66, 73], where a very small number of original
training samples are used to train a recognizer. We used the $1
dataset for this experiment. The variables we varied were the num-
ber of training participants and the augmentation technique. In
this writer-independent experiment, a single sample per gesture
class was sampled from p random participants and these gestures
were used as seed samples to create an augmented training set
(300 synthetic samples per class). The validation set consisted of
all available data of two random participants diferent from the
training participants, and the testing set consisted of two more
randomly selected participants, diferent from both the training
and validation sets. The sizes of the resulting sets (train:val:test)
were 4800+� :960:960, where � denotes the number of original train
seed samples. The resulting augmented training dataset was used
to train the RNN model and test accuracy is saved at the point of
lowest validation loss. We ran this experiment 300 times varying �
of 1 and 2, then averaged the results.

4.2.2 Experiment 1 Results: A plot for visual comparisons and ex-
act values of the Experiment 1 results can be found in Figure 4.
With a single training participant and a single training sample per
4https://github.com/maslychm/gesture_augmentation

class, the baseline (no augmentation applied) for all other scores is
70.29%. All augmentation techniques boosted the model accuracy,
except for erasing, which decreased the accuracy to 65.67% and was
therefore excluded from further evaluation. Gaussian augmentation
gave the largest improvement to the RNN, resulting in accuracy
of 77.72%. With a single training sample from two participants,
the baseline increased to 82.48%, and Gaussian scored at 86.82%.
Performance gains from the rest of the techniques were smaller, but
Frame skipping, Shearing, Rotations and Perspective change all in-
creased accuracy by more than 4%. Interestingly, with two training
participants, Frame index jitter and Bezier and Spline deformation
techniques decreased the model accuracy from 82.48% down to
81.64% and 81.56% respectively. It is possible that these techniques
do not add enough variability to the data so that the presence of
additional original training samples in itself boosts accuracy more.

This experiment paints a high-level picture of what accuracies
can be expected when using individual augmentation techniques.
However, we want to improve the classifcation scores further by
combining the efect of multiple techniques to synthesize new ges-
ture trajectories. This leads us to our next experiment, where to a
gesture trajectory we apply multiple augmentation techniques one
after another.

4.3 Experiment 2: Chaining multiple techniques
4.3.1 Setup. In the frst part of the evaluation we studied the efect
of the applying individual augmentation techniques on classifca-
tion performance. The next question is whether applying multi-
ple augmentation techniques (from now on we will refer to this
process as chaining) to the same synthetic sample yields a classif-
cation accuracy boost. As a specifc example: is applying a chain
of Rotate→Scale→Perspective→Gaussian transformations better
than applying only one of them? Further, if the order in which
techniques are chained has impact on how the chain performs, all
permutations of all combinations of 11 diferent techniques make
up � =

Í
�
11
=1 11!/(11 − �)! = 108, 505, 111 possible chains. Even fur-

ther, optimal parameters for techniques may be chain-dependent,
which together with the fact that computing a good accuracy aver-
age for a chain requires 300 model training runs5, means that an
iterative search for the best augmentation chain is not practical. To
partially deal with this issue, we fx the parameters for individual
techniques, making it possible to directly compare two chains to
one another. Using this method we can show, for example, that a
chain under the name "rotate scale perspective gaussian" in Figure 5
outperforms each of the individual techniques that we compared in
this experiment. More similar examples are presented in the same
fgure.

4.3.2 Categories of variability introduced by augmentation. To re-
duce the search space of possible chains, we decided to chain
together those techniques which through their transformations
added variability from diferent categories to the trajectories. In
the nearest-neighbor gesture recognition literature, pre-processing
steps reduce and remove specifc variability categories [32, 58, 64,
66, 68, 73]. For example, Noise can be removed by fltering; ori-
entation variability, by rotating by an indicative angle [32]; scale,
5Note that an individual run randomly selects 1 out of 30 samples per class across 10
participants.

https://github.com/maslychm/gesture_augmentation

Efective 2D Stroke-based Gesture Augmentation for RNNs CHI ’23, April 23–28, 2023, Hamburg, Germany

70 80 90
Test accuracy on best validation loss

gaussian frame-skip spatial perspective rotate scale

rotate scale gaussian perspective spatial

perspective gaussian scale spatial

rotate scale gaussian spatial

frame-skip spatial perspective rotate scale gaussian

gaussian perspective scale spatial

rotate scale perspective gaussian temporal

rotate scale temporal gaussian

rotate scale temporal jitter

gaussian spatial

rotate scale perspective gaussian

shear spatial gaussian

rotate scale perspective temporal

A
ug

m
en

ta
tio

n
M

et
ho

d

86.35
86.01
85.46
85.27
85.17
85.07
84.75
84.14

82.63
80.62
80.44
80.35

79.10

Figure 5: Experiment 2: Accuracies for selected chains in
a writer-independent experiment on the GDS dataset. Bars
indicate a 95% confdence interval.

by re-scaling the bounding box; and point count, by resampling
trajectories to be represented by a fxed number of points. We also
included shape variability, that we defne as "change in trajectory
shape, noticeable even after scaling, rotating and perfectly overlap-
ping the synthetic trajectory on top of the original". For example,
GPSR, noise, and Bezier-based augmentation modifes the gesture
shape in such a way. On the other hand, resampling and point du-
plication - does not (unless extremely low resample count is used).
Table 2 summarizes the categories of variability for the techniques
which performed above the baseline in Experiment 1 (Section 4.2).

Table 2: Categories of variability for individual techniques
which outperformed the baseline. Check-marks indicates
that the given augmentation technique adds variability from
a given category.

Technique Noise Scale Pt. Cnt Shape Orient.
Gaussian ✓ ✓
Uniform ✓ ✓
Scaling ✓
Spat. rsmpl. ✓
Temp. rsmpl. ✓
Frame skip ✓
Point dupl. ✓
Frame jitter ✓ ✓
Bezier deform. ✓ ✓
Rotate ✓
Shear ✓ ✓ ✓
Persp. change ✓ ✓

4.3.3 Results for selected chains. Given that the full chaining space
is large and can not be tested easily, we formed some simple chains
which combined techniques from multiple categories, and then
modifed them as we observed patterns in model accuracies. We

used some guiding principles based on our early experimentation.
We observed that those chains that added transformations from
the same category multiple times generally performed worse than
those that did it once. This means that we generally want to apply
a single variability category once. We also noticed that presence of
all fve of the categories generally gave better performance than
when fewer than fve categories were present. We also observed
that Gaussian noise applied before spatial resampling gave better
performance than when it was applied after it, and similarly for
frame skipping. This means that the order of applied techniques
is important and we should maximize the accuracy be preserving
orders that worked well. Guided by these observations, we used
trial-and-error and arrived at a chain "gaussian frame-skip spatial
perspective rotate scale" (All Variability Chain or AVC) which in
our testing outperformed other chains that we tested. Results of
this experiment can be found in Figure 5. We decided to use AVC
in the next experiment, where we pit it against alternative data
augmentation techniques in a real-world-like writer-dependent
scenario, over multiple datasets.

4.4 Experiment 3: Customization scenario
4.4.1 Experiment setup. A writer-dependent test with a very lim-
ited number of original training samples simulates a real-world
scenario where a user inputs only a few gestures per class as exam-
ples. Validation data, used to gauge if at a particular training epoch
the model performs as expected, is also not available in such cases.
To deal with this issue, we generate a synthetic validation dataset
using the same augmentation process as for training, but double
the number of synthetic samples. Without this step the models
performed worse due to overftting.

Our writer-dependent experiment had the following protocol:
select k original samples per class from a single participant, and use
them as seed samples to generate an augmented training set with
300 synthetic samples per class; use the same original samples to
generate a synthetic validation set with 600 synthetic samples per
class; use the remaining original samples which were not used for
training and form a test dataset (no overlap between train, valida-
tion and test sets); train the model using the training and report the
test accuracy from the model which had the lowest validation loss.
We repeated this experiment for each participant in the dataset, 30
times per participant, for each evaluated augmentation technique.

To evaluate performance of AVC, we used None augmentation,
and also the best-performing individual augmentation technique
from Experiment 1 (Section 4.2): Gaussian; Simple (Rotate → scale
→ gaussian) chain is common in RNN gesture literature [28, 35, 36];
AVC applies gaussian → frame-skip → spatial → perspective →
rotate → scale.

4.4.2 Experiment Results. We ran this writer-dependent test pro-
tocol on four single-stroke 2D gestural datasets commonly used as
benchmarks in the literature: $1-GDS [73], EDS1 [70], EDS2 [70],
and Lemarchand [60]. Figure 6 and Figure 7 show the results for the
writer-dependent experiment with synthetic validation data over
1 and 2 original training samples, respectively. For every dataset
and the number of original training samples per class, AVC chain

CHI ’23, April 23–28, 2023, Hamburg, Germany Maslych et al.

None
Gaussian

Simple
AVC

65

70

75

80

85

90

95

100

Te
st

 (a
t b

es
t v

al
 lo

ss
)

68.90

84.74
87.08

91.75

dataset = lemarchand

None
Gaussian

Simple
AVC

87.03

98.35 99.02 99.30
dataset = eds2

None
Gaussian

Simple
AVC

82.19

93.92 94.29 95.58

dataset = eds1

None
Gaussian

Simple
AVC

90.56
94.46 93.13

96.98

dataset = gds

Figure 6: Experiment 3: Writer-dependent experiment with a
single training sample per class across GDS, EDS1, EDS2 and
Lemarchand datasets. None is no augmentation; Simple chain
is (rotate → scale → gaussian); Gaussian is random Gaussian
Noise; AVC chain is gaussian → frame-skip → spatial →
perspective → rotate → scale. Confdence interval bars are
95%.

None
Gaussian

Simple
AVC

65

70

75

80

85

90

95

100

Te
st

 (a
t b

es
t v

al
 lo

ss
)

82.49

92.59
94.36

96.03

dataset = lemarchand

None
Gaussian

Simple
AVC

94.27

99.44 99.57 99.73
dataset = eds2

None
Gaussian

Simple
AVC

90.57

97.28 97.89 98.33
dataset = eds1

None
Gaussian

Simple
AVC

95.85 97.35 97.10 98.53
dataset = gds

Figure 7: Experiment 3: Writer-dependent experiment with
two training sample per class across GDS, EDS1, EDS2 and
Lemarchand datasets. None is no augmentation; Simple chain
is (rotate → scale → gaussian); Gaussian is random Gaussian
Noise; AVC chain is gaussian → frame-skip → spatial →
perspective → rotate → scale. Confdence interval bars are
95%.

boosts the performance over Gaussian augmentation the most. Sim-
ple chain also improves recognizer accuracies and in most cases
outperforms augmentaiton using Gaussian noise.

4.5 Experiment 4: Alternative approaches in
customization scenario

4.5.1 Experiment Setup. We are interested in how existing alter-
native gesture synthesis methods compare to our AVC chain in a
customization scenario. As introduced in Section 2.2, more complex
methods for generating synthetic gestures are available, namely
Gestures à Go Go [30], GPSR [59] and DeepNAG [36]. Gestures à
Go Go extracts per-trajectory reconstruction parameters and passes
them to a Sigma-Lognormal (ΣΛ) model where these parameters
are used to synthesize a new trajectory. GPSR frst spatially re-
samples the original trajectory using intervals of random lengths,
then removes a small number of points, and lastly normalizes the
distances between the remaining points to synthesize new samples.
These two methods require only a single original sample per class to
produce new trajectories so they are applicable in a customization
scenario. DeepNAG, on the contrary, needs thousands of original
samples to generate new samples, and its generative model has to

be trained anew for each dataset. The amount of data it requires
is not available in the customization context, so we only included
Gestures à Go Go and GPSR in this experiment.

Both Gestures à Go Go and GPSR take user-defned parameters
that infuence how variable the synthesized trajectories will look
like. To generate synthetic samples with Gestures à Go Go, we used
a public API6 that was released together with the original paper,
and set the parameters to those recommended in the method’s
publication: shape variability to 1, length variability to 1, same
timestamps to false. To generate synthetic samples with GPSR, we
implemented the algorithm locally and set the variance parameter
to 0.25 according to the method’s publication. We set the resample
count parameter to a random number between half of the original
trajectory length and double the original length, and remove count
to a random number between 2 and 6. We used the respective
parameters for Gestures à Go Go and GPSR to generate 300 synthetic
trajectories per original sample in the $1-GDS dataset, and ran a
writer-dependent experiment with synthetic validation pipeline.

65 70 75 80 85 90 95 100
Test accuracy on best validation loss

None

G3

GPSR

AVCA
ug

m
en

ta
tio

n
M

et
ho

d 90.56

82.60

93.92

96.98

Figure 8: Experiment 4: Writer-dependent experiment with
a single training sample per class. $1-GDS dataset, synthetic
validation pipeline. Bars represent a 95% confdence interval.

4.5.2 Experiment Results. Figure 8 shows the results for the writer-
dependent experiment where we compared two alternative gesture
synthesis approaches to our AVC chain. AVC chain outperformed
both GPSR and Gestures à Go Go methods, with a notable dif-
ference. From no augmentation, GPSR improved the accuracy up
to 93.92% (by approximately 3.5%). Interestingly, augmenting the
dataset using Gestures à Go actually decreased the RNN accuracy
by approximately 8%, reducing the average accuracy to 82.6%. A
possible explanation for this method performing poorly is that it
does not produce enough variability to cover the gesture variability
present in the test set, and the RNN overfts as a result.

4.6 Experiment 5: Synthetic training set size VS
training time VS accuracy

Recognizer training time is an important consideration in cus-
tomization. Training times should be as short as possible since
that will eliminate the waiting on the user’s end. Unfortunately,
RNNs are slow to train, and the training times increase when the
training set size is increased. Prior research reported training times
ranging from 10 minutes to several hours [28, 35, 36], and since the
reduction of training time is one of the focal points of our work,
we conducted an experiment where we varied the training set size.
6https://g3.prhlt.upv.es/

https://g3.prhlt.upv.es/

Efective 2D Stroke-based Gesture Augmentation for RNNs CHI ’23, April 23–28, 2023, Hamburg, Germany

20 21 22 23 24 25 26 27 28 29 210 211

Synthetic samples per class

86

88

90

92

94

96

98

100

Te
st

 A
cc

ur
ac

y
(%

)

20 21 22 23 24 25 26 27 28 29 210 211

Synthetic samples per class

0

10

20

30

40

50

60

Tr
ai

n
Ti

m
e

(s
)

Figure 9: Writer-dependent experiment with varying the
number of synthetic samples per class with $1-GDS dataset
(using synthetic validation pipeline). Top: training accuracy
given varying synthetic training set size, bottom: training
time (in seconds) given varying synthetic training set size.

We used the AVC chain to generate a variable number of synthetic
samples for a writer-dependent experiment with Synthetic Valida-
tion pipeline and ran this experiment on Pop!_OS78 with an Nvidia
GTX1080 graphics card.

Our results show that with a single synthetic sample per class
(total train set size of 32), training time is 9 seconds on average,
with 64 synthetic samples per class (total train set size of 1040),
the training time increases to 20 seconds (see Figure 9). We tested
up to 2048 synthetic samples per class, which brought the total
training set size up to 32874, and found that the model took 50
seconds to train with this train set size. The model accuracy reached
97% and stopped improving with values larger than 512 synthetic
samples per class, which is close to 300 - a hyper-parameter value
for the number of synthetic samples per class that we chose for our
previous experiments.

5 DISCUSSION AND FUTURE WORK
The goal of this work is to improve the user experience with gestu-
ral interfaces through improving the performance of RNNs used
for recognition. With RNNs, the two primary concerns are recog-
nition accuracy and training time. Training time depends on the
architecture and training set size. In Experiment 1 (Section 4.2), we

7https://pop.system76.com/
8At the time of this writing, the Windows implementation of PyTorch DataLoader did
not support multiple workers for batch loading, which caused the training time graph
to spike at 32 synthetic samples per class, so we switched to a linux-based OS for this
experiment.

1 2 4 8 16 30
Number of original samples per class from 4 participants

65

70

75

80

85

90

95

100

Te
st

 a
cc

ur
ac

y

89.63
91.78 92.69

94.66 95.24 96.08
92.16

94.12 95.18 95.75 96.25 96.6795.47 96.26 97.00 97.17 97.72 97.76

None
Gaussian
AVC

Figure 10: Writer-independent experiment with 4 training
participants over a varying count of original training samples
per participant on the $1-GDS dataset. None is no augmen-
tation; Gaussian is random Gaussian Noise; AVC chain is
gaussian → frame-skip → spatial → perspective → rotate →
scale. Confdence intervals are 95%.

saw many individual augmentation methods which are not mutu-
ally exclusive. Because each of them adds variability from diferent
categories, they can be combined into chains of augmentation. We
used this and were able to boost the RNN model performance while
keeping the synthetic dataset limited in size.

5.1 Performance due to augmentation chaining
Through the process we followed in our Experiment 2 (Section 4.3),
we arrived at our AVC chain, which outperformed the tested al-
ternatives across four 2D gesture datasets in a writer-dependent
experiment (Section 4.4) and also alternative methods designed
specifcally for gesture synthesis (Section 4.5). This confrms that
chaining multiple augmentation methods based on variability cate-
gories can considerably boost the RNN model performance when
compared to other augmentation methods.

5.1.1 Chaining augmentation reduces the amount of required data.
To our knowledge, the exact experiment protocol we performed was
only used with nearest-neighbor methods, that have been consid-
ered the state-of-the-art for gesture customization. For example, on
the $1-GDS dataset, the $1 algorithm is 97.1% accurate in a writer-
dependent experiment with a single training participant. In the
same experiment, our AVC augmentation method achieves 96.98%
accuracy (see Figure 6). Other work where RNNs were trained on
gestural data include thousands of original samples in the training
dataset. For example, thousands of original $1-GDS samples, pro-
cessed using Gestures à Go were used to train a large multi-modal
LSTM network and the achieved accuracy was 97.11% [28]. In an-
other experiment, a GRU-based [36] network trained with 50% of
$1-GDS and augmentation using a non-adversarial generation ap-
proach was 94% accurate. To have a more direct comparison to these
testing protocols, we used the AVC augmentation chain with only
1.33% of all available data (a single training sample per class from 4
participants) and found that RNN achieves over 95% accuracy. Using
5.33% (four training samples per class from 4 participants), yields
97% accuracy (see Figure 10). This highlights that our approach
of combining multiple categories of variability boosts recognition
accuracy of RNNs beyond what was previously achieved without
requiring nearly as much data as alternative appoaches.

CHI ’23, April 23–28, 2023, Hamburg, Germany Maslych et al.

Figure 11: Left: original 2D gesture samples from $1-GDS
from 3 diferent subjects (no transformations applied). Right:
three synthetic gesture trajectories per class generated
through the AVC chain augmentation (gaussian → frame-
skip → spatial → perspective → rotate → scale).

5.1.2 Training time based on training set size. The training times
we report are lower than those reported in the gesture recognition
literature using RNNs [28, 35, 36]. This could be due to a combi-
nation of factors: the hardware, the choice of operating system,
the deep learning framework. The GTX1080 that we used was re-
leased in 2016 and is not a fast card by modern standards, especially
among hardware that is specialized for deep learning. Despite this,
we were able to achieve low training times, partially thanks to early
stopping9 function that tracks validation set loss values and stops
the training when loss has not decreased for a set number of epochs.
Still, we believe it is possible to reduce the training time further
and we plan to work on this in the future.

5.1.3 Variability in synthesized gestural data. Synthetic training
data that combines multiple variability categories allows us to re-
duce the training time since fewer samples are needed to represent
the same amount of variability in data. However, it is possible to fur-
ther reduce the training time. Potential directions for future work
in the area include: decreasing model size, pruning the training
set to exclude samples which don’t contribute to variability, and
utilizing transfer learning. Further, additional training data can be
collected while the system is already in use, and because RNNs
have a constant inference time, user experience will not degrade
from additional data. As a result, the user will beneft from a robust
customizable gesture recognizer which is quick to train. In future
work, we plan to explore each of these directions.

Visual inspection of the trajectories synthesized by the AVC
chain reveals that the overall gesture shapes are recognizable, al-
though the trajectories look very noisy (see Figure 11). The impact
of Gaussian noise is most pronounced, followed by rotations. The
efect of spatial resampling is not obvious from a visual observation,
however given that presence of point count modifcation methods
is the main diference between the AVC chain and Simple chain
(Rotate → scale → gaussian), the performance gains when using
the AVC chain must come from frame skipping and spatial resam-
pling methods. Such methods are underexplored in the RNN gesture
recognition literature, and based on our results, they deserve more
attention and may reveal more performance gains if studied further.

9https://pytorch-lightning.readthedocs.io/en/stable/common/early_stopping.html

When it comes to gestures, there are many sources of variability
that contribute towards the overall gesture trajectory. The input
devices have various screen sizes and can be held at diferent angles.
The user can be right or left-handed, have diferent vision or motor
abilities. Environment also plays a role, since if the user is moving
while using gesture shortcuts, the produced trajectories will be
more noisy. Lastly, the precision of the device’s sensor and the
sampling rate also have an impact on trajectory. With a limited
training set, the goal of augmentation is to cover the entire space
of the possible variability that will be encountered during the use
of the system. Thus modeling the potential sources of variability
can help inform practitioners what is expected during use and
therefore what augmentation parameters to use. Figure 11 shows
that even though the variability in original gestures on the left side
is diferent from the variability of trajectories synthesized using
the AVC chain, the additional noise helps the RNN generalize and
perform better on the test data. From a practical standpoint, this
means that practitioners should side with as much variability as
possible, as long as the test accuracy is not decreased.

5.2 Recommendations for practitioners
When generating synthetic data for training gesture recognition
RNNs, it is best to combine multiple data augmentation meth-
ods by applying them one after the other to the original gestures.
An augmentation chain of Gaussian Noise → Frame Skipping →
Spatial Resampling → Perspective Change → Rotation → Scaling
works well in practice and can be readily used for generating a
synthetic dataset which will improve a 2D gesture recognizer’s
performance. In general, as much variability as possible should
be added as long as performance on the test set improves. Sup-
plementary material to this paper contains the exact values of the
parameters used with our augmentation methods, and a reference
implementation for researchers and practitioners is available at
https://github.com/maslychm/gesture_augmentation.

5.3 Limitations and Future Work
The frst limitation of this work is that the RNN model architecture
and the individual augmentation techniques parameters were opti-
mized on a single datset ($1-GDS). This leads us to question the gen-
eralizability of the AVC augmentaiton method we created. Through
additional writer-dependent experiments on three more datsets
which are widely-used in the gesture recognition space (EDS1 [70],
EDS2 [70], Lemarchand [60]), we confrmed that the AVC chain
method still outperforms the alternatives when used in combination
with our RNN architecture. However, we did not explore the inter-
action efects between test accuracy, model size, and the number
of classes in the dataset. Further improvements in the classifca-
tion accuracy may be discovered by exploring these parameters. In
future work we also plan to further evaluate writer-independent
performance across additional datasets, including datasets with
handwritten sybmols, 3D gesture datasets and other modalities.

A second limitation is that because of the huge search space
in the possible chains in Experiment 2 (Section 4.3), it is possible
that a better chaining strategy exists which would lead to even
higher classifcation accuracies. As part of future work, we plan
to explore various parameter space search methods that would

https://pytorch-lightning.readthedocs.io/en/stable/common/early_stopping.html
https://github.com/maslychm/gesture_augmentation

Efective 2D Stroke-based Gesture Augmentation for RNNs CHI ’23, April 23–28, 2023, Hamburg, Germany

help with automating the chaining process. It is also possible to
combine GPSR and Gestures à Go with other augmentation methods.
Utilizing these methods in combination with the ones we evaluated
may improve the recognizer performance further, so in future work
we plan to include them in our evaluation.

Lastly, as mentioned in the Discussion (Section 5.1.3), modeling
the sources of variability may better inform the choice of parameters
for augmentation chains. Additionally, measuring the distributions
between real and augmented data may aid in understanding why
certain variability improves the recognition performance. For this,
previous eforts have used Euclidean [73], Inner Product [59, 62] and
Cloud distances [66], as well as custom-defned accuracy variability
measures [67]. All the mentioned approaches, however, resample
the trajectories to a fxed length and through this process remove
certain variability that we found to improve performance, such as
high frequency noise and point count. Future work should fnd a
way to aggregate multiple distance measures and defne custom
variability measures that will help inform augmentation methods
and parameters choices. For example, using forward modeling could
be a viable alternative to this approach. Additionally, such knowl-
edge will help generate more realistic looking samples through the
augmentation process, which we leave to future work.

6 CONCLUSION
In this work we implemented and evaluated a number of augmen-
tation techniques for gestural data as applied to training Recur-
rent Neural Networks. We combined some of these techniques
into chains on the basis of diferent categories of variability which
techniques add to the data. These chains apply the augmentation
techniques sequentially in a specifc order, and we found a chain
that performed better than the rest in our evaluation. We called this
chain the "All Variability Chain" (AVC) and tested it on four widely-
used single-stroke 2D gesture datasets, fnding that it outperforms
all tested alternatives. Researchers and practitioners will beneft
from this new simple-to-implement data augmentation method
which will boost their RNNs recognition accuracy. End users will
beneft from improved RNN-based gesture recognition systems
enabled by methods evaluated in this work.

ACKNOWLEDGMENTS
This work is supported in part by NSF Award IIS-1917728, Northrop
Grumman., Unknot.id, and the Florida High Tech Corridor Council
Industry Matching Research Program. We also thank the anony-
mous reviewers for their insightful feedback and the ISUE lab mem-
bers for their support.

REFERENCES
[1] Lisa Anthony and Jacob O. Wobbrock. 2010. A lightweight multistroke recognizer

for user interface prototypes. In Proceedings of Graphics Interface 2010 (GI ’10).
Canadian Information Processing Society, CAN, 245–252.

[2] Lisa Anthony and Jacob O Wobbrock. 2012. $ n-protractor: A fast and accurate
multistroke recognizer. In Proceedings of Graphics Interface 2012 (GI ’12). Graphics
Interface Conference 2012, Toronto, Ontario, Canada, 117–120.

[3] Ahmed Sabbir Arif and Wolfgang Stuerzlinger. 2014. User adaptation to a faulty
unistroke-based text entry technique by switching to an alternative gesture set. In
Proceedings of Graphics Interface 2014 (GI ’14). Canadian Information Processing
Society, CAN, 183–192.

[4] Ujjwal Bhattacharya, Réjean Plamondon, Souvik Dutta Chowdhury, Pankaj Goyal,
and Swapan K. Parui. 2017. A Sigma-Lognormal Model-Based Approach to
Generating Large Synthetic Online Handwriting Sample Databases. International

Journal on Document Analysis and Recognition (IJDAR) 20, 3 (Sept. 2017), 155–171.
https://doi.org/10.1007/s10032-017-0287-5

[5] Rachel Blagojevic, Samuel Hsiao-Heng Chang, and Beryl Plimmer. 2010. The
Power of Automatic Feature Selection: Rubine on Steroids. SBIM 10 (2010), 79–86.

[6] Ariel Caputo, Andrea Giachetti, Simone Soso, Deborah Pintani, Andrea D’Eusanio,
Stefano Pini, Guido Borghi, Alessandro Simoni, Roberto Vezzani, Rita Cuc-
chiara, Andrea Ranieri, Franca Giannini, Katia Lupinetti, Marina Monti, Mehran
Maghoumi, Joseph J. LaViola Jr, Minh-Quan Le, Hai-Dang Nguyen, and Minh-
Triet Tran. 2021. SHREC 2021: Skeleton-based Hand Gesture Recognition in the
Wild. Computers & Graphics 99 (Oct. 2021), 201–211. https://doi.org/10.1016/j.
cag.2021.07.007

[7] F. M. Caputo, S. Burato, G. Pavan, T. Voillemin, H. Wannous, J. P. Vandeborre, M.
Maghoumi, E. M. Taranta II, A. Razmjoo, J. J. LaViola Jr., F. Manganaro, S. Pini, G.
Borghi, R. Vezzani, R. Cucchiara, H. Nguyen, M. T. Tran, and A. Giachetti. 2019.
Online Gesture Recognition. In Eurographics Workshop on 3D Object Retrieval.
The Eurographics Association, Department of Computer Science, University of
Verona, Italy, 10 pages. https://doi.org/10.2312/3dor.20191067

[8] Yineng Chen, Xiaojun Su, Feng Tian, Jin Huang, Xiaolong (Luke) Zhang,
Guozhong Dai, and Hongan Wang. 2016. Pactolus: A Method for Mid-Air
Gesture Segmentation within EMG. In Proceedings of the 2016 CHI Confer-
ence Extended Abstracts on Human Factors in Computing Systems (CHI EA
’16). Association for Computing Machinery, New York, NY, USA, 1760–1765.
https://doi.org/10.1145/2851581.2892492

[9] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning Phrase Representations using RNN
Encoder-Decoder for Statistical Machine Translation. CoRR abs/1406.1078 (2014),
15 pages. arXiv:1406.1078 http://arxiv.org/abs/1406.1078

[10] Sung-Jung Cho, Eunseok Choi, Won-Chul Bang, Jing Yang, Junil Sohn, Dong Yoon
Kim, Young-Bum Lee, and Sangryong Kim. 2006. Two-stage Recognition of
Raw Acceleration Signals for 3-D Gesture-Understanding Cell Phones. In Tenth
International Workshop on Frontiers in Handwriting Recognition, Guy Lorette (Ed.).
Université de Rennes 1, Suvisoft, La Baule (France). https://hal.inria.fr/inria-
00103854 http://www.suvisoft.com.

[11] Ekin D. Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V. Le. 2019. Ran-
dAugment: Practical automated data augmentation with a reduced search space.
https://doi.org/10.48550/ARXIV.1909.13719

[12] Kenny Davila, Stephanie Ludi, and Richard Zanibbi. 2014. Using Of-Line Fea-
tures and Synthetic Data for On-Line Handwritten Math Symbol Recognition. In
2014 14th International Conference on Frontiers in Handwriting Recognition. IEEE,
Hersonissos, Greece, 323–328. https://doi.org/10.1109/ICFHR.2014.61

[13] Yousef Elarian, Radwan Abdel-Aal, Irfan Ahmad, Mohammad Tanvir Parvez, and
Abdelmalek Zidouri. 2014. Handwriting Synthesis: Classifcations and Tech-
niques. International Journal on Document Analysis and Recognition (IJDAR) 17, 4
(Dec. 2014), 455–469. https://doi.org/10.1007/s10032-014-0231-x

[14] Raul Fernandez, Andrew Rosenberg, Alexander Sorin, Bhuvana Ramabhadran,
and Ron Hoory. 2017. Voice-Transformation-Based Data Augmentation for
Prosodic Classifcation. In 2017 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). 5530–5534. https://doi.org/10.1109/ICASSP.2017.
7953214

[15] Germain Forestier, François Petitjean, Hoang Anh Dau, Geofrey I. Webb, and
Eamonn Keogh. 2017. Generating Synthetic Time Series to Augment Sparse
Datasets. In 2017 IEEE International Conference on Data Mining (ICDM). 865–870.
https://doi.org/10.1109/ICDM.2017.106 ISSN: 2374-8486.

[16] Donatien Grolaux, Jean Vanderdonckt, Thanh-Diane Nguyen, and Iyad Khaddam.
2020. SketchADoodle: Touch-surface Multi-stroke Gesture Handling by Bézier
Curves. Proceedings of the ACM on Human-Computer Interaction 4, EICS (June
2020), 1–30. https://doi.org/10.1145/3397875

[17] T.M. Ha and H. Bunke. 1997. Of-Line, Handwritten Numeral Recognition by Per-
turbation Method. IEEE Transactions on Pattern Analysis and Machine Intelligence
19, 5 (May 1997), 535–539. https://doi.org/10.1109/34.589216

[18] Shangchen Han, Beibei Liu, Randi Cabezas, Christopher D. Twigg, Peizhao Zhang,
Jef Petkau, Tsz-Ho Yu, Chun-Jung Tai, Muzafer Akbay, Zheng Wang, Asaf
Nitzan, Gang Dong, Yuting Ye, Lingling Tao, Chengde Wan, and Robert Wang.
2020. MEgATrack: Monochrome Egocentric Articulated Hand-Tracking for
Virtual Reality. ACM Transactions on Graphics 39, 4 (July 2020), 87:87:1–87:87:13.
https://doi.org/10.1145/3386569.3392452

[19] Taihei Hayashi, Keiji Gyohten, Hidehiro Ohki, and Toshiya Takami. 2018. A
Study of Data Augmentation for Handwritten Character Recognition Using
Deep Learning. In 2018 16th International Conference on Frontiers in Handwriting
Recognition (ICFHR). 552–557. https://doi.org/10.1109/ICFHR-2018.2018.00102

[20] Samitha Herath, Mehrtash Harandi, and Fatih Porikli. 2017. Going deeper into
action recognition: A survey. Image and Vision Computing 60 (April 2017), 4–21.
https://doi.org/10.1016/j.imavis.2017.01.010

[21] Geofrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2012. Improving neural networks by preventing co-adaptation
of feature detectors. CoRR abs/1207.0580 (2012), 18 pages. arXiv:1207.0580
http://arxiv.org/abs/1207.0580

https://doi.org/10.1007/s10032-017-0287-5
https://doi.org/10.1016/j.cag.2021.07.007
https://doi.org/10.1016/j.cag.2021.07.007
https://doi.org/10.2312/3dor.20191067
https://doi.org/10.1145/2851581.2892492
https://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078
https://hal.inria.fr/inria-00103854
https://hal.inria.fr/inria-00103854
https://doi.org/10.48550/ARXIV.1909.13719
https://doi.org/10.1109/ICFHR.2014.61
https://doi.org/10.1007/s10032-014-0231-x
https://doi.org/10.1109/ICASSP.2017.7953214
https://doi.org/10.1109/ICASSP.2017.7953214
https://doi.org/10.1109/ICDM.2017.106
https://doi.org/10.1145/3397875
https://doi.org/10.1109/34.589216
https://doi.org/10.1145/3386569.3392452
https://doi.org/10.1109/ICFHR-2018.2018.00102
https://doi.org/10.1016/j.imavis.2017.01.010
https://arxiv.org/abs/1207.0580
http://arxiv.org/abs/1207.0580
http://www.suvisoft.com
https://Unknot.id

CHI ’23, April 23–28, 2023, Hamburg, Germany Maslych et al.

[22] Alexander Hoelzemann, Nimish Sorathiya, and Kristof Van Laerhoven. 2021. Data
Augmentation Strategies for Human Activity Data Using Generative Adversarial
Neural Networks. 2021 IEEE International Conference on Pervasive Computing
and Communications Workshops and other Afliated Events (PerCom Workshops)
(2021). https://doi.org/10.1109/PerComWorkshops51409.2021.9431046

[23] Sergey Iofe and Christian Szegedy. 2015. Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift, In ICML’15: Proceedings
of the 32nd International Conference on International Conference on Machine
Learning. CoRR 37, 448–456. arXiv:1502.03167 http://arxiv.org/abs/1502.03167

[24] Brian Kenji Iwana and Seiichi Uchida. 2021. An Empirical Survey of Data Aug-
mentation for Time Series Classifcation with Neural Networks. PLoS ONE 16, 7
(July 2021), e0254841. https://doi.org/10.1371/journal.pone.0254841

[25] Maria Karam and m. c. schraefel. 2006. Investigating user tolerance for errors in
vision-enabled gesture-based interactions. In Proceedings of the working conference
on Advanced visual interfaces (AVI ’06). Association for Computing Machinery,
New York, NY, USA, 225–232. https://doi.org/10.1145/1133265.1133309

[26] Jungsoo Kim, Jiasheng He, Kent Lyons, and Thad Starner. 2007. The Gesture
Watch: A Wireless Contact-free Gesture based Wrist Interface. In 2007 11th IEEE
International Symposium on Wearable Computers. IEEE, Boston, MA, USA, 15–22.
https://doi.org/10.1109/ISWC.2007.4373770 ISSN: 2376-8541.

[27] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization, In 3rd International Conference on Learning Representations, ICLR,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings. arXiv preprint
arXiv:1412.6980 3, 1, 15 pages. http://arxiv.org/abs/1412.6980

[28] Emanuele Ledda and Lucio Davide Spano. 2021. Applying Long-Short Term
Memory Recurrent Neural Networks for Real-Time Stroke Recognition. In Com-
panion of the 2021 ACM SIGCHI Symposium on Engineering Interactive Computing
Systems (EICS ’21). Association for Computing Machinery, New York, NY, USA,
50–55. https://doi.org/10.1145/3459926.3464754

[29] Hyeon-Kyu Lee and J.H. Kim. 1999. An HMM-based threshold model approach
for gesture recognition. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 21, 10 (Oct. 1999), 961–973. https://doi.org/10.1109/34.799904 Conference
Name: IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30] Luis A. Leiva, Daniel Martín-Albo, and Réjean Plamondon. 2016. Gestures à Go Go:
Authoring Synthetic Human-Like Stroke Gestures Using the Kinematic Theory
of Rapid Movements. ACM Transactions on Intelligent Systems and Technology 7,
2 (Jan. 2016), 1–29. https://doi.org/10.1145/2799648

[31] Jiajun Li, Jianguo Tao, Liang Ding, Haibo Gao, Zongquan Deng, Yang Luo, and
Zhandong Li. 2018. A New Iterative Synthetic Data Generation Method for CNN
Based Stroke Gesture Recognition. Multimedia Tools and Applications 77, 13 (July
2018), 17181–17205. https://doi.org/10.1007/s11042-017-5285-6

[32] Yang Li. 2010. Protractor: A Fast and Accurate Gesture Recognizer. In Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems (Atlanta,
Georgia, USA) (CHI ’10). Association for Computing Machinery, New York, NY,
USA, 2169–2172. https://doi.org/10.1145/1753326.1753654

[33] Jun Liu, Amir Shahroudy, Dong Xu, and Gang Wang. 2016. Spatio-Temporal
LSTM with Trust Gates for 3D Human Action Recognition. In Computer Vision –
ECCV 2016 (Lecture Notes in Computer Science), Bastian Leibe, Jiri Matas, Nicu
Sebe, and Max Welling (Eds.). Springer International Publishing, Cham, 816–833.
https://doi.org/10.1007/978-3-319-46487-9_50 REVIEW FOR SURE.

[34] Xiao-Hui Liu and Chin-Seng Chua. 2010. Rejection of non-meaningful activities
for HMM-based activity recognition system. Image and Vision Computing 28, 6
(June 2010), 865–871. https://doi.org/10.1016/j.imavis.2009.11.001

[35] Mehran Maghoumi and Joseph J. LaViola. 2019. DeepGRU: Deep Gesture Recog-
nition Utility. In Advances in Visual Computing. Vol. 11844. Springer International
Publishing, Cham, 16–31. https://doi.org/10.1007/978-3-030-33720-9_2

[36] Mehran Maghoumi, Eugene Matthew Taranta, and Joseph LaViola. 2021. Deep-
NAG: Deep Non-Adversarial Gesture Generation. In 26th International Con-
ference on Intelligent User Interfaces. ACM, College Station TX USA, 213–223.
https://doi.org/10.1145/3397481.3450675

[37] Nathan Magrofuoco, Paolo Roselli, and Jean Vanderdonckt. 2022. Two-
dimensional Stroke Gesture Recognition: A Survey. Comput. Surveys 54, 7 (Sept.
2022), 1–36. https://doi.org/10.1145/3465400

[38] Ross Messing, Chris Pal, and Henry Kautz. 2009. Activity Recognition Using the
Velocity Histories of Tracked Keypoints. In 2009 IEEE 12th International Conference
on Computer Vision. 104–111. https://doi.org/10.1109/ICCV.2009.5459154

[39] Agnieszka Mikołajczyk and Michał Grochowski. 2018. Data augmentation for
improving deep learning in image classifcation problem. In 2018 International
Interdisciplinary PhD Workshop (IIPhDW). 117–122. https://doi.org/10.1109/
IIPHDW.2018.8388338

[40] Francisco J. Moreno-Barea, José M. Jerez, and Leonardo Franco. 2020. Improving
Classifcation Accuracy Using Data Augmentation on Small Data Sets. Expert
Systems with Applications 161 (Dec. 2020), 113696. https://doi.org/10.1016/j.eswa.
2020.113696

[41] Miguel A. Nacenta, Yemliha Kamber, Yizhou Qiang, and Per Ola Kristensson.
2013. Memorability of pre-designed and user-defned gesture sets. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’13).
Association for Computing Machinery, New York, NY, USA, 1099–1108. https:

//doi.org/10.1145/2470654.2466142
[42] Vinod Nair and Geofrey E. Hinton. 2010. Rectifed Linear Units Improve Re-

stricted Boltzmann Machines. In Proceedings of the 27th International Confer-
ence on Machine Learning (ICML-10). Omnipress, Haifa, Israel, 807–814. https:
//icml.cc/Conferences/2010/papers/432.pdf

[43] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Jun-
jie Bai, and Soumith Chintala. 2019. PyTorch: An Imperative Style, High-
Performance Deep Learning Library. In Advances in Neural Information Pro-
cessing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett (Eds.). Curran Associates, Inc., Vancouver, Canada, 8024–
8035. http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-
performance-deep-learning-library.pdf

[44] Réjean Plamondon. 1995. A kinematic theory of rapid human movements: Part
I. Movement representation and generation. Biological cybernetics 72, 4 (1995),
295–307.

[45] Réjean Plamondon and Moussa Djioua. 2006. A multi-level representation para-
digm for handwriting stroke generation. Human movement science 25, 4-5 (2006),
586–607.

[46] Robert Powalka. 1993. Experiments With Applying Slant Counteraction to Script
Recognition.

[47] Hossein Rahmani and Ajmal Mian. 2016. 3D Action Recognition from Novel
Viewpoints. In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE, Las Vegas, NV, USA, 1506–1515. https://doi.org/10.1109/CVPR.
2016.167

[48] Dean Rubine. 1991. Specifying Gestures by Example. ACM SIGGRAPH Computer
Graphics 25, 4 (July 1991), 329–337. https://doi.org/10.1145/127719.122753

[49] Yasushi Sakurai, Christos Faloutsos, and Masashi Yamamuro. 2007. Stream
Monitoring under the Time Warping Distance. In 2007 IEEE 23rd International
Conference on Data Engineering. IEEE, Istanbul, 1046–1055. https://doi.org/10.
1109/ICDE.2007.368963

[50] Jan Schlüter and Thomas Grill. 2015. Exploring Data Augmentation for Improved
Singing Voice Detection with Neural Networks.. In ISMIR. 121–126.

[51] Jia Sheng. 2003. A study of adaboost in 3d gesture recognition. Department of
Computer Science, University of Toronto 1 (2003), 7 pages.

[52] Arash Shilandari, H. Marvi, and H. Khosravi. 2021. Speech Emotion Recognition
Using Data Augmentation Method by Cycle-Generative Adversarial Networks.
https://doi.org/10.20944/PREPRINTS202104.0651.V1

[53] Connor Shorten and Taghi M. Khoshgoftaar. 2019. A Survey on Image Data
Augmentation for Deep Learning. Journal of Big Data 6, 1 (July 2019), 60. https:
//doi.org/10.1186/s40537-019-0197-0

[54] Cliford K. F. So and George Baciu. 2006. Hypercube sweeping algorithm for
subsequence motion matching in large motion databases. In Proceedings of the
2006 ACM international conference on Virtual reality continuum and its applications
(VRCIA ’06). Association for Computing Machinery, New York, NY, USA, 221–228.
https://doi.org/10.1145/1128923.1128960

[55] Sijie Song, Cuiling Lan, Junliang Xing, Wenjun Zeng, and Jiaying Liu. 2016. An
End-to-End Spatio-Temporal Attention Model for Human Action Recognition
from Skeleton Data. arXiv:1611.06067 [cs] (Nov. 2016). http://arxiv.org/abs/1611.
06067 arXiv: 1611.06067.

[56] Odongo Steven Eyobu and Dong Seog Han. 2018. Feature Representation and
Data Augmentation for Human Activity Classifcation Based on Wearable IMU
Sensor Data Using a Deep LSTM Neural Network. Sensors 18, 9 (Sept. 2018), 2892.
https://doi.org/10.3390/s18092892

[57] Jingren Tang, Hong Cheng, Yang Zhao, and Hongliang Guo. 2018. Structured dy-
namic time warping for continuous hand trajectory gesture recognition. Pattern
Recognition 80 (Aug. 2018), 21–31. https://doi.org/10.1016/j.patcog.2018.02.011

[58] Eugene M. Taranta and Joseph J. LaViola. 2015. Penny pincher: a blazing fast,
highly accurate $-family recognizer. In Proceedings of the 41st Graphics Interface
Conference (GI ’15). Canadian Information Processing Society, CAN, 195–202.

[59] Eugene M. Taranta, Mehran Maghoumi, Corey R. Pittman, and Joseph J. LaViola.
2016. A Rapid Prototyping Approach to Synthetic Data Generation for Improved
2D Gesture Recognition. In Proceedings of the 29th Annual Symposium on User In-
terface Software and Technology (UIST ’16). Association for Computing Machinery,
New York, NY, USA, 873–885. https://doi.org/10.1145/2984511.2984525

[60] Eugene M. Taranta, Andrés N. Vargas, and Joseph J. LaViola. 2016. Streamlined
and accurate gesture recognition with Penny Pincher. Computers & Graphics 55
(April 2016), 130–142. https://doi.org/10.1016/j.cag.2015.10.011

[61] Eugene M. Taranta II, Corey R. Pittman, Mehran Maghoumi, Mykola Maslych,
Yasmine M. Moolenaar, and Joseph J. Laviola Jr. 2021. Machete: Easy, Efcient,
and Precise Continuous Custom Gesture Segmentation. ACM Transactions on
Computer-Human Interaction 28, 1 (Jan. 2021), 5:1–5:46. https://doi.org/10.1145/
3428068

[62] Eugene M. Taranta II, Amirreza Samiei, Mehran Maghoumi, Pooya Khaloo,
Corey R. Pittman, and Joseph J. LaViola Jr. 2017. Jackknife: A Reliable Rec-
ognizer with Few Samples and Many Modalities. In Proceedings of the 2017 CHI

https://doi.org/10.1109/PerComWorkshops51409.2021.9431046
https://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
https://doi.org/10.1371/journal.pone.0254841
https://doi.org/10.1145/1133265.1133309
https://doi.org/10.1109/ISWC.2007.4373770
http://arxiv.org/abs/1412.6980
https://doi.org/10.1145/3459926.3464754
https://doi.org/10.1109/34.799904
https://doi.org/10.1145/2799648
https://doi.org/10.1007/s11042-017-5285-6
https://doi.org/10.1145/1753326.1753654
https://doi.org/10.1007/978-3-319-46487-9_50
https://doi.org/10.1016/j.imavis.2009.11.001
https://doi.org/10.1007/978-3-030-33720-9_2
https://doi.org/10.1145/3397481.3450675
https://doi.org/10.1145/3465400
https://doi.org/10.1109/ICCV.2009.5459154
https://doi.org/10.1109/IIPHDW.2018.8388338
https://doi.org/10.1109/IIPHDW.2018.8388338
https://doi.org/10.1016/j.eswa.2020.113696
https://doi.org/10.1016/j.eswa.2020.113696
https://doi.org/10.1145/2470654.2466142
https://doi.org/10.1145/2470654.2466142
https://icml.cc/Conferences/2010/papers/432.pdf
https://icml.cc/Conferences/2010/papers/432.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1109/CVPR.2016.167
https://doi.org/10.1109/CVPR.2016.167
https://doi.org/10.1145/127719.122753
https://doi.org/10.1109/ICDE.2007.368963
https://doi.org/10.1109/ICDE.2007.368963
https://doi.org/10.20944/PREPRINTS202104.0651.V1
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1145/1128923.1128960
http://arxiv.org/abs/1611.06067
http://arxiv.org/abs/1611.06067
https://doi.org/10.3390/s18092892
https://doi.org/10.1016/j.patcog.2018.02.011
https://doi.org/10.1145/2984511.2984525
https://doi.org/10.1016/j.cag.2015.10.011
https://doi.org/10.1145/3428068
https://doi.org/10.1145/3428068

Efective 2D Stroke-based Gesture Augmentation for RNNs

Conference on Human Factors in Computing Systems (CHI ’17). Association for
Computing Machinery, New York, NY, USA, 5850–5861. https://doi.org/10.1145/
3025453.3026002

[63] Eugene M. Taranta II, Thaddeus K. Simons, Rahul Sukthankar, and Joseph J.
Laviola Jr. 2015. Exploring the Benefts of Context in 3D Gesture Recognition for
Game-Based Virtual Environments. ACM Transactions on Interactive Intelligent
Systems 5, 1 (March 2015), 1:1–1:34. https://doi.org/10.1145/2656345

[64] Jean Vanderdonckt, Paolo Roselli, and Jorge Luis Pérez-Medina. 2018. !FTL, an
Articulation-Invariant Stroke Gesture Recognizer with Controllable Position,
Scale, and Rotation Invariances. In Proceedings of the 20th ACM International
Conference on Multimodal Interaction (ICMI ’18). Association for Computing Ma-
chinery, New York, NY, USA, 125–134. https://doi.org/10.1145/3242969.3243032

[65] Radu-Daniel Vatavu. 2017. Improving Gesture Recognition Accuracy on Touch
Screens for Users with Low Vision. In Proceedings of the 2017 CHI Conference
on Human Factors in Computing Systems (Denver, Colorado, USA) (CHI ’17).
Association for Computing Machinery, New York, NY, USA, 4667–4679. https:
//doi.org/10.1145/3025453.3025941

[66] Radu-Daniel Vatavu, Lisa Anthony, and Jacob O. Wobbrock. 2012. Gestures
as Point Clouds: A $P Recognizer for User Interface Prototypes. In Proceedings
of the 14th ACM International Conference on Multimodal Interaction (ICMI ’12).
Association for Computing Machinery, New York, NY, USA, 273–280. https:
//doi.org/10.1145/2388676.2388732

[67] Radu-Daniel Vatavu, Lisa Anthony, and Jacob O. Wobbrock. 2013. Relative accu-
racy measures for stroke gestures. In Proceedings of the 15th ACM on International
conference on multimodal interaction (ICMI ’13). Association for Computing Ma-
chinery, New York, NY, USA, 279–286. https://doi.org/10.1145/2522848.2522875

[68] Radu-Daniel Vatavu, Lisa Anthony, and Jacob O. Wobbrock. 2018. $Q: A Super-
Quick, Articulation-Invariant Stroke-Gesture Recognizer for Low-Resource De-
vices. In Proceedings of the 20th International Conference on Human-Computer
Interaction with Mobile Devices and Services (MobileHCI ’18). Association for Com-
puting Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/3229434.
3229465

[69] R. D. Vatavu, S. G. Pentiuc, L. Grisoni, and C. Chaillou. 2008. Modeling Shapes
for Pattern Recognition: A Simple Low-Cost Spline-based Approach. Advances in
Electrical and Computer Engineering 8, 1 (2008), 67–71. https://doi.org/10.4316/
aece.2008.01012

[70] Radu-Daniel Vatavu, Daniel Vogel, Géry Casiez, and Laurent Grisoni. 2011. Esti-
mating the Perceived Difculty of Pen Gestures. In Human-Computer Interaction
– INTERACT 2011 (Lecture Notes in Computer Science), Pedro Campos, Nicholas
Graham, Joaquim Jorge, Nuno Nunes, Philippe Palanque, and Marco Winckler
(Eds.). Springer, Berlin, Heidelberg, 89–106. https://doi.org/10.1007/978-3-642-
23771-3_9

[71] Raviteja Vemulapalli, Felipe Arrate, and Rama Chellappa. 2014. Human Action
Recognition by Representing 3D Skeletons as Points in a Lie Group. In 2014 IEEE
Conference on Computer Vision and Pattern Recognition. IEEE, Columbus, OH,
USA, 588–595. https://doi.org/10.1109/CVPR.2014.82

[72] Qingsong Wen, Liang Sun, Xiaomin Song, Jing Gao, Xue Wang, and Huan Xu.
2021. Time Series Data Augmentation for Deep Learning: A Survey. In IJCAI.
https://doi.org/10.24963/ijcai.2021/631 Augmentation, Time Series.

[73] Jacob O. Wobbrock, Andrew D. Wilson, and Yang Li. 2007. Gestures without
Libraries, Toolkits or Training: A $1 Recognizer for User Interface Prototypes. In
Proceedings of the 20th Annual ACM Symposium on User Interface Software and
Technology (UIST ’07). Association for Computing Machinery, New York, NY,
USA, 159–168. https://doi.org/10.1145/1294211.1294238

[74] Sebastien C Wong, Adam Gatt, Victor Stamatescu, and Mark D McDonnell. 2016.
Understanding data augmentation for classifcation: when to warp?. In 2016
international conference on digital image computing: techniques and applications
(DICTA). IEEE, 1–6.

[75] Xinyu Yang, Zhenguo Zhang, Xu Cui, and Rong-yi Cui. 2021. A Time Series Data
Augmentation Method Based on Dynamic Time Warping. 2021 International
Conference on Computer Communication and Artifcial Intelligence (CCAI) (2021).
https://doi.org/10.1109/CCAI50917.2021.9447507

[76] Yong Du, Wei Wang, and Liang Wang. 2015. Hierarchical recurrent neural
network for skeleton based action recognition. In 2015 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR). IEEE, Boston, MA, USA, 1110–1118.
https://doi.org/10.1109/CVPR.2015.7298714

[77] Qian Yu, Yongxin Yang, Feng Liu, Yi-Zhe Song, Tao Xiang, and Timothy M.
Hospedales. 2017. Sketch-a-Net: A Deep Neural Network that Beats Humans.
International Journal of Computer Vision 122, 3 (May 2017), 411–425. https:
//doi.org/10.1007/s11263-016-0932-3

[78] Pengfei Zhang, Cuiling Lan, Junliang Xing, Wenjun Zeng, Jianru Xue, and
Nanning Zheng. 2017. View Adaptive Recurrent Neural Networks for High
Performance Human Action Recognition from Skeleton Data. In 2017 IEEE
International Conference on Computer Vision (ICCV). IEEE, Venice, 2136–2145.
https://doi.org/10.1109/ICCV.2017.233

[79] Ying Zheng, Hongxun Yao, Xiaoshuai Sun, Shengping Zhang, Sicheng Zhao, and
Fatih Porikli. 2021. Sketch-Specifc Data Augmentation for Freehand Sketch
Recognition. Neurocomputing 456 (Oct. 2021), 528–539. https://doi.org/10.1016/

CHI ’23, April 23–28, 2023, Hamburg, Germany

j.neucom.2020.05.124
[80] Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. 2020. Random

Erasing Data Augmentation. Proceedings of the AAAI Conference on Artifcial
Intelligence 34, 07 (April 2020), 13001–13008. https://doi.org/10.1609/aaai.v34i07.
7000 Number: 07.

[81] Guangming Zhu, Liang Zhang, Peiyi Shen, and Juan Song. 2017. Multimodal
Gesture Recognition Using 3-D Convolution and Convolutional LSTM. IEEE
Access 5 (2017), 4517–4524. https://doi.org/10.1109/ACCESS.2017.2684186

https://doi.org/10.1145/3025453.3026002
https://doi.org/10.1145/3025453.3026002
https://doi.org/10.1145/2656345
https://doi.org/10.1145/3242969.3243032
https://doi.org/10.1145/3025453.3025941
https://doi.org/10.1145/3025453.3025941
https://doi.org/10.1145/2388676.2388732
https://doi.org/10.1145/2388676.2388732
https://doi.org/10.1145/2522848.2522875
https://doi.org/10.1145/3229434.3229465
https://doi.org/10.1145/3229434.3229465
https://doi.org/10.4316/aece.2008.01012
https://doi.org/10.4316/aece.2008.01012
https://doi.org/10.1007/978-3-642-23771-3_9
https://doi.org/10.1007/978-3-642-23771-3_9
https://doi.org/10.1109/CVPR.2014.82
https://doi.org/10.24963/ijcai.2021/631
https://doi.org/10.1145/1294211.1294238
https://doi.org/10.1109/CCAI50917.2021.9447507
https://doi.org/10.1109/CVPR.2015.7298714
https://doi.org/10.1007/s11263-016-0932-3
https://doi.org/10.1007/s11263-016-0932-3
https://doi.org/10.1109/ICCV.2017.233
https://doi.org/10.1016/j.neucom.2020.05.124
https://doi.org/10.1016/j.neucom.2020.05.124
https://doi.org/10.1609/aaai.v34i07.7000
https://doi.org/10.1609/aaai.v34i07.7000
https://doi.org/10.1109/ACCESS.2017.2684186

	Abstract
	1 Introduction
	2 Related Work
	2.1 Gesture recognition and customization
	2.2 Gestural data augmentation

	3 Methods
	3.1 System overview
	3.2 Data Preprocessing
	3.3 Data Augmentation Techniques

	4 Evaluation
	4.1 RNN model and implementation details
	4.2 Experiment 1: Performance of individual techniques
	4.3 Experiment 2: Chaining multiple techniques
	4.4 Experiment 3: Customization scenario
	4.5 Experiment 4: Alternative approaches in customization scenario
	4.6 Experiment 5: Synthetic training set size VS training time VS accuracy

	5 Discussion and Future Work
	5.1 Performance due to augmentation chaining
	5.2 Recommendations for practitioners
	5.3 Limitations and Future Work

	6 Conclusion
	Acknowledgments
	References

