
Coordination in Intelligent Grid Environments

XIN BAI, HAN YU, GUOQIANG WANG, YONGCHANG JI, GABRIELA M. MARINESCU,
DAN C. MARINESCU, SENIOR MEMBER, IEEE, AND LADISLAU BÖLÖNI, MEMBER, IEEE

Invited Paper

A computational grid is a complex system. The state space of a
complex system is very large and it is infeasible to create a rigid
infrastructure implementing optimal policies and strategies which
take into account the current state of the system. An alternative to
a rigid infrastructure is to base the system’s reactions on logical
inference, planning, and learning, the quintessential elements of an
intelligent system. An intelligent grid is one where societal services
exhibit intelligent behavior. A coordination service acting as a proxy
on behalf of end users reacts to unforeseen events, plans how to
carry out complex tasks, and learns from the history of the system.
Various policies implemented by the societal services of an intel-
ligent grid, such as brokerage and matchmaking, are based upon
rules and facts gathered with the aid of a monitoring service. The
question we address is how to construct intelligent computational
grids which are truly scalable and could respond to the needs of a
diverse user community. We present a prototype of a system used for
a virtual laboratory in computational biology.

Keywords—Agent, coordination, grid, knowledge, intelligent,
ontology.

I. INTRODUCTION AND MOTIVATION

Data, service, and computational grids, collectively known
as information grids, are collections of autonomous com-
puters connected to the Internet and giving to individual users
the appearance of a single virtual machine [6], [8].

A data grid allows a community of users to share content.
An example of a specialized data grid supporting a relatively
small user community is the one used to share data from high-
energy physics experiments. The World Wide Web can be
viewed as a data grid populated with HTTP servers providing
the content, data, audio, and video.

Manuscript received March 1, 2004; revised June 1, 2004. This work
was supported in part by the National Science Foundation under Grants
MCB9527131, DBI0296107, ACI0296035, and EIA0296179.

X. Bai, H. Yu, G. Wang, Y. Ji, G. M. Marinescu, and D. C. Marinescu
are with the School of Computer Science, University of Central Florida,
Orlando, FL 32816-2362 USA (e-mail: xbai@cs.ucf.edu; hyu@cs.ucf.edu;
gwang@cs.ucf.edu; yji@cs.ucf.edu; magda@cs.ucf.edu; dcm@cs.ucf.edu).

L. Bölöni is with the Department of Electrical and Computer Engi-
neering, University of Central Florida, Orlando, FL 32816-2450 USA
(e-mail: lboloni@cpe.ucf.edu).

Digital Object Identifier 10.1109/JPROC.2004.842770

A service grid will support applications such as electronic
commerce, telemedicine, distance learning, and business-to-
business. Such applications require a wide spectrum of end
services such as monitoring and tracking, remote control,
maintenance and repair, online data analysis, and business
support, as well as services involving some form of human
intervention such as legal, accounting, and financial services.
An application of a monitoring service in health care could be
monitoring outpatients to ensure that they take the prescribed
medication. Controlling the heating and cooling system in
a home to minimize energy costs, periodically checking the
critical parameters of the system, ordering parts such as air
filters, and scheduling repairs is an example of control, main-
tenance, and repair services, respectively. Data analysis ser-
vices could be used in conjunction with arrays of sensors to
monitor traffic patterns or to document a visitor’s interest at
an exhibition. There are qualitative differences between ser-
vice and data grids. The content in a service grid is more
dynamic; it is often the result of a cooperative effort of a
number of service providers, it involves a large number of
sensors, and it is tailored to specific user needs. To create
the dynamic content, we need some form of dynamic service
composition. Dynamic service composition has no counter-
part in the current Web, where portals support static service
coordination.

A computational grid is expected to provide transparent
access to computing resources for applications requiring a
substantial CPU power, very large memories, and secondary
storage that cannot be provided by a single system. The re-
quirements placed on the user access layer and on societal
(core) services are even more stringent for a computational
grid than for a service grid. The user access layer must sup-
port various programming models and the societal services
of a computational grid must be able to handle low-level re-
source management.

There are many similarities between data, service, and
computational grids and it is highly desirable for the three
to share as many standards, architectural concepts, and even
components, as practical. It seems very unfortunate that

0018-9219/$20.00 © 2005 IEEE

PROCEEDINGS OF THE IEEE, VOL. 93, NO. 3, MARCH 2005 613

for many years research in computational grids had a very
loose connection with the mainstream efforts of the World
Wide Web Consortium (W3C). Recently, a more rational
approach is noticeable, e.g., the Globus project has em-
braced standards developed years ago, such as Web Services
Definition Language (WSDL) and Simple Object Access
Protocol (SOAP). WSDL is an XML format for describing
network services as a set of endpoints operating on messages
containing document- or procedure-oriented information.
WSDL supports an abstract description of the operations
and messages exchanged among endpoints. Both operations
and messages are bound to a concrete network protocol and
message format to define a concrete endpoint. One or more
concrete endpoints are combined into services or abstract
endpoints. WSDL description of the endpoints and their
messages is independent of the message formats or network
protocols used to communicate. SOAP is an XML-based
application layer protocol developed as a standard by W3C.
It is extensible, application-, and platform-independent.
There are also important dissimilarities. For example, the
service requests in a computational grid require a much finer
granularity of resource allocation [9].

The focus of this paper is computational grids though
many of the ideas discussed in the next sections are generic
and could be applied to the other types of grids. For example,
coordination is a problem likely to surface in the context of
service grids as well.

A computational grid is a complex system. The state space
of a complex system is very large and it is infeasible to create
a rigid control infrastructure implementing optimal policies
and strategies which take into account the current state of
the system. An alternative to a rigid control infrastructure
is to base the system’s reactions on logical inference, plan-
ning, and learning, the quintessential elements of an intelli-
gent system. An intelligent grid is one where societal services
exhibit intelligent behavior. A coordination service acting as
a proxy on behalf of end users reacts to unforeseen events,
plans how to carry out complex tasks, and learns from the
past history of the system. Various policies implemented by
the societal services of an intelligent grid, such as brokerage
and matchmaking, are based upon rules and facts gathered
with the aid of a monitoring service. The question we address
is how to construct intelligent computational grids which are
truly scalable and could respond to the needs of a diverse user
community.

The contribution of this paper is an in-depth discussion of
intelligent computational grids, an analysis of some core ser-
vices, the presentation of the basic architecture of the mid-
dleware we are currently constructing, and applications of
the system to a complex computation. This paper is orga-
nized as follows: first, we discuss some of the most impor-
tant requirements for the development of intelligent grids and
present in some depth the problem of coordination and coor-
dination services on a grid. Then we review the information,
brokerage, matchmaking, planning, and the event services.
Finally, we present the BondGrid and an application of it to
computational structural biology.

A. Defining Characteristics of Computational Grids

The defining characteristics of computational grids are:
1) resource sharing among a large user population and
2) support for collaborative activities [19]. In the context
of a computational grid, the term resource is used in a wide
sense; it means hardware and software resources, services,
and content. Content generally means some form of static
or dynamic data or knowledge. Autonomy implies that the
resources are in different domains and resource sharing
requires cooperation between the administrative authorities
in each domain.

Computational grids inherit many of the traditional
attributes of the Internet. Among the characteristics of
computational grids which distinguish them from the more
traditional distributed systems of the past decades [19], we
note the following.

1) Scale. A grid may consist of tens of thousands, or more,
nodes.

2) Heterogeneity and diversity. Nodes with different pro-
cessor and system architectures are expected to pop-
ulate the grid. The communication channels linking
these nodes differ in terms of latency and bandwidth.
The operating systems (OS) of individual nodes may
be different. The application software running on the
nodes are very diverse; multiple versions of the same
application software may be available.

3) Autonomy of individual nodes. The nodes are in dif-
ferent administrative domains possibly with different
access, security, and resource management policies
[9].

4) The dynamic and open-ended character. The grid
evolves in time; new resources are constantly added to
the grid, existing ones are modified, others are retired.

5) The dominant service policy in the grid is based upon
a “best effort.” Enforcing end-to-end quality of service
constraints is rarely possible.

6) A large user population with individual and often con-
flicting objectives.

7) User’s requirements may be dynamic, subject to
change, or even cannot be known a priori.

8) Complex, resource-intensive tasks submitted by indi-
vidual users [10]. The complexity of a task is rather
difficult to quantify. It has multiple facets. It may refer
to the number and relationship of component activities,
the predictability of the amount of resources needed
for the completion of individual activities, the security
constraints, the presence or absence of soft deadlines,
the duration of individual activities, the diversity of re-
sources used, and so on [9].

B. Resource Management, Exception Handling, and
Coordination

Whenever there is a contention for a limited set of re-
sources among a group of entities or individuals, we need
control mechanisms to mitigate access to system resources.
These control mechanisms enable a number of desirable
properties of the system (e.g., fairness) provide guarantees
that tasks are eventually completed, and ensure timeliness

614 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 3, MARCH 2005

when timing constraints are involved. Security is a major
concern in such an environment. We want to ensure con-
fidentiality of information and prevent denial of service
attacks, while allowing controlled information sharing for
cooperative activities. Considerably simpler versions of
some of the problems mentioned above are encountered at
the level of a single system, or in the case of small-scale
distributed systems (systems with a relatively small number
of nodes in a single administrative domain). In the case of a
single system, such questions are addressed by the operating
system which transforms the “bare hardware” into a user
machine and controls access to system resources. The ques-
tion of how to address these problems in the context of a grid
has been the main focus of research in grid environments,
and, at the same time, the main stumbling block in the actual
development of computational grids.

Some research in Grid computing proposes to transfer to
Grid computing concepts, services, and mechanisms from
traditional operating systems, or from parallel and distributed
systems without taking into account the effect on system re-
liability and dependability of the specific attributes 1–7 dis-
cussed above, a clearly inadequate approach. For example,
there is a proposal to extend the Message Passing Interface
(MPI) to a Grid environment. In its current implementation,
the MPI does not have any mechanism to deal with a node
failure during a barrier synchronization operation. In such a
case, all the nodes involved other than the defective one wait
indefinitely, and it is the responsibility of the user to detect
the failure and take corrective actions. It may be acceptable to
expect the programmer to monitor a cluster with a few hun-
dred nodes housed in the next room, but it is not reasonable to
expect someone to monitor tens of thousands of nodes scat-
tered over a large geographic area. Thus, we cannot allow
MPI to work across system boundaries without any fault de-
tection mechanism.

Coordination allows individual components of a system to
work together and create an ensemble exhibiting a new be-
havior without introducing a new state at the level of indi-
vidual components. Scripting languages provide a “glue” to
support composition of existing applications. The problem of
coordinating concurrent tasks was generally left to the devel-
opers of the parallel scientific and engineering applications.
Coordination models such as the coordinator–worker or the
widely used Same Program Multiple Data (SPMD) were de-
veloped in that context.

The problem of coordination of complex tasks has new
twists in the context of Grid computing. First, it is more com-
plex and it involves additional activities such as resource dis-
covery and planning. Second, it has a much broader scope
due to the scale of the system. Third, the complexity of the
computational tasks and the fact that the end user may only
be intermittently connected to the network force us to del-
egate this function to a proxy capable of creating the con-
ditions for the completion of the task with or without user
intervention. It is abundantly clear that such a proxy is faced
with very delicate decisions regarding resource allocation or
exception handling. For example, should we use a more ex-
pensive resource and pay more to have guarantees that a task

completes in time, or should we take our chances with a less
expensive resource? In the case of the MPI example, should
we kill all the processes in all the nodes and restart the entire
computation, should we roll back the computation to a pre-
vious checkpoint if one exists, or should we simply restart
the process at the failing node on a different node?

There is little doubt that the development of computational
grids poses formidable problems. In this paper, we concen-
trate on problems related to resource management, excep-
tion handling, and coordination of complex tasks. We argue
that only an intelligent environment could reliably and seam-
lessly support such functions.

II. INTELLIGENT GRID ENVIRONMENTS

Most of the research in grid computing is focused on
relatively small grids (hundreds of nodes) dedicated to a
rather restricted community (e.g., high-energy physics), of
well-trained users (e.g., individuals working in computa-
tional sciences and engineering), with a rather narrow range
of problems (e.g., computer-aided design for the aerospace
industry).

The question we address is whether a considerably larger
grid could respond to the needs of a more diverse user com-
munity than in the case of existing grids without having some
level of intelligence built into the core services. The reasons
we consider such systems are precisely the reasons compu-
tational grids were introduced in the first place: economy
of scale and the ability to share expensive resources among
larger groups of users. It is not uncommon that several groups
of users (e.g., researchers, product developers, individuals
involved in marketing, educators, and students) need a seam-
less and controlled access to existing data or to the programs
capable of producing data of interest. For example, the struc-
tural biology community working on the atomic structure
determination of viruses, the pharmaceutic industry, and ed-
ucational institutions ranging from high schools to univer-
sities, need to share information. One could easily imagine
that a high school student would be more motivated to study
biology if he or she were able to replay in the virtual space
successful experiments done at the top research laboratories,
leading to the discovery of the structure of a virus (e.g., the
common cold virus) and understand how a vaccine to prevent
the common cold is engineered.

An intelligent environment is in a better position than a
traditional one to match the user profile (leader of a research
group, member of a research group with a well-defined task,
drug designer, individual involved in marketing, high school
student, or doctoral student) with the actions the user is al-
lowed to perform and with the level of resources he or she
is allowed to consume. At the same time, an intelligent envi-
ronment is in a better position to hide the complexity of the
Grid infrastructure and allow unsophisticated users, such as
a high school student without any training in computational
science, to carry out a rather complex set of transformations
of an input data set.

Even in the simple example discussed above, we see that
the coordination service acting as a proxy on behalf of the

BAI et al.: COORDINATION IN INTELLIGENT GRID ENVIRONMENTS 615

end user has to deal with unexpected circumstances, or with
error conditions (e.g., the failure of a node). The response
to such an abnormal condition can be very diverse, ranging
from terminating the task to restarting the entire computa-
tion from the very beginning or from a checkpoint. Such
decisions depend upon a fair number of parameters, e.g.,
the priority of the task, the cost of each option, the pres-
ence of a soft deadline, and so on. Even in this relatively
simple case, it is nontrivial to hardcode the decision making
process into a procedure written in a standard programming
language. Moreover, we may have in place different poli-
cies to deal with rare events, policies which take into account
factors such as legal considerations, the identity of the par-
ties involved, the time of day, and so on. At the same time,
hardcoding the decision making will strip us of the option
to change our actions depending upon considerations we did
not originally take into account, such as the availability of a
new system just connected to the grid.

Very often the computations carried out on a grid involve
multiple iterations, and in such a case the duration of an
activity is data dependent and very difficult to predict.
Scheduling a complex task whose activities have unpre-
dictable execution times requires the ability to discover
suitable resources available at the time when activities are
ready to proceed. It also requires market-based scheduling
algorithms, which in turn require metainformation about the
computational tasks and the resources necessary to carry out
such tasks.

The more complex the environment, the more elaborate
the decision making process becomes, because we need to
take into account more factors and circumstances. It seems
obvious to us that under such circumstances a set of inference
rules based upon facts reflecting the current status of var-
ious Grid components are preferable to hardcoding. Often,
we also need to construct an elaborate plan to achieve our
objective or to build learning algorithms into our systems.

Reluctant as we may be to introduce AI components into
a complex system such as a grid, we simply cannot ignore
the benefits the AI components could bring along. Inference,
planning, and learning algorithms are notoriously slow and
cannot be used when faced with fast approaching deadlines.
We should approach their use with caution.

The two main ingredients of an intelligent grid are soft-
ware agents and ontologies. A software agent is a special
type of reactive program. Some of the actions taken by the
agent are in response to external events; other actions may
be taken at the initiative of the agent. The defining attributes
of a software agent are autonomy, intelligence, and mobility.
Autonomy, or agency, is determined by the nature of the inter-
actions between the agent and the environment and by the in-
teractions with other agents and/or the entities they represent.
Intelligence is measured by the degree of reasoning, plan-
ning, and learning the agent is capable of. Mobility reflects
the ability of an agent to migrate from one host to another in
a network.

An agent may exhibit different degrees of autonomy,
intelligence, and mobility. For example, an agent may have
inferential abilities, but little or no learning and/or planning

abilities. An agent may exhibit strong or weak mobility; in
the first case, an agent may be able to migrate to any site at
any time; in the second case, the migration time and sites
are restricted.

Software agents have unique abilities to perform the fol-
lowing functions.

1) Support intelligent resource management. Peer agents
can negotiate access to resources and request ser-
vices based upon user intentions rather than specific
implementations.

2) Support intelligent user interfaces. We expect agents
to be capable of composing basic actions into higher
level ones, to be able to handle large search spaces,
to schedule actions for future points in time, and to
support abstractions and delegations. Some of the limi-
tations of direct manipulation interfaces, namely, diffi-
culties in handling large search spaces, rigidity, and the
lack of improvement of behavior, extend to most other
facets of traditional approaches to interoperability.

3) Filter large amounts of information. Agents can be
instructed at the level of goals and strategies to find
solutions to unforeseen situations, and they can use
learning algorithms to improve their behavior.

4) Adjust to the actual environment. Agents are network
aware.

5) Move to the site when they are needed and, thus, reduce
communication costs and improve performance.

The Grid community seems ready to accept the need of
metainformation to facilitate the interpretability of various
components, so we believe that sooner rather than later we
shall witness an effort to build intelligent Grid environments.

The critical components of such an intelligent Grid en-
vironment are the ontologies, collections of structured data
shared among different agents. Core services in such grids
are provided by intelligent agents, programs with the ability
to perform intelligent actions such as inference, planning,
and possibly learning.

The need for an intelligent infrastructure is amply justi-
fied by the complexity of both the problems we wish to solve
and the characteristics of the environment [18]. As we take
a closer look at the architecture of an intelligent grid, we
distinguish between several classes of services. Systemwide
services supporting coordinated and transparent access to re-
sources of an information grid are called societal or core ser-
vices. Specialized services accessed directly by end users are
called end-user services. The core services, provided by the
computing infrastructure, are persistent and reliable, while
end-user services could be transient in nature. The providers
of end-user services may temporarily, or permanently, sus-
pend their support. The reliability of end-user services cannot
be guaranteed. The basic architecture of an intelligent grid is
illustrated in Fig. 1.

A nonexhaustive list of core services includes authen-
tication, brokerage, coordination, information, ontology,
matchmaking, monitoring, planning, persistent storage,
scheduling, event, and simulation. Authentication services
contribute to the security of the environment. Brokerage

616 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 3, MARCH 2005

Fig. 1. Core and end-user services. The User Interface provides access to the environment.
Applications Containers host end-user services. Shown are the following core services: Coordination
Service, Information Service, Planning Service, Matchmaking Service, Brokerage Service, Event
Service, Ontology Service, Simulation Service, Scheduling Service, and Persistent Storage Service.

services maintain information about classes of services
offered by the environment, as well as past performance
databases. Though the brokerage services make a best effort
to maintain accurate information regarding the state of
resources, such information may be obsolete. Up-to-date
information about the status of any resource can be gathered
using monitoring services. Coordination services act as
proxies for the end user. A coordination service receives a
case description and controls the enactment of the workflow.
Planning services are responsible for creating the workflow.
Scheduling services provide optimal schedules for sites
offering to host application containers for different end-user
services. Information services play an important role; all
end-user services register their offerings with the infor-
mation services. Ontology services maintain and distribute
ontology shells, i.e., ontologies with classes and slots but
without instances, as well as ontologies populated with
instances, global ontologies, and user-specific ontologies.
Matchmaking services allow individual users represented

by their proxies (coordination services) to locate resources
in a spot market, subject to a wide range of conditions.
Individual users may only be intermittently connected to the
network. Persistent storage services provide access to the
data needed for the execution of user tasks. Event services
provide a method for event handling and message passing.
Simulation services are necessary to study the scalability of
the system and are also useful for end users to simulate an
experiment before actually conducting it.

Core services are replicated to ensure an adequate level of
performance and reliability. Core services may be organized
hierarchically in a manner similar to the Domain Name
Services (DNSs) on the Internet. End-user services could
be transient in nature. The providers of such services may
temporarily or permanently suspend their support, while
most core services are guaranteed to be available at all
times. Content-provider services, legal, accounting, tracking,
and various application software are examples of end-user
services.

BAI et al.: COORDINATION IN INTELLIGENT GRID ENVIRONMENTS 617

III. COORDINATION AND COORDINATION SERVICES

A cursory examination of recent research in Grid com-
puting services reveals limited interest in the mechanisms
used to coordinate the execution of complex computational
tasks. This situation can be attributed to several reasons:
1) there are relatively few applications of Grid computing;
2) the users of Grid computing are highly computationally
sophisticated individuals with a high threshold for pain in
using computer systems; 3) powerful scripting languages
such as Perl, Python, and tuple-spaces can be used for coor-
dination [13]; and, last but not least, 4) the problems posed
by a coordination service are nontrivial.

A. Process Coordination

Coordination is a very broad subject with applications to
virtually all areas of science and engineering, management,
social systems, defense systems, education, health care, and
so on. Human life is an exercise in coordination: each indi-
vidual has to coordinate his own activities with the activities
of other individuals, and groups of individuals have to coor-
dinate their efforts to achieve a meaningful result.

Coordination is critical for the design and engineering of
new man-made systems and important for understanding the
behavior of existing ones [11]. Coordination is an important
dimension of computing. An algorithm describes the flow of
control, the flow of data, or both; a program implementing the
algorithm coordinates the software and the hardware compo-
nents involved in a computation. The software components
are library modules interspaced with user code executed by
a single thread of control in case of sequential computations;
in this case, the hardware is controlled through system calls
supported by the operating system running on the target hard-
ware platform.

Coordination of distributed and/or concurrent compu-
tations is more complex; it involves software components
based on higher level abstractions such as objects, agents,
and programs as well as multiple communication and com-
puting systems. We can consider a three-dimensional (3-D)
space for coordination models. The first dimension reflects
the type of the network, i.e., an interconnection network of a
parallel system, a local area network, or a wide area network;
the second dimension describes the type of coordination,
i.e., centralized, or distributed; the third dimension reflects
the character of the system, i.e., closed or open.

A computer network provides the communication sub-
strate. and its characteristics provide the first dimension of a
coordination space. The individual entities can be colocated
in space within a single system. They can be distributed
over a LAN, or over a WAN. Coordination in a WAN is
a more difficult problem than coordination confined to a
LAN or to a single system; we have to deal with multiple
administrative domains and in theory communication delays
are unbounded. In a WAN, it is more difficult to address
performance, security, or quality of service issues.

There are two approaches to coordination, a centralized
and a distributed one. Centralized coordination is suitable in
some instances such as ad hoc service composition. Suppose

that one user needs a super service involving several services;
in this case an agent acting on behalf of the user coordinates
the composition. In other cases, a distributed coordination
approach has distinct benefits. Consider, for example, a com-
plex weather service with a very large number of sensors,
of the order of millions, gathering weather-related data. The
system uses information from many databases; some contain
weather data collected over the years, others archive weather
models. The system generates short-, medium-, and long-
term forecasts. Different functions of this service such as data
acquisition, data analysis, data management, and weather in-
formation dissemination will most likely be coordinated in
a distributed fashion. A hierarchy of coordination centers
will be responsible for data collected from satellites, another
group will coordinate terrestrial weather stations, and yet an-
other set of centers will manage data collected by vessels and
sensors from the oceans.

The last dimension of interest of the coordination space
reflects whether the system is: 1) closed and all entities in-
volved are known at the time when the coordination activity
is initiated or 2) open and allows new entities to join or leave
at will. Coordination in an open system is more difficult than
coordination in a closed system. Error recovery and fault tol-
erance become a major concern because a component may
suddenly fail or leave the system without prior notice. The
dynamics of coordination changes; we cannot stick to a pre-
computed coordination plan and we may have to revise it.
The state of the system must be reevaluated frequently to de-
cide if a better solution involving components that have re-
cently joined the system exists.

B. Coordination Techniques

We distinguish between low-level and high-level coordi-
nation issues. Low-level coordination issues are centered on
the delivery of coordination information to the entities in-
volved; high-level coordination covers the mechanisms and
techniques leading to coordination decisions.

The more traditional distributed systems are based on di-
rect communication models, like the one supported by remote
procedure call protocols, to implement the client-server par-
adigm. A client connected to multiple servers is an example
of a simple coordination configuration; the client may access
services successively, or a service may in turn invoke addi-
tional services.

In this model, there is a direct coupling between inter-
acting entities in terms of name, place, and time. To access
a service, a client needs to know the name of the service and
the location of the service; the interaction spans a certain time
interval.

Mediated coordination models ease some of the restric-
tions of the direct model by allowing an intermediary (e.g.,
a directory service) to locate a server, an event service to
support asynchronous execution, an interface repository
to discover the interface supported by the remote service,
brokerage and matchmaking services to determine the best
match between a client and a set of servers, and so on.

1) Coordination Based on Scripting Languages: Co-
ordination is one application of a more general process

618 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 3, MARCH 2005

called software composition where individual components
are made to work together and create an ensemble exhibiting
a new behavior, without introducing a new state at the level
of individual components. A component is a black box
exposing a number of interfaces allowing other components
to interact with it.

The components or entities can be “glued” together with
scripts. Scripting languages provide “late gluing” of existing
components. Several scripting languages are very popular:
Tcl, Perl, Python, JavaScript, AppleScript,
Visual Basic, languages supported by the csh or the
Bourne Unix shells.

Scripting languages share several characteristics [14].

1) Support composition of existing applications; thus, the
term “late gluing.” For example, we may glue together
a computer-aided design (CAD) system, with a data-
base for material properties (MPDB). The first compo-
nent may be used to design different mechanical parts;
then the second may be invoked to select for each part
the materials with desirable mechanical, thermal, and
electrical properties.

2) Rely on a virtual machine to execute bytecode Tcl,
or interpreted languages. Perl, Python, and Vi-
sual Basic are based on a bytecode implementa-
tion, whereas JavaScript, AppleScript, and
the Bourne Shell need an interpreter.

3) Favor rapid prototyping over performance. In the
previous example in 1), one is likely to get better
performance in terms of response time by rewriting
and integrating the two software systems, but this
endeavor may require several man-years; writing a
script to glue the two legacy applications together
could be done in days.

4) Allow the extension of a model with new abstractions.
For example, if one of the components is a CAD tool
producing detailed drawings and specifications of the
parts of an airplane engine, then the abstractions cor-
respond to the airplane parts (e.g., wing, tail section,
and landing gear). Such high-level, domain-specific
abstractions can be easily understood and manipulated
by aeronautic and mechanical engineers with little or
no computer science background.

5) Generally, scripting languages are weakly typed and
offer support for introspection and reflection and for
automatic memory management.

Perl, Python, JavaScript, AppleScript,
and Visual Basic are object-based scripting languages.
All five of them are embeddable and can be included into
existing applications. For example, code written in Jython,
a Java version of Python, can be embedded into a data
stream, sent over the network, and executed by an interpreter
at the other site.
Perl, Python, and JavaScript support intro-

spection and reflection. Introspection and reflection allow a
user to determine and modify the properties of an object at
runtime.

Scripting languages are very popular and widely available.
Tcl, Perl, and Python are available on most platforms,
JavaScript is supported by all popular Web browsers,
the Bourne Shell is supported by Unix, and Visual
Basic by Windows.

Script-based coordination has obvious limitations. It is
most suitable for applications with one coordinator acting
as an enactment engine, or in a hierarchical scheme when
the legacy applications form the leaves of the tree and the
intermediate nodes are scripts controlling the applications in
a subtree. A script for a dynamic system, where the current
state of the environment determines the course of action,
becomes quickly very complex. Building some form of fault
tolerance and handling exceptions could be very tedious.

In summary, script-based coordination is suitable for
simple, static cases and has the advantage of rapid proto-
typing but could be very tedious and inefficient for more
complex situations.

2) Coordination Based on Shared-Data Spaces: Tuple
space coordination has also been intensely scrutinized [4],
[13]. A shared-data space allows agents to coordinate their
activities. We use the terminology shared-data space be-
cause of its widespread acceptance, though in practice the
shared space may consist of data, knowledge, code, or a
combination of them. The term agent means a party to a
coordination effort.

In this coordination model, all agents know the location of
a shared data space and have access to communication prim-
itives to deposit and to retrieve information from it. As in
virtually all other coordination models, a prior agreement re-
garding the syntax and the semantics of communication must
be in place before meaningful exchanges of coordination in-
formation may take place.

The shared-data space coordination model allows asyn-
chronous communication between mobile agents in an open
system. The communicating components need not be cou-
pled in time or space. The producer and the consumer of
a coordination information item act according to their own
timing; the producer agent may deposit a message at its own
convenience and the consumer agent may attempt to retrieve
it according to its own timing. The components need not be
colocated; they may even be mobile. The only constraint is
for each agent to be able to access the shared-data space from
its current location. Agents may join and leave the system at
will.

Another distinctive advantage of the shared-data space
coordination model is its tolerance of heterogeneity. The
implementation language of the communicating entities, the
architecture, and the operating systems of the hosts where
the agents are located play no role in this model. An agent
implemented in Java, running in a Linux environment and
on a SPARC-based platform, could interact with another one
implemented in C++, running under Windows on a Pentium
platform, without any special precautions.

Traditionally, a shared-data space is a passive entity, coor-
dination information is pushed into it by a source agent and
pulled from it by a destination agent. The amount of state in-
formation maintained by a shared-data space is minimal; it

BAI et al.: COORDINATION IN INTELLIGENT GRID ENVIRONMENTS 619

does not need to know either the location or even the identity
of the agents involved. Clearly, there are applications where
security concerns require controlled access to the shared in-
formation; thus, some state information is necessary. These
distinctive features make this model scalable and extremely
easy to use.

An alternative model is based on active shared-data
spaces; here the shared-data space plays an active role as it
informs an intended destination agent when information is
available. This approach is more restrictive and requires the
shared-data space to maintain information about the agents
involved in the coordination effort. In turn, this makes the
system more cumbersome, less scalable, and less able to
accommodate mobility.

Linda [4] was the first system supporting associative
access to a shared-data space. Associative access raises
the level of communication abstraction. Questions such as
who produced the information, when was it produced, and
who were the intended consumers are no longer critical and
applications that do not require such knowledge benefit from
the additional flexibility of associative access.

Tuples are ordered collections of elements. In a shared-
tuple space agents use templates to retrieve tuples; this means
that an agent specifies what type of tuple to retrieve, rather
than a specific tuple.

Linda supports a set of primitives to manipulate the shared
tuple space; out allows an agent to deposit or write a tuple
with multiple fields in the tuple space; in and rd are used to
read or retrieve a tuple when a matching has been found; inp
and rdp are nonblocking versions of in and rd; eval is a
primitive to create an active tuple, one with fields that do not
have a definite value but are evaluated using function calls.

Several types of systems extend some of the capabilities
of Linda. Some, including T Spaces from IBM [15] and
JavaSpaces from Sun Microsystems, extend the set of co-
ordination primitives, others affect the semantics of the lan-
guage, yet another group modifies the model. For example,
T Spaces allows database indexing and event notification,
supports queries expressed in the structured query language
(SQL), and allows direct thread access when the parties run
on the same Java virtual machine.

A survey of the state-of-the-art tuple-based technologies
for coordination and a discussion of a fair number of sys-
tems developed in the last few years are presented in [13].
Several papers referred in [11] provide an in-depth discus-
sion of tuple space coordination.

3) Coordination Based on Middleware Agents: In our
daily life, middlemen facilitate transactions between parties,
help coordinate complex activities, or simply allow one
party to locate other parties. For example, a title company
facilitates real estate transactions; wedding consultants and
planners help organize a wedding; an auction agency helps
sellers locate buyers and help buyers find items they desire.

So it is not very surprising that a similar organization
appears in complex software systems. The individual com-
ponents of the system are called entities whenever we do
not want to be specific about the function attributed to each

component; they are called clients and servers when their
function is well defined.

Coordination can be facilitated by agents that help locate
the entities involved in coordination, and/or facilitate access
to them. Brokers, matchmakers, and mediators are examples
of middle agents used to support reliable mediation and to
guarantee some form of end-to-end quality of service (QoS).
In addition to coordination functions, such agents support
interoperability and facilitate the management of knowledge
in an open system.

A broker is a middle agent serving as an intermediary be-
tween two entities involved in coordination. All communica-
tions between the entities are channeled through the broker.

A broker does not actively collect information about the
entities active in the environment. Each entity has to make
itself known by registering itself with the broker before it
can be involved in mediated interactions.

Entities may provide additional information such as a
description of services or a description of the semantics of
services. A broker may maintain a knowledge base with
information about individual entities involved and may even
translate the communication from one party into a format
understood by the other parties involved.

A matchmaker is a middle agent whose only role is to pair
together entities involved in coordination; once the pairing
is done, the matchmaker is no longer involved in any trans-
action between the parties. For example, a matchmaker may
help a client select a server. Once the server is selected, the
client communicates directly with the server bypassing the
matchmaker.

The matchmaker has a more limited role than a broker;
while the actual selection may be based on a QoS criterion,
once made, the matchmaker cannot provide additional re-
liability support. If one of the parties fails, the other party
must detect the failure and again contact the matchmaker. A
matchmaker, like a broker, does not actively collect infor-
mation about the entities active in the environment; each en-
tity has to make itself known by registering itself with the
matchmaker.

A mediator can be used in conjunction with a broker or
a matchmaker to act as a front end to an entity. In many in-
stances, it is impractical to mix the coordination primitives
with the logic of a legacy application, e.g., a database man-
agement system. It is easier for an agent to use a uniform
interface for an entire set of systems designed independently
than to learn the syntax and semantics of the interface ex-
posed by each system. A solution is to create a wrapper for
each system and translate an incoming request into a format
understood by the specific system it is connected to; at the
same time, responses from the system are translated into a
format understood by the sender of the request.

Agent-based coordination and coordination of agent fed-
erations have been investigated by several groups [3], [12].

C. Process Coordination and Workflow Management

Grid users have complex tasks and want to take advan-
tage of the resource-rich environment provided by the grid
to solve their problems subject to a set of constrains such as

620 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 3, MARCH 2005

deadlines, cost, and quality of the solution. A complex task
consists of multiple activities. Activities are units of work to
be performed by the agents, humans, computers, sensors, and
other man-made devices. A process description is a structure
describing the activities to be executed and the order of their
execution. A process description contains one start and one
end symbol and includes various patterns [1].

The term workflow has been used for some time in the
business community to describe a complex task. Originally,
workflow management was considered a discipline confined
to the automation of business processes. Today most business
processes depend on the Internet and workflow management
has evolved into a network-centric discipline. The scope of
workflow management has broadened. The basic ideas and
technologies for automation of business processes can be ex-
tended to virtually all areas of human endeavor from science
and engineering to entertainment.

Production, administrative, collaborative, and ad hoc
workflows require that documents, information, or tasks be
passed from one participant to another for action, according
to a set of procedural rules. Production workflows manage
a large number of similar tasks with the explicit goal of
optimizing productivity. Administrative workflows define
processes, while collaborative workflows focus on teams
working toward common goals. E-commerce and busi-
ness-to-business are probably the most notable examples of
Internet-centric applications requiring some form of work-
flow management. E-commerce has flourished in recent
years; many businesses encourage their customers to order
their products online and some, including PC makers, only
build their products on demand. Various business-to-busi-
ness models help companies reduce their inventories and
outsource major components.

There are several distinctions between grid-based work-
flows and traditional workflows encountered in business
management, office automation, or production management
(see [8]).

1) The emphasis in a traditional workflow model is placed
on the contractual aspect of a transaction. For a grid-
based workflow, the enactment of a case is sometimes
based on a “best-effort model” where the agents in-
volved do their best to attain the goal state but there
is no guarantee of success.

2) An important aspect of a transactional model is to
maintain a consistent state of the system. A grid is an
open system; thus, the state of a grid is considerably
more difficult to define than the state of a traditional
system.

3) A traditional workflow consists of a set of well-defined
activities that are unlikely to be altered during the
enactment of the workflow. However, the process
description for a grid-based workflow may change
during the lifetime of a case. After a change, the
enactment of a case may continue based on the older
process description, while under some circumstances
it may be based on the newer process description.

In addition to static workflows, we have to support
dynamic ones.

4) The activities of a grid-based workflow could be long
lasting. Some of the activities supported by the grid are
collaborative in nature, and the workflow management
should support some form of merging of partial process
descriptions.

5) The individual activities of a grid workflow may not
exhibit the traditional properties of transactions. Con-
sider, for example, durability; at any instance of time
before reaching the goal state a workflow may roll
back to some previously encountered state and con-
tinue from there on an entirely different path. An ac-
tivity of a grid workflow could be either reversible or
irreversible. Sometimes, paying a penalty for reversing
an activity is more profitable in the long run than con-
tinuing on a wrong path.

6) Resource allocation is a critical and very delicate
aspect of the grid-based workflow enactment. The grid
provides a resource-rich environment with multiple
classes of resources and many administrative do-
mains; there is a large variability of resources in each
class; resource utilization is bursty in nature. Thus,
we need resource discovery services, support for ne-
gotiations among multiple administrative domains,
matchmaking and brokerage services, reservations
mechanisms, support for dynamic resource allocation,
and other sophisticated resource management mecha-
nisms and services.

7) Mobility of various agents involved in the enactment
of a case is important for grid-based workflows [8].
The agents may relocate to the proximity of the sites
where activities are carried out to reduce communica-
tion costs and latency.

A workflow has three dimensions.

1) The process; the process dimension refers to the cre-
ation and the eventual modification of the process
description.

2) The case; the case dimension refers to a particular in-
stance of the workflow when the attributes required by
the process enactment are bound to specific values.

3) The resources; the resource dimension refers to dis-
covery and allocation of resources needed for the en-
actment of a case.

Workflow enactment is the process of carrying out the ac-
tivities prescribed by the process description for a particular
case.

The creation of a process description is similar to writing a
program, the instantiation of a case is analogous to the execu-
tion of the program with a particular set of input data, while
resource allocation has no direct correspondent in traditional
computing where resources are under the control of the op-
erating system. Static workflows correspond to traditional
programs while dynamic workflows correspond to self-mod-
ifying ones.

The milestones in the life of a workflow are: 1) the cre-
ation of the process description (PD); 2) verification of the

BAI et al.: COORDINATION IN INTELLIGENT GRID ENVIRONMENTS 621

PD; 3) the creation of a case description (CD); and 4) the
enactment of a case.

Scripts, specialized workflow description languages, and
formal methods can be used for process description [13],
[14]. Several workflow description languages exist. Petri nets
(PNs) and their restrictions have provided for many years the
formal methods of choice for process description for busi-
ness-oriented workflows; there is a vast literature on PNs and
numerous algorithms and tools for PN analysis have been de-
veloped along the years.

To avoid enactment errors, we need to verify the process
description and check for desirable properties such as safety
and liveness. Some process description methods are more
suitable for verification than others.

In an open system, it is desirable to support multiple
process description methods but a single internal represen-
tation method.

We distinguish two types of workflows, static and dy-
namic. The process description of a static workflow is
invariant in time. The process description of a dynamic
workflow changes during the workflow enactment phase due
to circumstances unforeseen at the process definition time.
Exceptional conditions are handled by a static workflow
using its exception handling mechanisms while unforeseen
circumstances trigger planning and generation of a new
process description. For example, an activity in a process
description involves a service that has been discontinued,
but there are several new services whose composition is
equivalent to the missing service.

It is conceivable that multiple variations of a process de-
scription may coexist and it is useful to define the concept of
workflow inheritance and exploit it in the implementation of
a grid coordination architecture.

D. Process and Case Description

A process description is a formal description of the
complex problem a user wishes to solve. For the process
description, we use a formalism similar to the one provided
by augmented transition networks (ATNs) [16]. The coordi-
nation service implements an abstract ATN machine. A case
description provides additional information for a particular
instance of the process the user wishes to perform, e.g., it
provides the location of the actual data for the computation,
additional constraints related to security, cost, or the quality
of the solution, a soft deadline, and/or user preferences [8].

The process description used by our planning experiments
is based upon the Backus Naur form (BNF) grammar pre-
sented below. The symbol denotes the start symbol, while

stands for an empty string.

S ProcessDescription

ProcessDescription BEGIN Activities

END

Activities SequentialActivities

ConcurrentActivities

IterativeActivities

SelectiveActivities

Activity

SequentialActivities Activities

Activities

ConcurrentActivities FORK Activities

Activities JOIN

IterativeActivities ITERATIVE

ConditionalActivity

SelectiveActivities CHOICE

ConditionalActivity

ConditionalActivitySet

MERGE

ConditionalActivitySet

ConditionalActivity

ConditionalActivity

ConditionalActivitySet

ConditionalActivity

COND Conditions

Activities

Activity String

Conditions

(Conditions AND Conditions)

(Conditions OR Conditions)

NOT Conditions

Condition

Condition DataName . Attribute

Operator Value

DataName String

Attribute String

Operator

Value String

String Character String

Character

Character Letter Digit

Letter a b z

A B Z

Digit 0

E. Coordination Services

Let us now examine the question, why are coordination
services needed in an intelligent grid environment and how
can they fulfill their mission? First of all, some of the com-
putational activities are long lasting and it is not uncommon
to have a large simulation running for 24 h or more. An end
user may be intermittently connected to the network, so there
is a need for a proxy whose main function is to wait until one
step of the complex computational procedure involving mul-
tiple programs is completed and launch the next step of the
computation. Of course, a script will do, but during this rela-
tively long period of time unexpected conditions may occur
and the script would have to handle such conditions. On the
other hand, porting a script designed for a cluster to a grid en-
vironment is a nontrivial task. The script would have to work
with other grid services, e.g., with the information service,
or directory services to locate other core services, with the
brokerage service to select systems which are able to carry
out different computational steps, with a monitoring service

622 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 3, MARCH 2005

to determine the current status of each resource, with a per-
sistent storage service to store intermediary results, with an
authentication service for security considerations, and so on.

While automation of the execution of a complex task in
itself is feasible using a script, very often such computations
require human intervention. Once a certain stage is reached,
while some conditions are not met, we may have to backtrack
and restart the process from a previous checkpoint using a
different set of model parameters, or a different input data.
For example, during the computation of the correlation coef-
ficient indicating the resolution of the sample electron den-
sity map, we may decide to eliminate some of the original
virus particle projections which introduce too much noise
in the reconstruction process. It would be very difficult to
automate such a decision, which requires the expertise of a
highly trained individual. In such a case, the coordination ser-
vice should checkpoint the entire computation, release most
resources, and attempt to contact an individual capable of
making a decision. If the domain expert is connected to the
Internet with a palmtop computer with a small display and a
wireless channel with low bandwidth, the coordination ser-
vice should send low-resolution images and summary data
enabling the expert to make a decision.

In summary, the coordination service acts as a proxy for
the end user and interacts with core and other services on
user’s behalf. It hides the complexity of the grid from the
end-user and allows user interfaces running on the network
access devices to be very simple. The coordination service
should be reliable and able to match user policies and con-
straints (e.g., cost, security, deadlines, quality of solution)
with the corresponding grid policies and constraints.

A coordination service relies heavily on shared ontolo-
gies. It implements an abstract machine which understands
a description of the complex task—we call it a process de-
scription—and a description of a particular instance of the
task—we call it a case description.

IV. OTHER CORE SERVICES

An intelligent grid relies heavily on a set of core services
to provide seamless access to grid resources. In a large-scale
system most core services, including the information ser-
vices, should be replicated to guarantee availability and a
reasonable response time. We now discuss briefly some of
these services.

The information services support a critical function: it al-
lows individual agents to discover the resources available in
the grid. Core and end-user services register with the infor-
mation service and become known to the Grid community.
The information provided by these services may be obsolete.

A brokerage service provides accurate information about
the status of a few classes of resources to a narrowly targeted
audience. The scope of the information services is broader
than the scope of a brokerage service, they provide informa-
tion about virtually all Grid resources, but the information
may be obsolete. The scope of a brokerage service is limited
to one or more classes of resources. Also, a brokerage ser-
vice develops its own “clientele” of end-user services.

Individual request for resources can be crisp, or precise,
and in such instances a broker is able to identify a set of
resources matching the request without any difficulty. In
other instances the resource requests are fuzzy and we need
a matchmaking service to discover the best possible match
between the consumer(s) and the producer(s) of resources.
Typically, a matchmaking algorithm returns a set of targets
that match the request with different degrees and then the
ultimate decision is made either by the end-user, or by its
proxy, the coordination service.

A planning service is responsible for creating original
process descriptions or plans and, more often, for replan-
ning. Replanning is necessary to adapt an existing process
description to new conditions.

The goal of planning in a Grid environment is to generate a
process description (also called a plan) so that the execution
of the process description can produce the results that meet
all goal specifications.

The planning service accepts planning requests from the
coordination service. Such an assignment includes the set of
the initial data available to the end user, the goal of plan-
ning, and possibly other useful information. The goal is often
expressed in terms of results of the computations expected
by the end user. Once the process description is created, the
planning service sends it to the coordination service and, if
so directed, to an archiving or persistent storage service. Tra-
ditional AI planning approaches can be applied to planning
in a Grid system [5], [17].

In addition to ab initio generation of valid process descrip-
tions, the planning service is involved in replanning. Replan-
ning is triggered by the coordination service, whenever the
state of the environment is such that the execution of the cur-
rent case description based upon a valid process description
cannot continue. When replanning is required, the coordina-
tion service sends to the planning service all available data,
including the initial set of data and the data modified, or cre-
ated during the execution of the case description.

Conceptually, replanning has the same attributes as
planning. During replanning, the planning service avoids
activities that prevented the successful execution of the
original plan. To gather runtime information the planning
uses a broker to locate a group of application containers
able to host the activity that failed in the original plan.
Replanning does not guarantee the successful execution of
the task because the state of resources needed by various
activities changes rapidly.

An event is caused by the change of the state of a system.
The system where the change of state occurs is called the pro-
ducer of the event and all systems which react to this event
are consumers of the event. An event service connects a pro-
ducer of events with the consumer(s) of the event. Most reac-
tive systems are based upon the event-action model with an
action associated with every type of event.

Most distributed systems such as CORBA or JINI support
event services. The need for an event service is motivated
by several considerations. First, the desire to support asyn-
chronous communication between producers and the con-
sumers of events intermittently connected to the network.

BAI et al.: COORDINATION IN INTELLIGENT GRID ENVIRONMENTS 623

Second, in many instances there are multiple consumers of
an event and it would be cumbersome for the producer to
maintain state (a record of all subscribers to an event) and it
would distract the producer from its own actions. Third, it is
rather difficult to implement preemptive actions, yet multiple
events of interest to a consumer may occur concurrently. An
event service may serialize these events and allow the con-
sumer to process them one after the other. Last, but not least,
the event service may create composite events from atomic
events generated by independent producers.

V. CASE STUDY: THE BONDGRID

Fig. 1 summarizes the architecture of the system we are
currently building. In the following sections we describe
the BondGrid agents, the process description and the case
description, the ontologies used in BondGrid, and the co-
ordination service. The other core services are now being
implemented.

A. Bondgrid Agents

Grid services are provided by BondGrid agents based on
JADE [20] and Protégé [7], [21], two free software pack-
ages distributed by Telecom Italy and the Stanford Medical
Institute, respectively.
JADE, which stands for “Java Agent DEvelopment

Framework,” is a Foundation for Intelligent Physical Agents
(FIPA)-compliant agent system fully implemented in Java
and using FIPA ACL as an agent communication language.
The JADE agent platform can be distributed across ma-
chines which may not run under the same OS. Each agent
has a unique identifier obtained by the concatenation of
several strings:

Protégé is an open-source, Java-based tool that provides
an extensible architecture for the creation of customized
knowledge-based applications. Protégé uses classes to
define the structure of entities. Each class consists of a
number of slots that describe the attributes of an entity. A
class may have one or multiple instances. Protégé can
support a complex structure: a class may inherit from other
classes; a slot may reference other instances. BondGrid
uses a multiplane state machine agent model similar to the
Bond agent system [2]. Each plane represents an individual
running thread and consists of a finite-state machine. Each
state of a finite-state machine is associated with a strategy
that defines a behavior. The agent structure is described using
a Python-based agent description language called blueprint.
A BondGrid agent is able to recognize a blueprint, to
create planes and finite-state machines accordingly, and to
control the execution of different planes automatically. For
example, the blueprint for a coordination service is

openKnowledgeBase(“kb/BondGrid.pprj”, “CS”)

addPlane(“ServiceManager”)

s bondgrid.cs.ServiceManagerStrategy(agent)

Fig. 2. A process description for the 3-D structure determination.
D1; D2; . . .D13 are the symbolic names of the input and output
data files for the programs carrying out different end-user activities.

addState(s, “ServiceManager”);

addPlane(“Message Handler”)

s bondgrid.cs.MessageHandlerStrategy(agent)

addState(s, “MessageHandler”);

addPlane(“Coordination Engine”)

s bondgrid.cs.CoordinationEngineStrategy(agent)

addState(s, “Coordination Engine”);

The knowledge bases are shared by multiple planes of an
agent. The BondGrid agents provide a standard API to sup-
port concurrent access to the knowledge bases. Messages
are constructed using the Agent Communication Language
(ACL). A message has several fields: sender, receivers, key-
word, and message content. The keyword enables the re-
ceiver of a message to understand the intention of the sender.
A message may have one or more user-defined parameters.
Two agents use XML formatted messages to exchange an
instance of a class or the structure of a class.

B. Process Description and Case Description

A process description defines the data dependencies
among the activities of a complex task and consists of
end-user activities and flow control activities. The execu-
tion of an end-user activity corresponds to the execution
of an end-user service thus of an application program.
The specification of an end-user activity may include the
symbolic names of the input and/or output data sets of the
corresponding program. Fig. 2 shows a sample process
description for the 3-D atomic structure determination of
macromolecules based upon electron microscopy.

Flow control activities do not have associated end-user
services. They are used to control the execution of end-user

624 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 3, MARCH 2005

activities. We define six flow control activities: Begin,
End, Choice, Fork, Join, and Merge. Every
process description should start with a Begin activity and
conclude with an End activity. The Begin activity and
the End activity should occur exactly once in a process
description.

The direct precedence relation reflects the causality among
activities. If activity can only be executed directly after the
completion of activity , we say that is a direct prede-
cessor activity of and that is a direct successor activity
of . An activity may have a direct predecessor set of activ-
ities and a direct successor set of activities. We use the term
“direct” rather than “immediate” to emphasize the fact that
there may be a gap in time from the instance an activity ter-
minates and the instance its direct successor activity is trig-
gered. For the sake of brevity, we drop the word “direct” and
refer to predecessor activity set, or predecessor activity and
successor activity set, or successor activity.

A Choice flow control activity has one predecessor ac-
tivity and multiple successor activities. It can be executed
only after its predecessor activity has been executed. Fol-
lowing the execution of a Choice activity, only one of its
successor activities may be executed.

A Fork flow control activity has one predecessor activity
and multiple successor activities. The difference between
Fork and Choice is that after the execution of a Fork
activity, all the activities in its successor set are triggered.

A Merge flow control activity is paired with a Choice
activity. It has a predecessor set consisting of two or more
activities and only one successor activity. A Merge activity
is triggered after the completion of any activity in its prede-
cessor set.

A Join flow control activity is paired with a Fork ac-
tivity. Like a Merge activity, a Join activity has multiple
predecessor activities and only one successor activity. The
difference is that a Join activity can be triggered only after
all of its predecessor activities are completed.

A case description associates symbolic data names re-
ferred to by the corresponding process description with real
data. If the data refers to a file, one or more URLs are speci-
fied. Multiple URLs refer to multiple copies of the same file.
Various constraints (e.g., deadlines, cost, exclusion of some
resources, special resource requirements) are often provided
by case descriptions.

Process and case descriptions are part of the system-wide
ontologies, as seen in Fig. 3. Their instances can be stored in
knowledge bases and exchanged in XML format.

C. Ontologies

Ontologies are the cornerstone of interoperability. They
represent the “glue” that allows different applications to
use various grid resources. The term ontology means the
study of what exists or what can be known. An ontology
is a catalog of and reveals the relationships among a set of
concepts assumed to exist in a well defined area. Creating
ontologies in the context of Grid computing represents a
monumental task. Fig. 3 shows the logic view of the main

ontologies used in BondGrid and their relations. A nonex-
haustive list of classes in this ontology includes: task,
process description, case description,
activity, data, service, resource, hard-
ware, and software. A task class is related to the
process description and the case descrip-
tion classes. A process description contains a set
of activities. A service class is associated with a
resource class. In turn a resource class is associated
with hardware and software classes. The data class
is connected to the in activity, service, and case
description classes.

Ontologies are stored in a knowledge base which can be
accessed by applications. Applications also need to exchange
ontologies with each other.

BondGrid uses an XML format to describe instances of
classes for exchange. Below is an informal description of the
XML format. Each instance has a unique ID. The slot-
value can be a value, or an instance.

?xml version “1.0” encoding “UTF-8”?

project project-name “projectname”

instances

instance class-name “classname” ID “id”

slot slot-name “slotname”

value

slot-value

/value

value

/value

/slot

slot slot-name “slotname”

/slot

/instance

instance class-name “classname” ID “id”

/instance

/instances

/project

BondGrid also uses an XML format to describe various
classes. The slot-type can be string, boolean, float, in-
teger, or an instance. The cardinality-value can be an non-
negative integer or a wild card *.

?xml version “1.0” encoding “UTF-8”?

project project-name “projectname”

classes

class class-name “classname”

slot slot-name “slotname”

type

slot-type*

/type

cardinality

cardinality-value

/cardinality

BAI et al.: COORDINATION IN INTELLIGENT GRID ENVIRONMENTS 625

Fig. 3. Logic view of the main ontology in BondGrid.

/slot

slot slot-name “slotname”

/slot

/class

class class-name “classname”

/class

/classes

/project

D. The Coordination Service

The coordination service consists of a message handler,
a coordination engine, and a service manager. The message
handler is responsible for interagent communication. The co-

ordination engine manages the execution of tasks submitted
to the coordination service. The service manager provides a
GUI for monitoring the execution of tasks and the interac-
tions between coordination service and other services. These
three components run concurrently on different planes of the
agent and share the same knowledge base. Any modifications
performed on the knowledge base by one component affects
the other components.

As pointed out earlier, a task consists of a process descrip-
tion and a case description. The execution of a task is as-
sociated with a common data space shared by all activities.
Each symbolic name in the process description corresponds
to an entry in this data space. Initially, the case description
may provide some binding of symbolic names to existing
data files. As the execution of the task progresses, more sym-
bolic names are bound to the data produced as the result of

626 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 3, MARCH 2005

end-user services. After the successful completion of a task,
the data files containing the results are disposed of as speci-
fied by the case description (e.g., sent to a persistent storage
service).

The states of a task are SUBMITTED, WAITING,
RUNNING, PLANNING, REPLANNING, FINISHED,
and ERROR. Once a task submission message is received
it is queued by the message handler of the coordination
service. Then the message handler creates a task instance in
the knowledge base. The initial state of the newly created
task is SUBMITTED.

The coordination engine keeps checking the state of all
task instances in the knowledge base. When it finds a task
instance in SUBMITTED state, it attempts to initiate its ex-
ecution. One of the slots of the task class indicates if the
task needs planning (the slot is set to PlanningNeeded).
If the task has already been sent to the planning engine and
awaits the creation of a process description the slot is set to
Waiting. If the process description has been created the
slot is set to PlanningComplete.

If the task needs planning, the coordination engine waits
until the new process description is ready, then it updates
the task instance accordingly and sets its state to RUNNING.
When the execution of the task cannot continue (e.g., due
to resource unavailability) the coordination engine may send
the task to a planning service for replanning. In such a case,
the state of the task is set to REPLANNING. After the suc-
cessful completion of a task its state is FINISHED, while in
case of an error it is set to ERROR.

The coordination engine takes different actions according
to the type of each activity. The handling of flow control ac-
tivities depends on their semantics. For an end-user activity,
the coordination service collects the necessary input data and
performs data staging of each data set, bringing it to the site
of the corresponding end-user service. Upon completion of
an activity, the coordination service triggers a data staging
phase, collects partial results, and updates the data space.

The activity class has a slot describing the state of
an activity, INACTIVE, ACTIVE, DISPATCHED,
NOSERVICE, FINISHED, or ERROR. Initially, an ac-
tivity is in the INACTIVE state. The coordination engine
sets the state of its begin activity as ACTIVE when the
state of a task transitions from WAITING to RUNNING.
When the coordination engine finds an ACTIVE activity it
checks the type slot of the activity class. In case of a flow
control activity, the coordination engine sets: 1) the state of
one or more successor activities to ACTIVE and 2) the state
of the current activity to FINISHED. In case of an end-user
activity, the coordination engine attempts to find an end-user
service for this activity subject to a time and/or a retry count
limit. If the coordination engine finds an end-user service,
the state of this activity becomes DISPATCHED. Otherwise,
the state becomes NOSERVICE. When the end-user service
signals the successful completion of an activity the coordi-
nation engine sets: 1) the state of the corresponding activity
to FINISHED and 2) the state of the successor activity to
ACTIVE; otherwise, the state is set as ERROR.

The interactions between a user and the coordination ser-
vice can be initiated by the user when submitting a task or
requesting task status information, or by the coordination ser-
vice when reporting an error condition or the successful com-
pletion of the task.

A request for coordination is triggered by the submission
of a task initiated by a user. When receiving such a message
the coordination engine first checks the correctness of the
process and task description. Next, the task activation process
presented earlier is triggered. The user interface then sub-
scribes to the relevant events produced by the coordination
service.

A user may send a query message to the coordination ser-
vice requesting task state information. The message handler
parses the request and fetches from its knowledge base the
relevant slots of the task instance.

Upon completion of the task, or in case of an error condi-
tion, the coordination service posts the corresponding events
for the user interface.

A coordination service acts as a proxy for one or more
users and interacts on behalf of the user with other core ser-
vices such as the brokerage service, the matchmaking ser-
vice, the planning service, and the information service. If
a task submitted by the user does not have a valid process
description, the coordination service forwards this task to a
planning service. During the execution of a task, when the
coordination service needs to locate an end-user service for
an activity, it interacts with the brokerage and matchmaking
services. A brokerage service has up-to-date information re-
garding end-user services and their status. A matchmaking
service is able to determine a set of optimal or suboptimal
matchings between the characteristics of an activity and each
service provider.

The event service supports asynchronous communication.
For example, a user submits a task using a PDA connected via
a wireless network to the Internet and subscribes for several
events. Then the user is disconnected from the network. After
the completion of the task the coordination service posts a
termination event. When the end-user is reconnected to the
network and inquires about the status of the task, the termi-
nation event is delivered to the user interface.

Besides core services, a coordination service interacts with
application containers. When a coordination service attempts
to locate the optimal end-user service for an activity, the
status and the availability of data on the grid node providing
the end-user service ought to be considered in order to min-
imize communication costs.

E. Performance Measurements

While we cannot attempt a realistic performance
evaluation study of the coordination service before all
the components of the BondGrid environment are fully
implemented, we have conducted some performance studies
on the communications between the coordination service
and other societal (core) services.

The coordination service uses messages to exchange
ontologies with other components of the environment.

BAI et al.: COORDINATION IN INTELLIGENT GRID ENVIRONMENTS 627

Fig. 4. The performance of encoding, transmitting, and decoding instances between the
coordination service and other components of the environment.

An ontology is first converted to an XML format and then
packed into a BondGrid message.

The footprint of instances varies function of the class: task
instances and process description instances often consist
of tens to hundreds of kilobytes; data instances are often
less than one kilobyte. We experimented with ontologies of
different sizes. Fig. 4 shows the relationship between the
size of the ontologies and the encoding, transmission, and
the decoding time. Our testing environment was provided
by two systems with 1.8-GHz Pentium IV processors and
1 GB of main memory, under Linux. The two machines are
connected to the same hub. The resolution of our clock is
1 ms. Fig. 4 indicates that as the size of the ontology (in
XML format) increases, the time needed to encode, transmit,
and decode increases as well. Encoding time, transmission
time and decoding time are generally less than 30 ms. We
observed considerably large transmission times (seconds),
when the network load was high.

We also studied the message exchange rate between a co-
ordination service and an agent. The coordination service
is running on a system with a 1.8-GHz Pentium IV pro-
cessor and 1 GB of main memory under Windows. The agent
runs on a system with a 900-MHz Pentium III processor and
256 MB of memory under Windows. The agent keeps sub-
mitting tasks to the coordination service, which is able to
process about 100 submissions/s while the incoming rate is
about 6000 submissions/s.

VI. APPLICATIONS TO COMPUTATIONAL BIOLOGY

The 3-D atomic structure determination of macro-
molecules based upon electron microscopy [10] is an
important application of biology computation. The proce-
dure for structure determination consists of the following
steps:

1) Extract individual particle projections from micro-
graphs and identify the center of each projection.

2) Determine the orientation of each projection.
3) Carry out the 3-D reconstruction of the electron density

of the macromolecule.
4) Dock an atomic model into the 3-D density map.

Steps 2 and 3 are executed iteratively until the 3-D
electron density map cannot be further improved at a given
resolution. Then the resolution of the 3-D reconstruction is
increased gradually from, say, 40 to the highest resolution
supported by the quality of the data, say, 6–7 . The number
of iterations could reach a few hundreds. One iteration for
a medium size virus may take several days. Typically, it
takes months to obtain a high resolution electron density
map. Once we have a detailed electron density map of the
virus structure, we can proceed to atomic level modeling,
namely, placing groups of atoms, on secondary, tertiary, or
quaternary structures.

The process description for the 3-D structure determina-
tion task is shown in Fig. 2. First, we determine the initial
orientation of individual views using an ab initio orienta-
tion determination program called POD. Then, we construct
an initial 3-D density model using our parallel 3-D recon-
struction program called P3DR. Next, we execute an iterative
computation consisting of multiresolution orientation refine-
ment called POR.

In order to determine the resolution, we consider two
streams of input data, e.g., by assigning the odd-numbered
virus projections to one stream and the even-numbered virus
projections to the second stream. Then, we construct two
models of the 3-D electron density maps and determine
the final resolution by correlating the two models using a
program called PSF. The iterative process stops whenever
no further improvement of the electron density map is
noticeable, or when the target resolution has been reached.

The initial data files specified in the case description are:
1) a file containing the 2-D virus projections extracted from
the micrographs; 2) a file containing the parameters of the
model the expected goal resolution.

Then, using the user interface, we start the computation
using the process description in Fig. 2. For every experiment
we use different case descriptions with different input data
sets and different target resolutions. The coordination service
supervises the execution of the computation and provides the
results upon completion.

628 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 3, MARCH 2005

VII. CONCLUSION

From our experience, it is abundantly clear that the de-
velopment of complex and scalable systems requires some
form of intelligence. We cannot design general policies and
strategies which do not take into account the current state of
a system. But the state space of a complex system is very
large and it is infeasible to create a rigid control infrastruc-
ture. The only alternative left is to base our actions on logical
inference. This process requires a set of policy rules and facts
about the state of the system, gathered by a monitoring agent.
Similar arguments show that we need to plan if we wish to
optimally use the resource-rich environment of a computa-
tional grid, subject to QoS constraints. Further optimization
is only possible if various entities making decisions have also
the ability to learn.

Yet it is not so clear that the current AI technologies
are at the point where their application to grid environ-
ments is unproblematic. Our limited experiments discussed
in Section V-E point out that there are limitations of the
current agent, knowledge base, inference, and planning
technologies.

In the near future, the testbed system we are now de-
veloping will allow us to perform more comprehensive
measurements. At the same time, data collected from these
experiments will allow us to create realistic models of
large-scale system and study their scalability.

REFERENCES

[1] W. M. P. van der Aalst, A. H. ter Hofstede, B. Kiepuszewski, and A.
P. Barros, “Workflow patterns (technical report),” Eindhoven Univ.
Technology, Eindhoven, The Netherlands, 2000.

[2] L. Bölöni, K. K. Jun, K. Palacz, R. Sion, and D. C. Marinescu, “The
bond agent system and applications,” in Lecture Notes on Computer
Science, Agent Systems, Mobile Agents, and Applications, D. Kotz
and F. Mattern, Eds. Heidelberg, Germany: Springer-Verlag, 2000,
vol. 1882, pp. 99–112.

[3] G. Cabri, L. Leonardi, and F. Zambonelli, “Reactive tuple spaces
for mobile agent coordination,” in Lecture Notes in Computer Sci-
ence,Mobile Agents: Second International Workshop, K. Rothermel
and F. Hohl, Eds. Heidelberg, Germany: Springer-Verlag, 1998,
vol. 1477, pp. 237–248.

[4] N. Carriero and D. Gelernter, “Linda in context,” in Commun. ACM,
vol. 32, 1989, pp. 444–458.

[5] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi, A.
Lazzarini, A. Arbree, R. Cavanaugh, and S. Koranda, “Mapping ab-
stract complex workflows onto grid environments,” J. Grid Comput.,
vol. 1, no. 1, pp. 9–23, 2003.

[6] I. Foster and C. Kesselman, Eds., The Grid: Blueprint for a New
Computer Infrastructure, 1st ed. San Francisco, CA: Morgan
Kaufmann, 1999.

[7] W. E. Grosso, H. Eriksson, R. W. Fergerson, J. H. Gennari, S. Tu,
and M. A. Musen, “Knowledge modeling at the millennium (The
design and evolution of Protégé—2000),” presented at the 12th
Int. Workshop Knowledge Acquisition, Modeling and Mangement
(KAW’99), Banff, AB, Canada, 1999.

[8] D. C. Marinescu, Internet-Based Workflow Management: Toward a
Semantic Web. New York: Wiley, 2002.

[9] D. C. Marinescu, G. M. Marinescu, and Y. Ji, “The complexity of
scheduling and coordination on computational grids,” in Process Co-
ordination and Ubiquitous Computing, D. C. Marinescu and C. Lee,
Eds. Boca Raton, FL: CRC, 2002, pp. 119–132.

[10] D. C. Marinescu and Y. Ji, “A computational framework for the 3-D
structure determination of viruses with unknown symmetry,” J. Par-
allel Distrib. Comput., vol. 63, pp. 738–758, 2003.

[11] A. Omicini, F. Zamborelli, M. Klush, and R. Tolksdorf, Coor-
dination of Internet Agents: Models, Technologies and Applica-
tions. Heidelberg, Germany: Springer-Verlag, 2001.

[12] C. Petrie, S. Goldmann, and A. Raquet, “Agent-based project man-
agement,” in Lecture Notes in Artificial Intelligence, Artificial Intel-
ligence Today. Heidelberg, Germany: Springer-Verlag, 1999, vol.
1600, pp. 339–362.

[13] D. Rossi, G. Cabi, and E. Denti, “Tuple-based technologies for co-
ordination,” in Coordination of Internet Agents: Models, Technolo-
gies and Applications, A. Omicini, F. Zamborelli, M. Klush, and R.
Tolksdorf, Eds. Heidelberg, Germany: Springer-Verlag, 2001, pp.
83–109.

[14] J. G. Schneider, M. Lumpe, and O. Nierstrasz, “Agent coordina-
tion via scripting languages,” in Coordination of Internet Agents:
Models, Technologies and Applications, A. Omicini, F. Zamborelli,
M. Klush, and R. Tolksdorf, Eds. Heidelberg, Germany: Springer-
Verlag, 2001, pp. 153–175.

[15] L. Tobin, M. Steve, and W. Peter, “T spaces: The next wave,” IBM
Syst. J., vol. 37, no. 3, pp. 454–474, 1998.

[16] T. Winograd, Language as a Cognitive Process. Reading, MA: Ad-
dision-Wesley, 1983.

[17] H. Yu, D. C. Marinescu, A. S. Wu, and H. J. Siegel, “A genetic ap-
proach to planning in heterogeneous computing environments,” pre-
sented at the 17th Int. Parallel and Distributed Proc. Symp. (IPDPS
2003), Nice, France.

[18] H. Yu, X. Bai, G. Wang, Y. Ji, and D. C. Marinescu, “Metainfor-
mation and workflow management for solving complex problems
in grid environments,” presented at the 18th Int. Parallel and Dis-
tributed Proc. Symp. (IPDPS 2004), Santa Fe, NM, 2004.

[19] Global Grid Forum [Online]. Available: http://www.gridforum.org/
[20] JADE Website [Online]. Available: http://sharon.cselt.it/projects/

jade/
[21] Protégé Website [Online]. Available: http://protege.stanford.edu/

Xin Bai received the B.S. degree from Northern
Jiaotong University, Beijing, China, in 1993 and
the M.S. degree from the University of Central
Florida, Orlando, in 2003, respectively. He is
currently working toward the Ph.D. degree in the
School of Computer Science at the University of
Central Florida.

His research areas include Grid computing and
multiagent systems.

Han Yu received the B.S. degree from Shanghai
Jiao Tong University, Shanghai, China, in 1996
and the M.S. degree from the University of Cen-
tral Florida, Orlando, in 2002. He is currently
working toward the Ph.D. degree in the School
of Computer Science at the University of Central
Florida (UCF).

His research areas include genetic algorithms
and AI planning.

Guoqiang Wang received a B.S. degree from
Southeast University, Nanjing, China, in 2001.
He is currently working toward the Ph.D. de-
gree in the School of Computer Science at the
University of Central Florida, Orlando.

His research areas include ad hoc routing, Grid
computing, and multiagent systems.

BAI et al.: COORDINATION IN INTELLIGENT GRID ENVIRONMENTS 629

Yongchang Ji received the M.S. and Ph.D. de-
grees in computer science from University of Sci-
ence and Technology of China, Heifei, in 1996
and 1998, respectively.

He was a Postdoctoral Researcher of computer
sciences at Purdue University, West Lafayette,
IN. He is currently a Postdoctoral Research
Associate of computer science at University
of Central Florida, Orlando. He has published
more than 30 papers in professional journals
and referred conference proceedings. His main

research interests include high-performance computing, Grid computing,
computational biology, parallel and distributed architecture, model, algo-
rithm, and scalability.

Gabriela M. Marinescu received the B.S. degree
in physics and the M.S. degree in nuclear physics
from the University of Bucharest, Bucharest, Ro-
mania, and finished her D.Sc. degree studies in
1979.

She is a Senior Researcher with the School
of Computer Science at University of Central
Florida, Orlando. She has published more than
85 papers. She has conducted research in nuclear
physics, material sciences, and computing.

Dan C. Marinescu (Senior Member, IEEE)
received the M.S. degree from University of
California, Berkeley, in 1969 and the Ph.D.
degree from the Polytechnic Institute, Bucharest,
Romania, in 1975.

He was Professor of Computer Science at
Purdue University in West Lafayette, Indiana.
He was a visiting faculty at IBM Research,
Yorktown Heights, Intel, Institute for Informa-
tion Sciences, Beijing, INRIA Paris, Deutsche
Telecom. He is currently Professor of Computer

Science at the University of Central Florida, Orlando, since 2001. He is
the author of Internet-Based Workflow Management (New York: Wiley,
2002) and Approaching Quantum Computing (Upper Saddle River, NJ:
Prentice-Hall, 2004). He coedited Process Coordination and Ubiquitous
Computing (Boca Raton, FL: CRC, 2002). He has published more than 150
papers in professional journals and referred conference proceedings. His
main research interests are scientific computing, performance evaluation,
Petri nets, process coordination, and Grid computing.

Ladislau Bölöni (Member, IEEE) received
the Diploma Engineer degree in computer
engineering with honors from the Technical Uni-
versity of Cluj-Napoca, Cluj-Napoca, Romania,
in 1993 and the M.S. and Ph.D. degrees from
the Computer Sciences Department, Purdue
University, West Lafayette, IN, in 1999 and
2000, respectively.

He is an Assistant Professor in the Computer
Engineering department of University of Central
Florida, Orlando. His research interests include

autonomous agents, Grid computing, and knowledge representation.
Dr. Bölöni is a member of the Association for Computing Machinery and

the Upsilon Pi Epsilon honorary society. He received a fellowship from the
Hungarian Academy of Sciences for the 1994–1995 academic year.

630 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 3, MARCH 2005

	toc
	Coordination in Intelligent Grid Environments
	XIN BAI, HAN YU, GUOQIANG WANG, YONGCHANG JI, GABRIELA M. MARINE
	I. I NTRODUCTION AND M OTIVATION
	A. Defining Characteristics of Computational Grids
	B. Resource Management, Exception Handling, and Coordination

	II. I NTELLIGENT G RID E NVIRONMENTS

	Fig.€1. Core and end-user services. The User Interface provides
	III. C OORDINATION AND C OORDINATION S ERVICES
	A. Process Coordination
	B. Coordination Techniques
	1) Coordination Based on Scripting Languages: Co ordination is o
	2) Coordination Based on Shared-Data Spaces: Tuple space coordin
	3) Coordination Based on Middleware Agents: In our daily life, m

	C. Process Coordination and Workflow Management
	D. Process and Case Description
	E. Coordination Services

	IV. O THER C ORE S ERVICES
	V. C ASE S TUDY: T HE B ONDGRID
	A. Bondgrid Agents

	Fig.€2. A process description for the 3-D structure determinatio
	B. Process Description and Case Description
	C. Ontologies

	Fig.€3. Logic view of the main ontology in BondGrid.
	D. The Coordination Service
	E. Performance Measurements

	Fig.€4. The performance of encoding, transmitting, and decoding
	VI. A PPLICATIONS TO C OMPUTATIONAL B IOLOGY
	VII. C ONCLUSION
	W. M. P. van der Aalst, A. H. ter Hofstede, B. Kiepuszewski, and
	L. Bölöni, K. K. Jun, K. Palacz, R. Sion, and D. C. Marinescu, T
	G. Cabri, L. Leonardi, and F. Zambonelli, Reactive tuple spaces
	N. Carriero and D. Gelernter, Linda in context, in Commun. ACM,
	E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi,

	I. Foster and C. Kesselman, Eds., The Grid: Blueprint for a New
	W. E. Grosso, H. Eriksson, R. W. Fergerson, J. H. Gennari, S. Tu
	D. C. Marinescu, Internet-Based Workflow Management: Toward a Se
	D. C. Marinescu, G. M. Marinescu, and Y. Ji, The complexity of s
	D. C. Marinescu and Y. Ji, A computational framework for the 3-D
	A. Omicini, F. Zamborelli, M. Klush, and R. Tolksdorf, Coordinat
	C. Petrie, S. Goldmann, and A. Raquet, Agent-based project manag
	D. Rossi, G. Cabi, and E. Denti, Tuple-based technologies for co
	J. G. Schneider, M. Lumpe, and O. Nierstrasz, Agent coordination
	L. Tobin, M. Steve, and W. Peter, T spaces: The next wave, IBM S
	T. Winograd, Language as a Cognitive Process . Reading, MA: Addi
	H. Yu, D. C. Marinescu, A. S. Wu, and H. J. Siegel, A genetic ap
	H. Yu, X. Bai, G. Wang, Y. Ji, and D. C. Marinescu, Metainformat

	Global Grid Forum [Online] . Available: http://www.gridforum.org
	JADE Website [Online] . Available: http://sharon.cselt.it/projec
	Protégé Website [Online] . Available: http://protege.stanford.ed

