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Abstract

We report on a study in which twelve different paradigms were used to implement agents acting in

an environment which borrows elements from artificial life and multi-player strategy games. In choosing

the paradigms we strived to maintain a balance between high level, logic based approaches and low

level, physics oriented models; between imperative programming, declarative approaches and “learning

from basics”; between anthropomorphic or biologically inspired models on one hand and pragmatic,

performance oriented approaches on the other.

We have found that the choice of the paradigm determines the software development process and

requires a different set of skills from the developers. In terms of raw performance, we found that the best

performing paradigms were those which (a) allowed the knowledge of human experts to be explicitly

transferred to the agent and (b) allowed the integration of well-known, high performance algorithms. We

have found that maintaining a commitment to the chosen paradigm can be difficult; there is a strong

temptation to offer shallow fixes to perceived performance problems through a “flight into heuristics”.

Our experience is that a development process without the discipline enforced by a central paradigm leads

to agents which are a random collection of heuristics whose interactions are not clearly understood.

Although far from providing a definitive verdict on the benefits of the different paradigms, our study

provided a good insight into what kind of conceptual, technical or organizational problems would a

development team face depending on their choice of agent paradigm.

I. INTRODUCTION

Researchers have designed a bewildering variety of paradigms for the control of agents. Virtually

every paradigm of artificial intelligence, software engineering or control theory was deployed, with more

or less success. However, wide ranging comparisons of agent paradigms are rare. When new methods

and paradigms are introduced, they are compared with only several, closely related approaches which

are considered direct competitors of the proposed paradigm. Making or revisiting comparisons between

paradigms is a controversial, difficult and hard-to-sell work [7]. One might argue that a researcher might

better spend his or her time designing new paradigms or improving existing ones instead of comparing,

say, swarm algorithms with affective computing. There might be people offended by the results, with

reasonable claims that the methodology was incorrect, the implementation of the paradigm substandard,

or simply, the measured quantity is not relevant to the given paradigm.

The fundamental question, of course, is whether any of these comparisons makes sense. We argue that

if both paradigms A and B can be used in the implementation of the same requirements, then

these two paradigms can (and indeed, should be) compared. That is not to say that the comparison is
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easy or that it can be reduced to a single numerical “score”. Different paradigms have different strengths

and weaknesses, and the goal of a comparison study is to shed light on the particulars of the different

approaches. Although we do not expect definite answers to questions like “which paradigm can create

an agent which passes the Turing test”, we can provide insight into lesser but still important questions

such as:

• Can a rigorous software engineering process be applied to the development?

• Can the performance be predicted?

• Can human expertise in the problem domain be transferred to the agent?

• Can the implementation provide adequate performance?

• How much development effort and what level of competence is required for an adequate implemen-

tation of the paradigm?

• Will the resulting agent be predictable in its actions?

The remainder of this paper is organized as follows. In Section II we present the Feed-Fight-Multiply

game, our control problem. We succinctly describe the twelve paradigms and the implemented agents

in Section III and we show the software engineering metrics of the implementation efforts in Section

IV. Numerical performance results are detailed in Section V, while qualitative findings are presented in

Section VI. We conclude in Section VII.

II. THE FEED-FIGHT-MULTIPLY WORLD

To study the benefits and drawbacks of various agent paradigms, we decided to place them in a virtual

environment which reflects many of the challenges encountered by agents in the real world.

The types of systems which are the primary focus of this paper are embodied agents, that is, agents

whose environment is either the physical world, or a simulation of it. Examples of the first are unmanned

aerial or ground vehicles, or mobile robots. Examples where the environment is a simulation of the real

world are avatars in virtual worlds, game characters and so on. An interesting example of agents whose

environments include both the real and the virtual world is the one described in [27], where embodied

agents (animated humanoid or animal characters) can move inside their virtual environment, but they can

also jump between devices in the real world.

We decided against using one of the existing competitive environments (such as the RoboCup

Simulation League) because the existence of previous, optimized implementations would have skewed

the result of the comparison. Furthermore, we required that the environment provide multiple paths

to success. We expected that agents implemented in various paradigms will have a different external
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behavior as well. Measuring success as the conformance to a predefined behavior would have favored

some paradigms and disadvantaged others. In addition, having multiple paths to success is a quality of

most natural environments and many artificial ones.

Upon these considerations, we implemented the Feed-Fight-Multiply game, which borrows elements

from turn-based multi-player strategy games and artificial life. Agents are moving in a two-dimensional

environment having accessible zones and obstacles. The agents can sense the environment within the range

of their sensors. Food resources appear at random points in the environment; consuming food increases

the energy level of the agents. Agents can attack each other, by destroying an agent, the attacker gains

access to its resources. Finally, agents can multiply by (non-sexual) reproduction.
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Fig. 1. The possible actions of the agents in the Feed-Fight-Multiply game, as well as the relative energy consumption or gain

of the different actions. The exact values of the energy consumptions are parameterized.

The environment was implemented in the Java based YAES simulation environment [3]. To simplify the

implementation of the agents, we decided that the most commonly used functionality will be implemented

in the environment, and provided as a service to the agents. These services included the scanning of the

sensor range for agents and food, tracking of moving agents and identifying the types of the agents in the

sensor range. Our goal was to compare the paradigms as implementations of high level agent functions.

These low level functions would have been implemented in any agent using imperative programming;

providing standard implementations for them allowed a more fair comparison of the paradigms.

Finally, instead of keeping a single score, we decided to record multiple parameters of the agent
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behavior. This meant that not only there were multiple paths to success, but the final goals of the agents

could be different as well. Of course, all agents were required to work towards their survival, but besides

that, the criteria for success could be maximum amount of resources gathered, survival on minimum

amount of resources, largest number of agents killed, number of individual agents of the same type at

the end of the game, or others. Figure 2 shows a typical FFM game in progress.

Fig. 2. Screenshot of the Feed-Fight-Multiply environment. The evolution of the game can be followed either in real time, or

replayed from the game logs.

We need to discuss our choice of the actions in the FFM game, in particular the lack of the explicit

communication actions (such as message send, receive and broadcast). The FFM agents communicate

only implicitly through movement and actions. For instance, collaboration can happen by respecting

each others feeding range, attacking common enemies and so on.

We did not include explicit communication actions, because they would have made the comparison of

the paradigms more difficult. If we would have allowed communication, for instance, through FIPA ACL

(or other speech act based communication models), the balance of the comparison would have clearly

shifted towards the formally programmed approaches. Many of the low level, paradigm-pure approaches

would not have been possible. To work around this, all the agents would have been composed of a high

level part, controlling the communication of the agent, and another, low or high level part, implementing

the chosen paradigm. This would have made the comparisons less relevant, as the chosen paradigm would

have played a smaller role both in the performance and the implementation effort of the agents.

Naturally, this does not mean that such a comparison would not be relevant and interesting. It is of
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considerable interest whether a certain paradigm can be easily interfaced with a messaging system, and

what role can a paradigm play in such a system. For instance, the paradigm can be the decision maker,

low level movement control, or simply an internal input which influences of the priorities of various

goals. One way to do such a comparison would be to standardize the high level messaging component

of the agents. Such a study, however, is outside the scope of this paper.

III. TWELVE AGENTS, TWELVE PARADIGMS

We have developed twelve agents, implemented in twelve different paradigms of agency. In choosing

the paradigms we strived to maintain a balance between high level, logic based approaches and low

level, physics oriented models; between imperative programming, declarative approaches and “learning

from basics”; between anthropomorphic or biologically inspired models on one hand and pragmatic,

performance oriented approaches on the other. The implemented agents are concisely described in Table

I. The developers were instructed to develop paradigm-pure implementations and to design the agents

such that the “spirit” of the paradigm is best expressed. When the paradigm could not cover the required

functionality, the developers were allowed to complement it with simple heuristics.

The goal of the developers was to create agents which perform well in a wide variety of game scenarios.

Two major types of scenarios were used. In the non-competitive scenarios the agents are acting on a map

populated with a small number of agents of the same type. In competitive scenarios, the map contains

two equal size teams of opponent agents. It was left to the choice of the developer to decide whether the

agent will implement teamwork behavior. Some agent paradigms such as crowd modeling, presume team

interactions, while others, such as social potential fields, strongly facilitate it. In general all the agents

were using different social behavior against agents of their own type as opposed to agents of different

type.

In the following subsections, we describe the implementation of every agent according to the following

framework. First, we succinctly summarize the paradigm, its origins, typical use and the papers or

applications which served as the source for our implementation. In the “Implementation” subsection

we describe the way in which the agent was implemented in paradigm, while in the “Heuristics”

subsection, we describe the heuristics added to the implementation and the reasons which made this

addition necessary. The “Results” subsection summarizes the qualitative results or the implementation, in

the perception of the developer. The focus of this subsection is how successfully the paradigm allowed

the implementation of the agent behavior envisioned by the developer.

Finally in the “Development effort” subsection, we summarize the ways in which the time of the
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developers was spent in the development process. Considering the particularities of the FFM agent

development, we categorize the time spent by the developers in four classes.

Paradigm implementation. The amount of time spent by the developer to implement or adapt a standard

implementation of the paradigm. This part of the effort can be, of course, greatly reduced if there is a

high quality library. Developers might also reuse their own previous implementations for new agents.

In many cases, this effort requires the translation of the pseudocode provided by the foundational

papers (or standard textbooks) of the paradigm into the development environment and language.

Agent implementation. This part of the development effort covers the expression of the problem domain

in the terms of the paradigm. It includes the explicit design and development work. For many

explicitly programmable paradigms, this was the main part of the development effort. For instance,

for a rule based agent, agent implementation involves the writing of the rules which determine the

agent behavior. For learning-based paradigms, this part of the development effort is usually much

smaller. For instance, for a genetic programming model, the agent implementation part covers only

the design and implementation of the fitness function.

Heuristics. This part of the development effort covers the development and testing of the heuristics

added to the agent to either complement the paradigm, or correct certain behaviors which can not

be conveniently expressed in the paradigm. Some paradigms cover only some parts of the behavior

of the agent. For instance, social potential fields cover only the movement of the agent, while game

theory only the encounters between two agents. In these cases significant development effort goes

to the heuristics complementing these paradigms.

Learning and tuning. We will use the term “learning” for the automatic acquisition of knowledge through

techniques such as neural networks, reinforcement learning or genetic programming. We will use

the term “tuning” for the manual adjustment of the parameters of the agent based on the observation

of the behavior by the developer. Note that, in practice, the learning process can rarely be fully

automatized. The developer needs to create appropriate scenarios in which the agent can have

meaningful learning experiences, it needs to adjust the learning parameters, in many cases, it needs

to restart the learning process from scratch.

A. AffectiveAgent: anthropomorphic and affective model

Affective computing [16] proposes the consideration of human-like emotions in the implementation of

computing artifacts. The use of affective agents is immediately justified in agents interacting directly with

human operators. Recognizing and responding to the human operators’ emotions, as well as expressing
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TABLE I

CONCISE DESCRIPTION OF THE TWELVE IMPLEMENTED AGENTS

Name Paradigm Paradigm

coverage

Team-

work

Offline

learning

AffectiveAgent Affective model, anthropomorphic lifecycle Limited No No

GenProgAgent Genetic programming Full Yes Yes

Reinforcer Reinforcement learning Full Yes Yes

CBRAgent Case based reasoning Full No Yes

RuleBasedAgent Forward reasoning Full Yes No

Naı̈veAgent Naı̈ve programming (scripting) Full Yes No

GamerAgent Game theory Limited Yes No

CrowdAgent Particle based crowd modeling Limited Yes No

NeuralLearner Backpropagation neural networks Full No Yes

SPFAgent Social potential fields Limited Yes No

CxBRAgent Context based reasoning Full No No

KillerAgent Minimal heuristic Full No No

emotions on its own can significantly improve the communication between the agent and user. The use of

affective agents in settings without human participants is more controversial; one might question whether

we can even speak of emotions in this context at all [22]. What is certain, is that we can design our

agents in such a way that the agent possess an emotional frame of reference to weight its decisions. The

hope is that the decisions made in this frame of reference would be just as good (or better) than the ones

obtained through other techniques.

In broad lines, our implementation is an adaptation of the agents from [23]. We have decided to

implement not only emotional states, but also an anthropomorphic life cycle. Agents have emotions

such as anger, contentment or fear. In addition, the agents mimic the stages of human life: they have a

childhood, maturity and old age, with their corresponding goals and priorities. The affective model plays

two roles in the behavior of the agent: action selection (e.g., what to do next based on the current emotional

state) and adaptation (e.g., short or long-term changes in behavior due to the emotional states). As the

affective programming paradigm does not cover low level actions such as avoiding obstacles, reaching

food and so on, these features were implemented through heuristics.

The short term variables which control the behavior of the agent are the action tendency and the conflict

tendency. The dynamic action tendency is the probability whether an agent will fight or flee in a given
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situation. To adapt the action tendency to the outcome of the agent’s interactions, the action tendency is

updated by the adaptation rule depending whether the agent is experiencing loss or success. The conflict

tendency determines whether an agent seeks conflicts or avoids them. Emotional states such as anger or

fear are determined in terms of ranges of the action and conflict tendency.

Implementation: Let us describe the strategy of the affective agent in anthropomorphic terms. The

goal of the agent is to multiply and overcome other agents by direct fight and by starving them of

resources. The agents will pass through a period of childhood, during which they will choose safe ways

to accumulate resources, by feeding, and will refrain from fighting and multiplying. A mature agent will

seek opportunities to multiply (if the emotional state is content or fearful) or to attack (if the emotional

state is angry). Affective agents will not attack agents of the same type.

We found that agents tend to get stuck into certain emotional states. To avoid this “emotional quagmire”,

we have implemented “mood swings” by periodically resetting the action tendency of the agent to a

random value.

Heuristics: As the affective paradigm does not cover concepts such as motion planning or identifying

food resources, this functionality was implemented using heuristics.

Results: The behavior of the affective agents matched the expectations. The visual observation of the

affective agents had shown their cautious approach during childhood, followed by a more aggressive

stand and high reproductive rate during adulthood. The high reproductive rate created a large number

of affective agents, which in some cases successfully starved the adversary. However, affective agents

frequently multiplied beyond their resources, which led to a high mortality rate. The agents were less

successful in combat, because the adaptation rule did not change the mood of the agent sufficiently

quickly to make correct decisions during fight.

Development effort:

Paradigm implementation (10%) The paradigm implementation was a minor part of the development

effort. There are no standard data structures and algorithms associated with the affective model, thus this

part of the effort covered only the generic part of the representation of the emotional states and stages

of maturity.

Agent implementation (20%) This part of the effort involved choosing the emotional states considered,

selecting and implementing the appropriate behaviors for each emotional state and choosing the ways in

which the emotional states evolve during the game.

Heuristics (20%) As the affective model did not cover all possible behaviors of the agent, this part

of the development supplanted the affective behavior.
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Learning and tuning (50%) A large part of the development effort was spent in the manual tuning

of the parameters of the agent, in particular the transitions between the various emotional states and the

behaviors associated with them.

B. GenProgAgent: genetic programming

Genetic programming (GP) [10] is an evolution of the genetic algorithm [9], where the units of

evolution, the chromosomes, represent programs. Each chromosome encodes a syntax tree which has

functions or statements (conditional, loop, and so on) for its internal nodes, and constants or variables

(terminals) as its leaves. The fitness function is a measure of how well the program encoded by a specific

chromosome can solve the given problem.

The control parameters of genetic programming are the population size, crossover probability, mutation

probability, selection method and the number of generations for which the algorithm is run. As a

result of the crossover and mutation operators, the individual syntax trees can grow in size. To avoid

chromosomes of excessive size, an additional parameter determines the maximum size of the tree, limiting

the complexity of the algorithms which can be evolved.

Implementation: We have used a two stage approach to evolve the genetic programming agent. In

the first stage, we evolve tactical behaviors for specific situations. In the second stage, we combine the

tactical behaviors into game strategies.

The first stage aims to evolve the tactical behaviors of the agent in specific situations. Such behaviors

could be to locate food resources, to eat them, to avoid or engage in hostile encounters with opponent

agents. Note that these tactical behaviors alone can not be used to successfully play the game.

In the second stage the tactical behaviors are used to evolve game strategies. The game strategy

describes the tactical behavior which the agent needs to follow in a specific situation of the game. For

instance, if the fitness function favors strategies engaging in conflicts or attacking other characters in the

game then the GP will prefer individuals with high attack measures and eventually it will converge to

form this game strategy.

Evolving tactical behaviors

As the tactical behaviors are tied to specific circumstances in the game, we need to create a set of

situational models, tailored to the tactical behaviors we are trying to evolve. A situational model is

described by a game map, an initial configuration of food and agents and a specialized fitness function.

We created models for four types of tactical behaviors: eat-food, attack, flee and wander.
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TABLE II

THE LIST OF TERMINAL AND FUNCTION NODES FOR THE EAT-FOOD SITUATIONAL MODEL. TERMINAL NODES MARKED

WITH (*) DEPICT NODES THAT REQUIRE SIGNIFICANT EXTERNAL PROCESSING IN THE FORM OF HELPER FUNCTIONS.

Name Type Description

*FoodDirection Terminal Direction to the closest food.

*AgentDirection Terminal Direction to the closest opponent agent.

*UnexploredDirection Terminal Direction to the closest unexplored region.

RandomDirection Terminal Random direction

CurrentDirection Terminal Current direction of movement

ObstacleNorth Function Returns true if there is an obstacle at north

ObstacleSouth Function Returns true if there is an obstacle at south

ObstacleEast Function Returns true if there is an obstacle at east

ObstacleWest Function Returns true if there is an obstacle at west

Not Function Logical NOT operator

If Function Conditional statement

Equals Function Operator used in conditional statements

NotEquals Function Operator used in conditional statements

The function set and terminals for these tactical behaviors are described in Table II. The terminal nodes

marked with (*) incorporate significant external processing. For instance, the food direction terminal points

to the closest food resource available to the GenProgAgent while the unexplored direction terminal is

based on an external data structure which maintains a list of visited waypoints. The obstacle functions,

one for each direction, return a boolean value showing whether the GenProgAgent can move in the given

direction or not. The remaining functions are used as control structures, with the goal of incorporating

decisions in the tree.

The situational model for the eat-food tactical behavior consisted of a 200x200 pixel game map. The

map contained obstacles covering approximately 20% of the map and 50 randomly distributed food units.

The goal is to evolve a behavior for the agent which does not collide with obstacles and eats all the

available food resources.

The fitness function F is represented on a scale between 0 (for highest fitness) and 100 (lowest fitness)

according to the following formula:
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Fig. 3. The evolution of the average fitness, best individual fitness of generation and best individual fitness of run for an

experiment evolving the eat-food tactical behavior.

F = 50

(
1− Rc

Ra
+

1
250000

∑

s∈Sfailed

(length(s))2
)

(1)

where Ra is the number of available food resources, Rc the consumed food resources, and Sfailed the set

of failed move sequences.

Figure 3 shows a fitness graph over 50 generations. The best individual over the experiment was found

in generation 41 and it had a fitness value of 1 (very close to the optimum). Average fitness at the last

generation was 37.59 and best individual of the last generation had a fitness of 5. The randomly generated

individuals in the initial population perform very poorly, with an average fitness of 92.3.

We could have repeated the same process for the other behaviors. However, the other tactical behaviors

can also be generated by reusing portions of the already evolved eat-food behavior. If we replace the

FoodDirection terminals with AgentDirection terminals in the chromosome we obtain an attack behavior.

Notice that the dynamic nature of the terminal also changes the behavior of the agent; while in the

eat-food behavior the agent is navigating towards static food items, in the attack behavior it is pursuing

mobile agents. Similarly, the wander behavior can be obtained by replacing the FoodDirection terminal

with the UnexploredDirection terminal, and the flee behavior by replacing FoodDirection with the reverted

AgentDirection terminal.
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TABLE III

THE LIST OF TERMINAL AND FUNCTION NODES FOR EVOLVING GAME STRATEGIES.

Name Type Description

StateWander Terminal Constant representing the wander behavior

StateAttack Terminal Constant representing the attack behavior

StateEat Terminal Constant representing the eat behavior

StateFlee Terminal Constant representing the flee behavior

StateRandom Terminal Constant representing any behavior

Add Function Addition operator

Mul Function Multiplication operator

Sub Function Subtraction operator

If Function Conditional statement

Equal Function Operand used in conditional statements

LesserEqual Function Operand used in conditional statements

GreaterEqual Function Operand used in conditional statements

Random Function A random value

NumberOfAgents Function Number of agents in sensor range

NumberOfFood Function Number of food resources in sensor range

EnergyLevel Function Energy level of the GenProgAgent

Evolving game strategies

A game strategy describes the tactical behavior which the agent needs to follow in a specific situation

in the game. Game strategies can be created by combining tactical behaviors in finite state machines. With

the tactical behaviors already created, the challenge is to find the appropriate transition rules. We used

GP to evolve the transition rules for FSM-like structures. Different strategies, corresponding to agents

with different goals, can be evolved by adjusting the fitness function of the GP. The GP configuration

used to demonstrate this feature is shown in Table III.

The terminal nodes can be StateWander, StateAttack, StateEat and StateFlee, which represent tactical

behaviors evolved in the previous step. An additional terminal node, StateRandom represents a randomly

selected state and its purpose is to maintain population diversity. The goal of the inside nodes of the

chromosomes is to encode the decision process, through which, based on the sensor data, the agent

decides which tactical behavior will be applied. The sensor data is described by the NumberOfFood,

NumberOfAgents and EnergyLevel functions. We created two types of strategies:

• Balanced: seeks to create an agent that doesn’t specialize on any type of behaviors
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• Aggressive: specialize on attacking

The game strategies were evolved on a 400x400 pixel game map containing obstacles and 100 food

resources. In addition, six opponent agents of three different types were added to the game during training.

The first agent type simply wanders around in the environment. The second type of agent can attack and

it is also able to eat food resources. The third agent type can only flee if it is attacked. The purpose of

the opponent agents is to generate realistic situations of conflict and competition. Strategies are formed

based on weights that depict the importance of each specialized behavior.

The fitness function is calculated using the following formula:

F = wFood · SFood + wAttack · SAttack + wFlee · SFlee + wWander · SWander (2)

The food score SFood is a measure of what percentage of the available food was consumed by the

agent. The attack score SAttack measures the number of successful attacks, while the flee score SFlee the

number of successful flee actions. Finally, SWander measures the portion of the game map covered by

the agent. Each individual in the population represent a valid game strategy and they are evaluated by

executing them in the FFM game for 1000 simulation cycles. The balanced game strategy was evolved

using equal weights, 0.25 for each weight type. The aggressive strategy on the other hand was configured

with higher weight values for attack and flee, 0.40, with the remaining weights set to 0.1.

Heuristics: As we were not successful evolving tactical behaviors which reliably avoid being stuck

on obstacles, the helper functions used in stage 1 were extended to make use of the A* path-finding

algorithm, to avoid getting stuck on obstacles when traversing the environment.

Results: The genetic programming agent evolved at the end of the development process performed in

a satisfactory manner compared with other learning based paradigms. However, our development process

also exposed all the problems associated with developing an agent using learning from scratch. Like in

the case of other learning based paradigms, the developer has spent significant effort in creating learning

environments for learning relatively trivial behaviors. In addition, the genetic programming effort required

a large amount of computation power, most of it spent in the calculation of the fitness function. The

calculation of the fitness function was expensive because it required the playing of a complete game. We

also found it necessary to limit the length of the chromosomes to keep the execution time at a manageable

level. This is its turn limited the type of behaviors which can be evolved.

Development effort:

Paradigm implementation (20%) For this agent, the paradigm implementation required us to

implement the genetic selection mechanisms, and the mutation and crossover operators. We also had
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to develop an interpreter for the resulting genetic programs and integrate it with the FFM framework.

Agent implementation (30%) To express the problem in the terms of the paradigm, we developed the

two step learning process for tactical behaviors and game strategies. These steps involved choosing the

states, implementing the actions associated with the states, as well as implementing the fitness functions.

Heuristics (10%) The heuristics of the genetic programming agents were integrated in the actions of

the tactical behaviors, and concerned hard-to-evolve spatial orientation skills.

Learning and tuning (40%) The genetic learning process took a significant processor time. As both

the fitness function and some of the terminal actions involved many tunable parameters, the evolutionary

learning had to be repeated several times.

C. Reinforcer: reinforcement learning

Reinforcement learning [14] is a technique in which an agent explores an unknown domain, and adjusts

its behavior through positive and negative reinforcements. Thus, learning happens in real time, without

the need of an explicit off-line learning stage. A specific implementation of reinforcement learning is

described by the states of the environment, the actions the agent can take, and the reinforcement applied

as a result of taking an action. In every state, the agent can choose from a list of possible actions, which

cause a transition to a new state or a self-transition. Every action which the agent can take in a given state

is labeled with a reinforcement value; the agent will choose the action with the highest reinforcement

value. The set of reinforcement values for all states is called a policy. The goal of reinforcement learning

is to find a global optimum policy, which leads to an agent behavior where the actions taken by the agent

in all states maximally contribute to the goals of the agent. The difficulty is that the positive or negative

effects of actions might not become measurable immediately, only later in time. The calculation of this

“delayed reward” is the central problem of reinforcement learning.

Our implementation uses temporal difference (TD) learning [25]. We estimate the reinforcement

function Q(s, a) representing a combination of local and global reward for every state-action pair. The

value of Q(s, a) is maintained for all the combinations of state and possible actions. The value of Q(s, a)

is updated as follows:

Q(st, at) = rt + γ ·max(Q(st+1, at+1)) (3)

where Q(st, at) is the value for the state-action pair at time t, rt is the the (immediate) reward for that

state action pair and γ ∈ [0, 1] represents the balance between local and global reward. Notice that the
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values at time t can be rewarded only after the actions at time t + 1 are known. The formula can be

expanded to a longer chain of actions as follows:

Q(st, at) = rt + γ · rt+1 + . . . + γn−1 · rt+n−1 + γn ·max(Q(st+n, at+n)) (4)

If an action only leads to a positive result several stages later but the action itself has no reward, that

result will immediately propagate back, based on the gamma value, to the initial action and therefore

favor it. It can be shown, however, that the TD formula converges to the same Q function regardless of

the choice of n, the choice of n having an impact only on the speed of convergence.

If the system in which the TD-learning takes place is nondeterministic, where the successor state of

an action is known only probabilistically, the formula needs to be modified as follows:

Q(st, at) = (1− α) ·Q(st, at) + α · (rt + γ ·max(Q(ss+t, at+1))) (5)

where α = 1/(1 + visits(s, a)) is related to the number of times that the state action pair has been

visited.

Implementation: The agent was implemented using a TD-learning algorithm, extended to a chain of 5

actions. We chose to leave the discovery of game intelligence completely to the learning algorithm. The

task of the programmer was only (a) to define the actions, (b) define the states and (c) define the way in

which the reinforcements are applied.

The behavior of the agent was modeled with 24 actions. 20 actions represented the movement of the

agent in the four directions with the five possible speeds. Four actions modeled the ability to eat, attack,

flee and multiply.

The state of the agent was represented by a triplet composed of the Energy, ActionPossibility and

Sensing sub-states as enumerated in Table IV. The Energy and ActionPossibility sub-states are self-

explanatory. For the Sensing sub-state, we have divided the sensing area in four quadrants, and the

observations in each of these quadrants were assigned to one of the four categories: Obstacle, Food, Agent

or Nothing. To reduce the number of states, we have deployed tie-breaking algorithms, and the quadrants

were characterized with the most relevant sensed information. Combining the Energy, ActionPossibility

and Sensing sub-states, we obtained a system with 5120 possible states and 117760 possible action-state

pairs.

The main component of the reward or penalty of the agent was the energy difference between turns. In

addition to this, the agent was penalized for failed actions such as hitting an obstacle, attacking without
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TABLE IV

POSSIBLE VALUES FOR THE SUBSTATES OF THE REINFORCEMENT LEARNING AGENT

Name Count Values

Energy 5 0-5000, 5000-10000, 10000-15000, 15000-20000, >20000

ActionPossibility 4 CanFlee, CanEat, CanAttack, NoAction

Sensing 256 e.g. (North:Food, West:Obstact, East:Agent, South:Nothing)

the presence of an enemy agent and so on. To discourage infinite loops, a penalty was given to repetitive

movements.

For each of the 117600 state-action pairs we stored the Q value in a floating point variable and the

number of visits as an integer value. The size of the database was 1.5 MB, stored in persistent storage,

and loaded by the reinforcement agent at the beginning of the game. When operating in the learning

mode, the table was updated by the agent during runtime and saved at the end of each run. The training

runs were performed by letting several ReinforcementAgents compete against each other in a series of

games.

The reinforcement was applied using the action-chain TD update rule, with the length of the chain

being 5. Let us provide some intuitive justification behind the choice of this number: (a) the rules of the

movement of the game allow a series of 4 moves which return to the same position, a combination we

wanted to penalize, (b) we found that any food item in the sensor range can be eaten with a combination

of at most 4 moves and 1 eat action, a combination we wanted to explicitly reward.

Heuristics: We decided to use a radical paradigm-pure approach. No heuristics were implemented and

the the actions learned by the agent directly match the low level actions provided by the FFM framework.

In hindsight, this led to a performance disadvantage compared to other implementations which were more

liberal in adding heuristics and domain specific knowledge.

There are several, relatively natural ways to embed heuristics in a reinforcement learning agent. One

way, for instance, is to introduce high level actions, which encapsulate well known algorithms or action

sequences which empirically have proven useful. One example of such an action would be “move to (x,y)

while avoiding obstacles”, “pursue and repeatedly attack agent A until it is destroyed”, or “flee from

agent B until it is out of sensor range”. Another approach would be to introduce high level states, which

are results of evaluation functions such as “being close to an opponent agent with a superior energy

level”. Using such high-level states would shift the work from the learning algorithm to the programmer;
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in the current implementation the choice of actions and states is very straightforward and it requires only

a knowledge of the rules of the game, not of its tactic and strategy.

Another possibility would be to explicitly remove forbidden actions from consideration, rather than

learning to avoid them through negative reinforcement. This would have no influence over the performance

of the agent, but it would accelerate the initial phase of learning.

Results: We found it instructive to observe the behavior of the Reinforcer agents during their learning

process. As the Q function was initialized to zero at the beginning, the agent started by performing

random actions, most of them being invalid. As the learning was progressing, the agent was gradually

learning to ignore invalid actions and the behavior became subjectively more “purposeful”.

After several hundred iterations, the agent managed to independently discover several complex

behaviors. One example is finding food in its sensor range, adequately navigate to it and eat it. The

navigation created a relatively complex problem, as the agent had only four directions of movement at

various speeds. For food situated at an angle, the agent needed to learn a combination of movements on

two directions. If the agent approached the food with a speed too large, it could overshot it, and find it

only after several back and forth movements. The agent learned to keep away from obstacles but could

not discover more advanced algorithms for avoiding them.

The training of the agent was done in an environment which contained several (very aggressive)

KillerAgents and several simple Feeder agents which were explicitly developed as training partners for

the ReinforcementAgent. The inter-agent behavior learned by the agent became to avoid or flee from

all the other agents in the environment. We speculate that this behavior was motivated by the fact that

any kind of fight led to an immediate negative reinforcement. The learning algorithm had apparently not

managed to discover the larger positive reinforcement stemming from successfully destroying another

agents. The relatively short chain of reward might have played a role in this.

To summarize, the system learned to find the food, avoid obstacles, avoid other agents and survive if

it is either alone on the map or in the company of relatively non-aggressive agents.

Development effort:

Paradigm implementation (10%) The reinforcement learning paradigm has a well specified, generic

implementation, which was easily translated from pseudocode to the implementation environment.

Agent implementation (10%) This part of the development effort involved designing the states and

the associated actions, and implementing the behavior associated with the actions. As the actions of the

reinforcement learning paradigm in our design correspond directly to the low level actions of the FFM

environment, the implementation effort was small.
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If we would have chosen an approach based on higher level actions and/or higher level observations

(based on the preprocessing of immediate sensor readings), the development effort in this step would

have been significantly higher.

Heuristics (0%) There were no heuristics in the implementation of the reinforcement agent.

Learning and tuning (80%) Most of the development effort went into the learning process. With its

relatively large state-action space, the agent required very extensive training sessions as naturally, every

point of the state-action space needs to be reached several times for effective learning to take place.

As the training depends on the environment and the behavior of the other agents as well, the learning

process was repeated several times, with different environment scenarios and “training partners”.

D. CBRAgent: case-based reasoning

The majority of human problem solving skills rely on heuristic knowledge or rules of thumb. Case-

based reasoning (CBR) is a paradigm that reuses heuristic knowledge by maintaining a knowledge base

of cases that have been used to successfully solve problems in the past. The concept of CBR was

first introduced in [21], where the activity of learning is modeled as a dynamic memory. The dynamic

memory model has been formalized for the field of artificial intelligence in [1] to form the paradigm that

is currently known as CBR.

The basic steps of CBR are retrieve, reuse, revise and retain. First, CBR retrieves the most relevant case

to the current problem at hand. The retrieved case is reused and revised to incorporate minor variations in

the solutions. This adaptation step gives CBR the capability to form more precise and accurate solutions

to select problems. Finally the revised solution is retained for future use. [11] has shown the capability

of CBR as an intelligent search method for controlling the navigation behavior of the autonomous robot.

Our implementation is an adaptation of this model.

Implementation: Our implementation of the CBR model contains six main components: feature

identification module, case library, case matching, case selection, case adaptation, and case retain. Feature

identification relies on the sensor data available for the agent. The FFM problem was represented with

the sensor parameters in Table V.

The case library of the CBRAgent contains 19 historic cases were selected based on the performance

of agent in the training simulations. Agent behavior can be refined by adding more specific cases to the

library.

The implementation of case matching is based on a distance matrix measuring the similarity between

cases. The distance is represented as the weighted sum of squared differences of sensor data. The weights
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TABLE V

PROBLEM REPRESENTATION INCLUDING SENSORY DATA.

Name Weight Possible Values

Food density 5 0...N

Distance to the closest food 1 0...40

Enemy density 10 0...N

Distance to the closest enemy 1 0...40

Distance to the closest obstacle 1 0...40

Ratio of agent and enemy health 10 0...N

Can attack 10 0,1

Can flee 10 0,1

Can eat 10 0,1

Can multiply 10 0,1

Action N/A eat closest food item, attack closest agent, mul-

tiply, flee from closest agent, avoid, wander,

move

allow the agent to differentiate between the more and less important sensor readings. We used two different

case selection methods. The first approach utilizes elitism, with only the most similar case selected for

execution. The second approach uses the random selection of cases that reside within a predefined distance

∆d of the minimum distance. The first approach is adopted when there are not enough historic cases to

efficiently use the second approach.

Heuristics: The CBRAgent follows very simple heuristics. When a high level action is specified by the

CBR module, the heuristic module adapts the action to suit the current environment. The CBR module

can be thought as the conscious mind which strategizes over high level actions, while the heuristic module

resembles an “instinct” or a learned skill.

The first heuristic determines whether the specified action is feasible. For example, eating requires

food to be within the sensory range. If there is no food in the sensor range, the heuristic module marks

the specified action as failed and proceeds to the next cycle. Such a failure will penalize the case that

produced the unfeasible action by reducing the reliability of the case. The reliability value is used as a

weight during the calculation of the distance matrix, so that cases with the lower reliability will have

greater distance in the subsequent cycles, and are less likely to be chosen for execution.

The second heuristic controls the direction and the speed of the agent movement. Actions require
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different directions and speeds depending on the goal of the movement. For instance, eating requires

a movement towards the food and a speed appropriate to the goal of stopping at the food location.

Wandering actions strive to explore more areas in the world and therefore select the direction and the

speed in a randomized manner.

Results: Our implementation of the CBRAgent yielded acceptable performance, having a good survival

rate and relatively high levels of energy at the end of the game. The main problem in creating an efficient

CBR based agent is the selection of the correct set of cases. In our implementation, this was done by

hand, requiring a careful analysis of the game by the developer. Alternatively, we could have tried to

learn the cases, for instance, through a clustering algorithm such as K-means. This way, the bulk of the

development effort would have been shifted from game analysis to the guiding of the learning process.

Our initial experiments, however, had shown that the FFM game, despite its apparent simplicity, is very

difficult to learn through random exploration. Thus, the developers felt that a set of cases created by

clustering would almost certainly have yielded a lower performance than a hand-crafted one.

Development effort:

Paradigm implementation (20%) The implementation of the generic framework of the case-based

reasoning paradigm is a straightforward task, as the part of the paradigm which can be expressed in a

domain independent way is relatively minor. As the complexity of the agent increases, the implementation

of the CBR paradigm will become an increasingly smaller portion of the overall development effort.

Agent implementation (40%) This part of the development effort contained the identification of the

cases, the implementation of the corresponding behaviors in the case library. Agent implementation also

covered the choice and implementation of the case matching techniques. This technically could have been

implemented as part of the paradigm implementation, but the particularities of the FFM game made it

difficult to express it in a domain independent way.

Heuristics (20%) The heuristics deployed in the CBRAgent were (a) testing the feasibility of the

action proposed by the CBR engine and (b) control the direction and speed of agent movement.

Learning and tuning (20%) In our implementation, the CBRAgent was using online learning to adjust

the reliability value of its cases. For implementations which build their own case libraries (as opposed to

handcrafting it), this part of the development effort would also include this unsupervised learning step.

E. RuleBasedAgent: forward reasoning

RuleBasedAgent is implemented using the forward-reasoning rule based paradigm, with hand-crafted

rules. The agent is composed of an inference engine and a knowledge base. The knowledge base is
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partitioned into a fact base and a rule base. The fact base is the repository of all the truths sensed or

understood by the agent. An important part of the fact base is the current set of sensor readings, updated

at every reasoning cycle. The fact base can also contain data created by the rules interpreted by the

inference engine.

The rules have an IF antecedent THEN consequent structure. The inference engine determines which

are the rules whose antecedents are satisfied by the current fact base, then resolves the potential conflicts

based on the salience of the rule. The result of the inference process determines the next action by the

agent and updates the fact base with the changed status and short term objectives of the agent.

We found that the decisions with the most impact on the success of the rule based system are the

choices of representation for the actions and game situations. The FFM game is performed on a two

dimensional map containing obstacles, food, friendly and opponent agents. In addition, the game has a

temporal dimension as well: for instance, the agents can move with different speeds. A low granularity,

complete representation of the FFM world would require a very complex model, including, between

many others, a complete temporal logic, a logic of the 2-dimensional spatial relations, reasoning about

the objectives of opposing agents, and so on. Besides inflating the rule base, this representation requires

an inference engine which can match antecedents based on spatial and temporal relationships. A system

of such complexity was clearly out of the scope of the present project.

Our solution was to design the antecedents and consequents of the rule with game specific high level

terms. For instance, a rule could say: IF an opponent agent is in the sensor range AND its energy level <

my energy level THEN approach and attack it. This solution has the disadvantage that it needs procedural

calculation for the verification of the antecedents, and its consequents need to be translated into the spatial

domain. The advantage, however, is that relatively small number of rules can capture the strategy of the

game (our implementation used 15 rules). These rules are also easier to read, debug and adapt to small

changes in the rules of the game. Being similar in language to a common-sense description, they allow

for easy transcription of human expertise. However, the rules are specific to the game, and they cannot

form the basis of a general theory.

Implementation: The implementation of the rule based agent relies on the analysis of the game by

the developer and the encoding of the proposed strategy as rules. The agent is successful in the FFM

game if it can gather a large quantity of food, collaborate with agents of the same kind, and prevent the

success of the opponent agents by either direct attack or by starving them of resources.

Some behaviors of the agent can be described by immediate, one step actions, such as eating a food

item which is in the sensor range. Other behaviors represent longer term decisions, represented by special
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facts introduced in the fact base as a consequence of rules. Examples of these facts are AGGRESSIVE,

PASSIVE, FLOCK or GREEDY.

Let us consider, for instance, the relationship of the agent to opponent agents and other RuleBasedA-

gents. An agent has two choices when encountering the opponent. The first choice would be to avoid

the agent and get beyond the other agent’s sensor range. This avoids a possible fight that would decrease

the agent’s energy. Alternatively, the agent may find it beneficial to pursue an agent with the intention

of attacking and destroying the opponent agent.

The choice between the passive and aggressive behaviors depend on the existence of the PASSIVE or

AGGRESSIVE facts in the agent’s fact base. These facts are added or removed in function of the ratio

of energies between the agent and the opponent. We found that a threshold of 1.2 works well in practice,

that is, the agent behaves aggressively if it has at least 20% more energy than the opponent. By adjusting

this threshold, the developer can create agents with various levels of aggressiveness.

The rules describing these behaviors can be summarized as follows:

AVOIDENEMY

antecedents

sensing opponent agent(s)

PASSIVE fact in KB

consequent

move away from closest opponent agent

TOENEMY-1

antecedents

sensing opponent agent(s)

PASSIVE fact not in KB

AGGRESSIVE fact in KB

consequent

move towards the closest opponent agent

TOENEMY-2

antecedents

sensing opponent agent(s)

PASSIVE fact not in KB
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FLOCK fact in KB

consequent

move towards the closest opponent agent

The rule based agents implement a model of cooperative behavior loosely based on the concept of

flocking [19]. Whenever two rule-based agents come within each other’s sensor range, the agent with

the lower id acts as a leader and is followed by the agents with higher ids. When food is in the range

of the flock, the agents act depending on the presence of the GREEDY fact. When the fact is present,

the agent attempts to move and acquire the food without additional considerations. When the GREEDY

fact is not present in the fact base, only the agent which is the closest to the resource is attempting to

acquire it, thereby promoting a more efficient feeding process. As we have seen above, being part of a

flock also changes the aggressiveness of the agents. When a flock encounters an opposing agent all the

agents attack the opponent agent, irrespectively of the energy ratio.

Obviously, these are just some examples of possible behaviors which can be achieved. We note the

remarkable ease with which strategies developed by observing the game can be transferred to the agent.

This ability to explicitly express human knowledge or preference in the game strategies led to a linear

and predictable implementation process.

By playing against other agents, the rule based agent was continuously updated to offer better

performance. However, this process always passed through a human observer, who, through the study of

the game logs, devised new strategies to be encoded as rules. The rule-based agent does not implement

direct learning from experience.

Heuristics: The rule based paradigm is intrinsically heuristic; the rules can be seen as constructs

capturing the experience of a human expert. In addition to this, our specific implementation contains

further heuristics in the choice of the high level antecedents and consequents.

Results: Overall, the rule based agent provided a good performance, and it was remarkably easy to

create an agent which displayed the behavior envisioned by the developers. The number of rules being

relatively low, there was little conflict between the various rules, which was resolved manually using

simple salience values. The performance of the agent basically mirrors the ability of the developer to

analyze the game and express its knowledge in form of rules.

Development effort:

Paradigm implementation (20%) We have implemented a simple forward chaining rule based system.

The reason for this was the ability to do custom, procedural matching of the antecedents of the rules
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against the knowledge base.

There are many, freely and commercially available rule based systems, using complex, high performance

algorithms, such as RETE. In our case, we considered that the ability to perform arbitrarily complex

matching of the antecedents is more important than overall performance (due to the small size of the

knowledge base and the small number of rules).

In a rule based agent implementation, the development effort for this step can range from zero, if an

existing rule based system is used, to very large, if a complex, high performance engine is implemented

from scratch. However, the choice of a rule based system which does not allow to conveniently express

the concepts of the problem domain can make the agent implementation require significantly more

development effort.

Agent implementation (70%) The design and writing of the rules represented the largest part of the

implementation of the rule based agent.

Heuristics (0%) There were no heuristics in the implementation of the rule based agent, the human

knowledge being expressed directly in the rules.

Learning and tuning (10%) The rule based agent does not perform automatic learning. The agent

was tuned by observing its behavior in test runs. The perceived incorrect decisions were corrected by

adding or modifying rules.

F. Naı̈veAgent: naı̈ve programming, scripting

Naı̈ve programming is a style of coding that allows the developer to hand-optimize the code for

a particular task. While other agents in this study are centered around a “paradigm”, the goal of

Naı̈veAgent is to investigate what performance can be achieved without allegiance to any paradigm.

Naı̈ve programming is frequently the method of choice in character development for first person shooter

and role playing games, where the agents are made to play according to relatively restricting scripts. A

scripted agent does not implement an autonomous entity in the sense of the Belief Desire Intention model.

The agent does not take actions to further its clearly represented goals; rather, the sensors of the agent

are used to determine which predefined scenario does an agent need to follow. We note, however, that the

psychological theories of transactional analysis [2], [24] also conjecture that humans are enacting certain,

relatively inflexible scenarios in their behavior. Therefore, scripting-based naı̈ve programming might not

be as “paradigm-free” as it appears.

1) Implementation: The development of the Naı̈veAgent consisted on identifying the possible encoun-

ters and for each possible encounter, a script was written specifying how the agent should react.
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The main objective of the Naı̈veAgent was to maximize the number of Naı̈veAgents surviving at the

end of the game. To achieve this, the agent implements an aggressive mating strategy, multiplying at

every possible opportunity when this is technically feasible. In addition, the Naı̈veAgent shows altruistic

behavior towards other Naı̈veAgents in food gathering. If a Naı̈veAgent senses a food item which is in

the sensing range of another Naı̈veAgents, the agent with the higher energy level will refrain from taking

the food in favor of its peer. This behavior gives an advantage in cases when the number of Naı̈veAgents

is large, allowing more agents to survive on the same map.

The movement of the Naı̈veAgent is governed by simple, hand-crafted heuristics. Whenever it

encounters an obstacle, the Naı̈veAgent makes an evasive movement towards the right. To avoid repeated

movements, a failcount variable is incremented. After more than five right turns, the agent tries to

move in random directions.

The encounters between the Naı̈veAgent and opponent agents are governed by the following heuristics.

If the energy level of the opponent is more than 120% of the Naı̈veAgent, the Naı̈veAgent flees. If the

energy level of the opponent agent is less than 80% of the Naı̈veAgent’s, the Naı̈veAgent attacks. If there

is more than one opponent agent in the sensor range which meats the condition of attack, it will attack

the weaker one.

Heuristics: For the Naı̈veAgent, the heuristic is the paradigm, thus we consider the scripts described

above to be part of the heuristics of the agent. No additional heuristics were implemented.

Results: As expected, the naı̈ve agent was successful in implementing the behavior envisioned by the

developer. The performance of the agent was, therefore dependent on the ability of the developer to

analyze the game, and express its knowledge in form of scripts applicable to certain situations. In this

respect, it is similar to other explicitly programmable agents, such as the rule based agent. We found,

however, that the scripting approach led to a more rigid, less parameterizable behavior. Overall the code

organization did not favor tuning, the behavior of the agent being deeply encoded in code.

Development effort:

Paradigm implementation (0%) No paradigm framework was developed, the scripts were encoded

directly into the Java code. Other implementations might develop a special scripting language and

interpreter (as many game development systems are doing for controlling avatar behavior).

Agent implementation (0%) As we consider that the use of heuristics was the paradigm for this

implementation, we consider the full implementation under the heuristics header.

Heuristics (80%) Most of the development effort went into the creation of the scripts which encode

the behavior of the agent in various situations.
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Learning and tuning (20%) The agent was tuned by modifying the parameters of scripts by observing

the behavior of the agent in competitive scenarios.

G. GamerAgent: game theory

Game theory [15] is a mathematical formulation of cooperative or competitive interaction between

multiple entities. The assumption behind the game theoretic agent is that every encounter between two

opponent agents is modeled as a separate zero-sum game. At every encounter, the agent has the choice of

attacking or fleeing. An agent might attack with the intention of engaging into a major fight continuing

until one of the agents is destroyed; but it can also attack in order to force the other agent to flee (and

thus, waste energy and leave the agent’s zone of influence). Therefore the decision to attack or flee is

dependent not only on the energy balance of the two agents but also on the history of previous encounters.

The decision process of the agents, modeled as a two-choice, two-player game, is described by the

game matrix. The utility function of each agent depends on the λ and µ parameters. λ is the ratio of

difference in energy level of the GamerAgent Eg and the energy of the opponent Ea and is defined

as λ = (Eg − Eo)/max(Eg, Eo). µ is the likelihood of attack by opponent agent (based on previous

interaction). Naturally, 1−µ shows the likelihood of fleeing by opponent agent. The utility functions are

defined as follows.

Utility for attacking when opponent agent is expected to attack:

UA,A = (1− µ)× 100 + λ× 200 (6)

It is evident that the agent gets maximum utility by attacking when it has a positive high energy

difference ratio (i.e. when λ is closer to 1) and the likelihood of attack is minimal (i.e. when µ is closer

to 0). On the other hand, the lower energy difference ratio (i.e. when λ is closer to -1) and high likelihood

of attack (i.e when µ is closer to 1) tends to lower the utility to attack. It should be noted that change in

utility is more drastic with energy difference ratio than with the likelihood of attack. The reason is that

the agent would like to avoid a conflict if it has less energy, even if the opponent is not likely to attack.

Utility for attacking when opponent agent is expected to flee:

UA,F = µ× 100 + λ× 200 (7)

This utility function behaves the same way as above except that the highest utility is achieved with

highest value of λ and highest likelihood of attack µ. The reason for that is that opponent is expected to

flee and our agent should get highest utility by attacking the opponent who has been frequently attacking
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before. However, if the opponent is less likely to attack, the utility of attacking is slightly less. Note that

this does not mean that in case of large discrepancy of energy level, our agent will not attack (only that

it will get lesser utility by doing that).

Utility for fleeing when opponent agent is expected to attack:

UF,A = µ× 100− λ× 200 (8)

In this case, the agent gets highest utility in fleeing if the opponent is very strong (i.e when λ is closer

to -1) and is highly likely to attack. Slightly lower utility is obtained by fleeing if the agent is not likely

to attack. The least utility in fleeing is acquired when the gamer agent is very strong (i.e when λ is closer

to 1) and the other agent is not likely to attack (i.e µ is closer to 0).

Utility for fleeing when opponent agent is expected to flee:

UF,F = (1− µ)× 100− λ× 200 (9)

In this case, the most utility is obtained by fleeing if the opponent agent is very strong and is not

likely to attack. Since the opponent agent is expected to flee, the GamerAgent is also better off fleeing.

The least utility in fleeing is obtained when the gamer agent is very strong and the opponent agent has

been frequently attacking.

Based on these utility functions, the game matrix is shown in Figure 4.

UA,A UA,F

UF,A UF,F

Attack Flee

Attack

Flee

Opponent

G
a
m
e
r
A
g
e
n
t

Fig. 4. Game matrix for the game of the encounter between two opponent agents.

Given this matrix, the optimal strategy is selected based on opponent behavior. Figure 5 shows the

utility for attacking or fleeing when opponent attacks. It is evident from this figure that GamerAgent will

attack when the ratio of energy difference is a large positive value, (i.e. when λ gets closer to 1), and
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Fig. 6. Utility for attacking or fleeing when opponent flees

will flee if λ is negative. However, when the value of λ is closer to 0, the gamer agent’s behavior is

determined by previous interactions. In this case, gamer agent will flee if the opponent had previously

shown aggressive behavior, and it will attack if the opponent has been previously defensive.

Figure 6 shows the utility for attacking or fleeing when opponent flees. In this case, if the value of λ

is closer to zero, then the gamer agent will attack if the opponent has been attacking frequently and flee

if the opponent has not been attacking frequently.

Heuristics: As the game theory model describes the behavior of the agents only in the situations

of the encounter between two opponent agents, the remainder of the behavior needs to be controlled

through heuristics. The heuristics deployed were described in terms of IF condition THEN consequent

rules. However, only a single rule was allowed to fire per turn, and the action of the agent had to be

immediately determined by the consequent of the rule. Thus, the heuristic part of the GamerAgent does

not qualify as a full featured rule based system. Note, however, that the game theoretic model can easily

be integrated with other models such as rule based, context based reasoning or scripting.

Rather than provide a listing of the rules deployed by the agent we shall provide a description of

the policies they interpret. If food is visible in its sensor range and no opponent agent is present, the

GamerAgent navigates to the closest food item and eats it. In absence of any opponent or food item in

the sensor range, the agent exhibits an exploration behavior. A map of the previously explored locations

is maintained and the agent tries to explore the less recently visited locations. If there is an opponent

agent in sight the agent resorts to its main, game theoretic paradigm to determine its behavior; if there

is more than one opponent agent in the sensor range, the agent always chooses to flee. Finally, the agent
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uses the multiply action whenever its energy level reaches a threshold (currently set to 35000) and no

opponent is present.

Results: The GamerAgent performed well in the game. One of the conclusions of the development

was that the game situations where the game theoretic model can be applied are relatively rare. Our

game theoretic model is applied only at the encounter between two agents. If the other agents on the

map are avoiding the encounter - for instance, by moving away from the GamerAgent, the agent can only

enforce these encounters by maneuvers pursuing other agents. Similarly, some game situations, such as

an encounter where the GamerAgent interacts with an agent which has a lower energy value can occur

only if the GamerAgent was better (or more lucky) in energy gathering than the other agent.

In conclusion, at least in the embodied agent domain, game theory can be used as a basis for agents

only in combination with heuristics or other paradigms, as certain tasks, such as resource gathering, or

path finding can not be conveniently expressed in forms of games.

Development effort:

Paradigm implementation (10%) This part covered the implementation of the generic part of a two

player game, a relatively minor effort.

Agent implementation (20%) For the game theoretic agent, implementation included the specification

of the games and the design of the utility functions. The agent also included code for remembering

previous encounters, and based on that, to decide whether it will expect the opponent to attack or flee

in a given situation.

Heuristics (60%) The agent’s behavior between agent-to-agent encounters was controlled by the

heuristics. In our implementation, this included the policy implementation, the implementation of the

map of the explored parts and the exploration strategies.

Naturally, the effort for this part of the implementation depends on the decisions made by the developer.

However, as game theory only relates to agent-to-agent encounters, which are a small part of the game,

heuristics will always be a large part of the implementation of the game theoretic agent.

Learning and tuning (10%) This part of the development effort was spent in the observation of the

behavior of the agent in game runs, and tuning the utility functions and certain heuristics parameters for

improving the behavior.

H. CrowdAgent: crowd model

The goal of implementing the CrowdAgent was to create an agent which accurately models the behavior

of humans in crowds. Although the primary goal was anthropomorphism, we also hoped that with the
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addition of some simple heuristics of feeding, fighting and obstacle avoidance, the crowd model will

emerge teams of agents which can act successfully in the game.

Crowd simulation frequently relies on models of fluid systems or particle systems. These techniques

have their common roots in the fluid models based on Euler or Lagrange forms. Fluid systems set an

attractive or repulsive force and then model the frictional forces acting on the individual agents. Particle

system use frictional forces as well, but place motion decision with the individual agents [4]. Crowd

phenomena emerges naturally when a particle system is initialized with the appropriate parameters [13],

[26], [29].

Implementation: We decided to implement a system in which CrowdAgents are forming groups based

on their aggressiveness level. The aggressiveness level of an agent a at time t is Aa(t) ∈ [0, 10]. An

agent will start with an initial aggression rating Aa(0) = Ainit
a , and then migrate towards the aggression

rate of the surrounding agents:

A(t + ∆t) = A(t) +
(A(0)−A(t)) ·∆t

am
+

n∑

b=0

Ab(t)−A(t)
cosh ((Ab(t)−A(t))2)

· ∆t

max (dist2(a, b), 4)
(10)

This formula achieves two goals: (a) if the agent is not surrounded by other agents, it will gradually

return to its initial aggression level and (b) if the agent is surrounded by other agents, its aggression level

is pulled towards the aggression level of the neighboring agents, with agents which are close exercising

a greater influence.

The motion of an agent is related to the position of all the other agents in the sensor range, through

the following equations:





X(t + ∆t) = X(t) + Vx ·∆t ·∑n
b=0

pFb(X(t)−Xb(t))
max(dist3(a,b),1)

Y (t + ∆t) = Y (t) + Vy ·∆t ·∑n
b=0

pFb(Y (t)−Yb(t))
max(dist3(a,b),1)

(11)

The pF attribute is based on the aggression of the agent of interest and the aggression of the agent

in the sensor range. This is an attractive/repulsive attribute which is defined by a piecewise function as

follows:

pF =




− pfA

pfB2 · |A−Ab|2 + pfA if |A−Ab| <= pfB

4 · pfC ·
(
|A−Ab| − pfB+(10−pfB)

2

)2
− pfC if |A−Ab| > pfB

(12)

The pF factor will give an attractive influence for distances between 0 and pfB and a repulsive

influence for distances larger than pfB. The summation of these forces generate dynamic groups of
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agents. As long as the attractive forces are not too large, the individuals have the ability to separate from

a group, and join another group.

Heuristics: Crowd modeling deals only with the coordinated movement of the agents. While the

visual inspection of a set of CrowdAgents acting in the game did provide the desired anthropomorphic

impression of a crowd, this was not sufficient for the agents to be actually successful in the game. Thus,

a relatively high number of heuristics had to be added to complete the agents behavior in the situations

when the crowd modeling paradigm did not provide an answer.

We found that even the move command required some heuristic additions. One such heuristic was

movement towards food. When an agent spotted a food item in its sensor range, the heuristic moved the

agent towards it on the shortest path. In these cases, the heuristic took over the control of the movement

of the agent for a limited time. When the heuristic finished, the agent was reverted to movement according

to the crowd modeling equations.

Another situation where the movement of the agents was controlled by a heuristic was fleeing. Although

the paradigm does provide an answer to this problem, by applying a repulsive influence away from the

agents of differing allegiance, it was found that this is insufficient for an individual agent to get out

from an unwanted fight. Therefore we added a heuristic which explicitly calls the flee action in these

situations. One concern in this case is that through fleeing an agent might loose sensor contact with the

group to which it was belonging. If this does not happen, however, the flee action can actually help to

move the whole group away from the threat. As the agent always attempts to flee from opponent agents,

its behavior is highly defensive. The CrowdAgent can get next to an opponent only as a result of a pursuit

by the opponent. In these cases, however, the CrowdAgent will always choose to attack.

Another concern was the behavior of an agent outside a group. According to the equations of crowd

modeling, a solitary agent would stand still, which is not a good strategy in the context of the FFM game.

Therefore, we have implemented a random wandering strategy, which controls the movement of the agent

when there are no agents in its sensor range. Obstacle avoidance was implemented by repeatedly trying

out various directions of movement when an obstacle is present. Finally, the CrowdAgent is multiplying

with a specific probability whenever a sufficiently high energy threshold is reached.

Results: The CrowdAgent was successful in exhibiting anthropomorphic, crowd-like behavior. We

found that about 6 agents are needed for the influence of the crowd model to be visible. The CrowdAgent

was also relatively successful in surviving in the game; however, its performance was almost completely

determined by the heuristics. The crowd modeling approach covering a relatively small part of the

behavior of the agent, a major implementation challenge was the integration of the main paradigm with
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the heuristics. For instance, in the case of fleeing, there was a clear conflict between the goal of the

paradigm of maintaining the integrity of the groups, and the goal of the heuristic to get the agent as far

away from the opponent as possible. The reconciliation of these strategies is difficult, as the essentially

rule based heuristics and the physics based crowd model has no ways to communicate with each other.

The naive solution, used in our implementation, is to pass the control of the agent abruptly between the

heuristics and the paradigm. This is clearly suboptimal.

Development effort:

Paradigm implementation (20%) This part of the effort covered the adaptation of the particle crowd

model to our game environment, the implementation of the movement rules, and mapping them to the

actions of the agent.

Agent implementation (20%) Agent implementation covered the establishment of the aggressiveness

based affective model, translating it to the particle model, and mapping it to the events and actions in

the FFM game.

Heuristics (40%) As the paradigm covered only the movement of the agent, the remainder of the

actions were implemented by heuristics. Heuristics also controlled the movement of the agent in the

achievement of specific short term goals such as moving towards food.

Learning and tuning (20%) The parameters of the particle model were tuned by observing the agents’

behavior and manually modifying the parameters to obtain behaviors closer to the one envisioned by the

developer. This tuning process was complicated by the fact that the behavior of a CrowdAgent is a result

of a complex interaction between several agents, with the interaction between the model parameters and

the emerging behavior being complex and non-linear.

I. NeuralLearner: neural networks

Artificial neural networks are composed of (a) neurons, processing units which perform a simple step

or sigmoid function over the summation of their inputs, and (b) synapses, interconnections of varying

strength, which connect the output of a neuron to one or more other neurons. The behavior of the neural

network is determined by the number of neurons, their interconnections and the connection weights.

Although in some cases the connection weights are hand-crafted, they are normally learned through

supervised or unsupervised learning. The most frequently used neural network is the multilayer perceptron

(MLP), usually trained through a variant of the backpropagation algorithm [20]. Backpropagation is a

supervised learning algorithm: a network is presented with a set of inputs and desired outputs; the errors

are propagated back to the weights of the network and an adjustment is made in the direction of the
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steepest descent towards a correct output. Today, the most successful applications of neural networks are

those related to pattern classification. Relatively few studies have applied them as the control paradigm of

the agents. The main problem is the difficulty in acquiring good quality training data, as a study comparing

neural networks and genetic algorithms in evolving artificial life movement problems has shown [31].

The Polyworld artificial life simulation [30] uses a multi-paradigm approach which encompasses both

evolutionary algorithms and very general neural networks using Hebbian learning. The structure of the

neural network itself is evolved through a genetic algorithm [32]. A different artificial life study [8]

suggested that the combination of learning and evolution has a strong advantage over either element

taken on its own, but found the evolution of neural networks a very slow process.

Implementation: NeuralLearner is implemented with a single multi-layer perceptron which is used to

make all decisions regarding the behavior of the agent. The inputs to this network consist of the agent’s

current energy level and the presence and direction of food items, opponent agents and obstacles. Also

included in the input is whether the agent can currently eat, multiply, attack, or flee. The output of the

network is an action selection (move, eat, attack, flee, multiply), a direction (north, south, east, or west),

and the value of speed.

With this architecture, the neural network should, in principle, be able to represent and learn the

actions necessary to be successful in the environment. It was found however, that the creation of the

training data presented a major difficulty in the implementation of the NeuralLearner agent. Although

our findings mirror those found in several other studies concerning the implementation of agents based

on neural networks, let us review the various choices in the context of the FFM game.

Handcrafting the training data based on domain knowledge. In this case, we assume that we know

the mapping that the neural network should approximate, then create the training data on which the

network can learn the mapping.

We found that the best way to capture human experience about the game is through rules of thumb.

Although humans can readily generate a hypothetical game scenario to illustrate a rule, the handcrafting

of thousands of examples is not feasible. One way to create the necessary training data is to encode the

rules of thumb into an actual program, and use it to generate training data. Note, that this practically

amounts to the implementation of a rule based agent to serve as a target of imitation for NeuralLearner.

Unsupervised learning based on game feedback. The idea of this approach is that the neural network

agent will generate its own training data by effectively playing the game. The successful moves made by

the agent will be later fed back as a training data, while the unsuccessful moves discarded. Viewed as

a black box, the overall system would appear to be doing unsupervised learning, while the selection of
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the successful moves will be analogous to reinforcement learning. The implementation of this approach

requires an initially random agent which is exploring the environment, generates training data and goes

through periodic learning experiences.

We found that using an initially random agent is a very inefficient way to collect learning experiences.

Most actions in the FFM game carry a small punishment (the energy expense associated with moving).

Actions where rewards can be acquired, such as eating or killing an opponent, are relatively rare and

they require a set of preparatory steps. For instance, the eating action needs to be prepared by actions to

approach the food, which on their own carry no reward and are too complex to happen accidentally.

Thus we found it necessary to replace the random agent with an “explorer agent”, created by biasing

the random agent towards behaviors which would yield interesting training experiences. The agent was

moving towards food, other agents and obstacles with higher probability and it was favoring the more

interesting actions (such as eat, fight, flee and multiply) to movement actions. Notice that, again, we

reached a situation where we essentially handcrafted a naı̈ve agent implementation. However, this agent

successfully generated some usable training data.

Results: The final agent was trained using the training data collected from game runs of the explorer

agent. The neural network was a three-layer perceptron with 7 inputs and 13 outputs. All values were

normalized to the range [-0.5, 0.5]. The output was coded as either 0’s or 1’s indicating the choice of

action, direction, and speed.

The performance of the NeuralLearner was in general disappointing. As a partial success, the agent

has managed to learn a set of useful behaviors. It learned to move towards the closest item of food in

its sensor range and eat it if it was in its near proximity. It learned to move away from other agents.

One interesting observation is that, as implemented, the agent was unable to learn the apparently trivial

random wandering behavior. This behavior was the default for most other agent implementations, as a way

to discover available food resources on the map. However, due to the fact that a multilayer perceptron is

deterministic, the agent has always learned a fixed behavior for the case when no food opponent agents

were in the range. For instance, the final version of the neural agent has learned to always go north

whenever there was no food, or opponent agent in its range. One way to solve this problem would be to

provide a source of randomness to the agent - such as by adding a random variable to one of its inputs.

This, however, would likely lower its already low learning rate.

Development effort:

Paradigm implementation (10%) Our agent used the Java-based Joone neural network library. Thus,

the effort of paradigm implementation included only the effort of integration of the library with the FFM
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code.

Agent implementation (10%) This step included the design of the neural network, the encoding of

the sensor readings and actions, as well as connecting the neural network’s outputs to agent actions.

Heuristics (0%) As the neural network agent is paradigm-pure, no heuristics were implemented.

Learning and tuning (80%) The majority of the development effort for the NeuralLearner agent was

spent in the training of the neural network, and the creation and tuning of the training environments in

which the agent can learn useful behaviors.

J. SPFAgent: social potential fields

Social potential fields [17] are a way of controlling autonomous agents using inverse-power force laws

to exhibit organized, group behavior. In physics, a potential field describes the force per unit experienced

by an object at a given point. They are used to describe the effects of gravity on a mass or the force per

unit charge of a charged particle.

The first investigations into social potential fields involved solving obstacle avoidance problems, motion

planning, and collision avoidance of single robots. It was found that SPF allows the definition of behaviors

for the interaction of different types of agents, whether it is a predator-prey, parasitic, or symbiotic

relationship, and offers ways to implement obstacle avoidance. One of the problems of the approach is

the agent becoming stuck in local minima of the potential field. Thus the agent cannot operate exclusively

under the control of the potential fields.

Implementing agents based on social potential fields involves determining of the parameters of the

inverse power force laws, such that the desired behavior emerges from the combination of attractive and

repulsive forces. Let us consider the case of a leader-follower relationship. The follower agent will be

strongly attracted to the leader, so that it follows closely the lead’s movements. The leader has a weaker

attraction to the follower, such that its path is not affected significantly by the follower agent’s presence.

While this example seems deceptively simple, it has been found that for a dynamic system determining

the force laws for a given behavior is polynomial-space hard [18]. In practice, determining the coefficients

to enact a given behavior is an iterative process based on experience and experimentation.

Implementation: The movement of the social potential fields agent are governed by forces of attraction

and repulsion towards the other entities of the game. To simplify the behavior of the agent, and allow for

an easier setting of the parameters, we decided that the forces will be composed of only one attractive

and one repulsive component:

F (pa, po) =
( ca

rσa
+

cr

rσr

)
· pa − po

r
(13)
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TABLE VI

THE PARAMETERS OF THE SOCIAL POTENTIAL FIELDS FOR THE FOUR CLASSES OF ENTITIES CONSIDERED

Object of interest cr ca σr σa

Obstacle 5.0 0.0 5.0 N/A

Food 0.0 20.0 N/A 0.8

Opponent (n) 45.0 0.0 1.0 N/A

Friendly agent 45.0 20.0 1.0 0.7

with ca, cr ≥ 0 and σa > σr > 0. pa is the position vector of the agent, po is the position vector of

the object, and r = ||pa − po|| is the Euclidian distance between the agent and the object. As a further

simplification, we assume that the agent can not recognize individual entities only classes of them. The

four classes of entities recognized by the agent are (a) friendly agents (other SPFAgents), (b) opponent

agents, (c) food items and (d) obstacles. The coefficients ca, cr are the magnitude of the attraction and

repulsion force at unit distance, while the inverse power constants σa and σr determine the speed of

decay of the force with the distance. All these constants depend on the nature of the entity.

Programming the movement of the SPFAgent is done by determining the values for these constants.

Reasoning and experimentation plays an equally important role in this setting. The values used in the

final version of the SPFAgent are shown in Table VI. One of the problems we encounter is that while

the selection of values for pair-to-pair situations is relatively straightforward, the emergent behavior of

the agent when a large number of forces act over it is frequently unpredictable.

Let us illustrate the process through which an informal description of the desired behavior can be

transformed into force parameters, and the difficulties encountered in this process. It is desirable that

the agent avoids obstacles, therefore the agent should be repulsed by obstacles. On the other hand, an

obstacle should have an influence over the agent only when it is in its immediate proximity. We can

achieve this by making the exponent of the denominator relatively large, σr = 5, and the scaling constant

relatively small, cr = 5. This creates a force which is relatively strong at short distance, but decreases

rapidly with distance. There is no situation under which the obstacle should attract the object, therefore

we set ca = 0, and the value of σa is not relevant in this case.

Let us now consider the interaction between agent and food. The agents are unconditionally attracted to

food items, and never repulsed by them. At the same time, we want this attraction to work from relatively

large distances. If we would set σa = 0 the agent would be equally attracted to all food resources in its
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sensor range. However, we want to have a stronger attraction to the closer food items. Therefore we pick

the exponent as σa = 0.8 which means that the force is decaying somewhat slower than the increase in

distance. We pick the constant of the attraction force as ca = 20. The constant of the repulsion force cr

is set to zero.

The relationship between the agent and opponent agents needs to be first decided at a policy level,

followed by the transcription of this policy in the terms of attraction and repulsion forces. We decided to

create an agent which always tries to avoid confrontations. Therefore we set up a strong repulsive force

with a constant cr = 45 and σr = 1, with the constant of attractive force ca = 0. Note that the constant

of repulsion from opponent agents is larger than the constant of attraction to food items.

Finally, the interaction of the SPFAgent with friendly agents should result in a flocking behavior. The

SPFAgents should move in configurations where they keep a more or less constant distance between

each other, such that they can efficiently forage for food items, but not compete for the same food. We

can achieve this by setting up the force fields in such a way that a force of repulsion is acting if the

agents are too close to each other, but a force of attraction if they are too far. In general, the force with

the larger σ value will be dominant at short distance, while the force with the smaller σ will dominate

at longer distances. The agents will tend to position themselves at the equilibrium point, where the two

forces cancel each other out. This happens at the distance:

requilibrium =
(

ca

cr

) 1
σa−σr

(14)

With the values chosen in Table VI the equilibrium distance is 14.92 units.

Heuristics: The social potential field model only controls the movement of the agent, and it does not

account for other actions such as feeding, fighting and multiplying. However, as we have found, even the

movement of the agent required certain actions which are difficult to express with the social potential

field model. Therefore our agent deployed two types of heuristics: (a) the ones used to supplement the

movement rules as described by the social potential field and (b) the ones which control the actions of

the agent which can not be described as a movement.

The forces of the social potential field model have laws similar to the gravitational or electromagnetic

forces. As a result, an immediate mapping of these forces into movement yields results such as an agent

orbiting or oscillating around a food item; agents stuck in locations where two opposing forces cancel

each other out (the equivalent of the Lagrange points of the planetary systems) and so on. The absence

of a force of friction or viscous resistance is the explanation for this behavior.
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To correct the agents behavior regarding feeding, we added a heuristics which limits the influence of

the food items to the closest one and forces the agent to use a constant speed in the approach to food

(as opposed to the acceleration which would be implied by a direct application of the social potential

field equations, and which would make the agent overshoot the food location). An additional heuristic

detects periodic movements in the behavior of the agent (oscillation or orbit) and gradually disconnects

forces until the agent escapes the periodic movement.

The attack and multiply behavior of the agent was modeled with hand-scripted heuristics.

Results: The results of the SPFAgent were disappointing. We found it difficult to express the

requirements of the game in terms of attraction and repulsion forces. Some of the basic settings are

intuitive, such as being attracted to food and repulsed from enemies, being repulsed from obstacles.

However, there are many situations when these simple approaches fail. For instance, if an agent is

between two food items, the two forces will cancel (or at least weaken) each other. Repulsion from

obstacles makes it impossible for an agent to eat a food item situated right next to the obstacle and so

on. One approach to solve these problems would be heuristics which turn on and off selected forces at

appropriate moments.

We also found it difficult to use the SPFAgent’s teamwork facilities to its advantage. The objective

was for the SPFAgents to cover the area in a relatively uniform grid which partitions the resource area to

avoid competing for resources. We found that the inter-agent forces need to be relatively strong to allow

this grid formation. However, these strong forces were interfering with the other activities of the agents.

Development effort:

Paradigm implementation (30%) This part of the effort included the implementation of the calculation

of the forces of the social potential fields and the movement calculation based on these forces.

Agent implementation (10%) Once the force and movement calculation is in place, the implementation

of the agent is reduced to the choice of the ca, cr, σa and σr parameters of the forces.

Heuristics (20%) As the social potential field model covers only the movement of the agent, the

remainder of the actions were implemented using heuristics. One of the conclusions of the development

of the SPFAgent is that the number of situations which can be handled by the SPF model alone is lower

than we anticipated. The experience of the implementation and the low performance of the agent led

to the conclusion that a competitive implementation needs to use more heuristics and/or an additional

paradigm.

Learning and tuning (40%) While there were some useful rules of thumb in the choice of the ca,

cr, σa and σr values, the exact values had to be determined by experimentation, and the observation
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of the agents in specific situations. The existence of a large number of interacting forces makes this

task difficult. We found that for a competitive implementation we would need to develop debugging and

visualization tools, which would display the forces acting on the agent in real time.

K. CxBRAgent: context based reasoning

Context-based Reasoning (CxBR) [5], [6] is a behavior representation paradigm utilizing situational

contexts as a reasoning method similar to how humans make tactical decisions. CxBR models have shown

promise in experiments within simulated and physical environments [28] such as simulations involving

tactical missions undertaken by submarines, tanks, and other military vehicles, as well as automobiles

driving on the road. CxBR is based on the idea that:

• Any recognized situation calls for a set of actions and procedures that properly address the current

situation.

• As a mission evolves, a transition to another set of actions and procedures may be required to address

a new situation.

• What is likely to happen under the current situation is limited by the current situation itself.

Let us now outline the implementation of an agent in the CxBR paradigm. The main goals of the agent

are contained in the mission context, which also specifies the initial context and the default context of

an agent. At any given time, the behavior of the agent is determined by a single active major context.

The mission begins with the initial context being active. Whenever there are no other valid contexts, the

agent is controlled by the default context. The mission of the agent contains the list of major contexts

and the universal sentinel rules. A major context completely determines the behavior of the agent at a

given time; it encapsulates all the functions, rules and compatible context transitions, as well as a list of

applicable sub-contexts. The active main context changes not only as a response to external events and

circumstances, but also as a result of actions taken by the agent. Sub-contexts are low level procedures

that are auxiliary in nature to major contexts. A sub-context can belong to more than one major context,

encouraging code reuse.

The transitions between major contexts are controlled by sentinel rules, which constantly monitor the

agent and its environment. When a context is no longer valid, a sentinel rule fires and a context switch

is initiated by a transition sentinel rule. Universal sentinel rules are defined in the mission and they can

initiate transitions from an arbitrary context, even if the current context is still valid. Universal sentinel

rules take precedence over transition sentinel rules.
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Fig. 7. The contexts implemented by the CxBRAgent and the transitions allowed by the universal sentinel rules (continuous

line) and transition sentinel rules (dotted line)

Implementation: The CxBR agent was implemented using eight contexts (see Figure 7).

ExploreContext is the default and initial context of the mission. The agent keeps track of its position

on an internal map, and it moves towards directions which were not previously explored. When it reaches

a dead end in exploration, it will transition to BackTrackContext.

BackTrackContext is called from ExploreContext when there is nothing new to explore in the map at

the current location of the agent. The agent will then retrace its movement and search for new places to

explore. When it reaches a location which was not yet explored, it transitions back to the ExploreContext.

AttackContext is called from either the ExploreContext or BackTrackContext when there is an

opponent agent in the sensor range and the agent can attack the other agent based on a pre-established

attack criteria (e.g. the CxBR agent has 2000 more energy units than the other agent). The agent will

move towards the other agent and attack when the opportunity arises. The attack will continue until the

other agent is destroyed and the current agent goes back to ExploreContext or until a universal sentinel

rule brings the agent into the NearDeathContext.

AvoidContext is called from either the ExploreContext or BackTrackContext when there is an opponent

agent in the sensor range and the agent cannot attack the other agent. The agent will move away from the

hostile agent, trying to avoid being chased or attacked by the other agent. After the agent has successfully

avoided the other agent by establishing a safe distance, it will return to ExploreContext.
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EatContext is called from either the ExploreContext or BackTrackContext when there is food in the

sensor range. The agent will move towards the food and invoke the eat command on the food source.

After the agent eats the food, it will return to ExploreContext.

FleeContext is called by the universal sentinel rules when the agent has been attacked. This context

will stay active until the fleecycle reaches zero. Because the flee command has a high cost, it will

only be invoked for a limited number of cycles, followed by the regular move command at maximum

speed to continue running away.

MultiplyContext is called through the universal sentinel rules when the agent’s multiplying cycle has

reached zero and the agent has enough energy to multiply. The transition to this context happens with a

pre-determined multiplying probability. Once in the MultiplyContext, the agent will spawn a child agent.

NearDeathContext is called through the universal sentinel rules when the energy level of the agent is

below a certain threshold. This allows the agent to change its priorities of action towards self-preservation.

All the agent specific variables such as multiply cycles, attack proportion, or near death threshold can

be adjusted according to desired behavior. The CxBRAgent does not perform any kind of online or offline

learning. The complete functionality of the agent is hard coded in the contexts.

Heuristics: As the CxBR paradigm allows for a direct encoding of the heuristics, no heuristics outside

the paradigm was needed. The tuning of parameters such as the preference between the avoidance and

attack behaviors, the mating interval, a level of energy where the NearDeathContext is activated and so

on was done on an empirical basis. The CxBRAgent had also implemented an incrementally built internal

map of the environment, which allowed for a better exploration behavior.

Results: The CxBR paradigm provided a simple way to analyze and encode the behavior of the agents.

As it leaves considerable freedom to the programmer in the implementation of the contexts, it allowed the

developer to implement the desired behavior directly. In these respects, the implementation experience

resembled the one in the naı̈ve programming agent - however, the CxBR paradigm enforced a more

structured work methodology and a greater implementation discipline. This allowed the developer to

implement relatively sophisticated behaviors and transfer human expertise to the agent.

Development effort:

Paradigm implementation (20%) This part of the development effort covered the implementation

of the generic part of the CxBR model, the implementation of the context engine, the contexts and the

subcontext model, as well as the generic framework for the sentinel rules.

Agent implementation (60%) The main part of the development was spent on the implementation of

the contexts and the sentinel rules.
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Heuristics (0%) As the human knowledge about the game was explicitly encoded in the contexts,

there was no separate effort for developing heuristics.

Learning and tuning (20%) The CxBR agent was tuned by observing its behavior in test runs and

adjusting the context parameters and the sentinel rules accordingly.

L. KillerAgent: simple heuristics

The goal of implementing KillerAgent was to achieve maximum game performance with minimal

amount of code.

Implementation: The KillerAgent’s implementation does not follow any paradigm, relying only on

very simple heuristics.

Heuristics: KillerAgent uses a set of simple heuristics to implement a highly aggressive behavior. The

agent keeps track of direction, failed moves and successful moves. If the number of consecutive failed

moves exceeds a predefined threshold, the agent changes direction. When the agent detects food in its

sensor range it will immediately navigate to it and eat the food. If the agent senses other agents in its

sensor range, it will attack them; attacking takes priority over any other action. If the agent itself is

attacked it will flee. KillerAgent does not utilize the multiply feature or any teamwork strategies.

Results: The KillerAgent’s behavior corresponded to the intentions of the developers. Interestingly,

even with its very simple heuristics and unbalanced behavior, the performance of the KillerAgent puts

it roughly in the middle of the field, outperforming all learning based paradigms, but showing a lower

performance than most explicitly programmable paradigms.

Development effort:

Paradigm implementation (0%)

There is no paradigm for the KillerAgent.

Agent implementation (0%)

There is no paradigm-compliant part of the implementation.

Heuristics (100%)

The full development effort of KillerAgent went into the implementation of the heuristics. We should

note that this implementation effort was much smaller than the one for the other agents in this study.

The total development time was several hours, rather than about weeks.

Learning and tuning (0%)

No learning or tuning was performed. The implementation of the heuristics were done by the initial

assessment of the game by the developer. The heuristics were not tuned or modified based on observation
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of the agent in the game.

IV. IMPLEMENTATION EFFORT

An important consideration in the choice of an agent paradigm is the effort and complexity of the

implementation. Everything else being equal, a simpler implementation is frequently preferred, as it

leads to a more maintainable code, with usually smaller number of defects.

The software engineering metrics for each implementation are shown in Table VII. The total lines of

code (LOC) in conjunction with total lines of code inside all method bodies (MLOC) are an indicator of

the development effort for each paradigm. In addition, we use cyclomatic complexity [12], to measure

the complexity of the conditional flow within each implementation. We show values for the maximum

cyclomatic complexity (MCC) found in a single method as well as the sum of cyclomatic complexity

(SCC) over the complete implementation of the agent. All these measurements were applied strictly to

the specific agent code and did not include the services provided by the environment neither external

libraries. The only paradigm using an external library was NeuralLearner.

Table VII shows that the NeuralLearner required more developer effort than any other paradigm. Also,

the NeuralLearner was implemented using an external neural network library not included in the software

metric calculations. The behavioral models such as social potential fields and crowd modeling have a

relatively low count of lines, while agents with explicit programming models, such as CBR, CxBR or

RuleBasedAgent have a relatively large number of code. As expected, KillerAgent is the most trivial

agent, implemented with only 96 lines of code where 75 lines of code reside in method bodies.

We use the SCC to MLOC ratio for comparison of cyclomatic complexity between the paradigms.

AffectiveAgent, NaiveAgent and CxBRAgent all have ratios greater than 0.4. This means that for every

line of code (inside method bodies) there is on average 0.4 conditional flow statements. These values

indicate high complexity in learning and decision making within the paradigms. In contrast, Reinforcer,

CrowdAgent and KillerAgent have low SCC to MLOC rations ranging from 0.22 to 0.27.

Table VIII summarizes the partition of the development effort. While at the presentation of the

individual agents we discussing this partition for each agent in part, let us now compare these efforts

across the various agents in the study.

We need to treat separately the two “paradigm-less” implementations Naı̈veAgent and KillerAgent.

For these agents, there is no effort spent on the implementation of the paradigm, all the efforts going

into the heuristics and the tuning of the agent. In the following comparisons we will ignore these two

agents (except where explicitly referred to).
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TABLE VII

CANONICAL SOFTWARE METRICS FOR EACH PARADIGM. LOC = LINES OF CODE, MLOC = METHOD LINES OF CODE,

MCC = MAX CYCLOMATIC COMPLEXITY, SCC = SUM OF CYCLOMATIC COMPLEXITY. PARADIGMS MARKED WITH (*)

HAVE EXTERNAL LIBRARIES THAT ARE NOT INCLUDED IN THE METRIC CALCULATIONS.

Name LOC MLOC MCC SCC SCC/MLOC

AffectiveAgent 223 117 31 48 0.41

GenProgAgent 647 477 25 143 0.30

Reinforcer 313 236 13 52 0.22

CBRAgent 1357 1060 31 320 0.30

RuleBasedAgent 706 536 18 176 0.33

Naı̈veAgent 327 289 81 118 0.40

GamerAgent 1259 944 24 343 0.36

CrowdAgent 425 345 13 87 0.25

NeuralLearner* 1454 1119 36 297 0.27

SPFAgent 229 179 48 55 0.30

CxBRAgent 1135 689 21 298 0.43

KillerAgent 92 75 17 20 0.27

First, we note that the paradigm implementation was a small to moderate (10%-30%) part of the

development effort for each agent. None of the developers have reported the paradigm implementation

to be challenging or problematic. The reason for this is that for most paradigms there are well specified

implementation instructions, pseudocode or even existing software libraries.

The agent implementation part, which, according to our definition, is the part of the implementation

process in the terms of the paradigm, ranges from 10% to 70%. It is largest for the explicitly programmable

paradigms, such as the rule based, context based reasoning, and, to some level, case based reasoning,

while it is low for the agents relying on learning.

The percentage of the development effort allocated to heuristics depends on whether the paradigm can,

on its own, cover the range of actions and situations encountered by the agent. For instance, the game

theoretic paradigm covers only the cases of encounters between two agents, while the social potential

fields and crowd models cover only the movement of the agents. In many cases, the choice of using

more or less heuristics is frequently a developer decision. In the course of the development process, we

have found several instances where heuristics were introduced because of the developer frustration with

the limitations of the paradigm.
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TABLE VIII

SUMMARY OF THE PARTITION OF THE DEVELOPMENT EFFORT (PERCENTAGES)

Name Paradigm

implementation

Agent

implementation

Heuristics Learning and

tuning

AffectiveAgent 10% 20% 20% 50%

GenProgAgent 20% 30% 10% 40%

Reinforcer 10% 10% 0% 80%

CBRAgent 20% 40% 20% 20%

RuleBasedAgent 20% 70% 0% 10%

Naı̈veAgent 0% 0% 80% 20%

GamerAgent 10% 20% 60% 10%

CrowdAgent 20% 20% 40% 20%

NeuralLearner 10% 10% 0% 80%

SPFAgent 30% 10% 20% 40%

CxBRAgent 20% 60% 0% 20%

KillerAgent 0% 0% 100% 0%

The learning and tuning component covers the automatic learning and the manual adjustment of

the parameters of the agent. The boundaries between learning and tuning are fuzzy, as the learning

process frequently requires manual intervention in the choice of learning scenarios, adjustment of learning

parameters and so on. Naturally, for the learning based paradigms this component of the development

effort is larger: 80% for the reinforcement learning agent and the neural networks agent and 40% for the

genetic programming agent.

A certain amount of tuning is necessary for every agent. However, we found that for some agents

developers spent a very long time tuning the agent (such as the case of social potential fields and the

affective agent). This is usually a sign of the fact that the developer is having difficulties expressing

the derived behavior in the constraints of the paradigm. In many cases this happens if the tuning of the

behavior of the agent happens through indirect parameters with complex interactions. Better debugging

and visualization tools might help improve this process. However, if the tuning of parameters becomes

a very large part of the development process, it is usually a sign of a major problem, and the developers

need to re-assess the implementation paradigm.

April 3, 2007 DRAFT



47

TABLE IX

FFM GAME CONFIGURATION USED IN ALL PERFORMANCE EVALUATION MEASUREMENTS.

Configuration Value Description

Map size 300x200 Width and height

Simulation cycles 1000 Game loop iterations

Initial energy unit population 50 Energy resources at start of game

Maximum energy unit population 60 Maximum number of concurrently available energy resources

Energy unit growth 0.1 Energy growth per simulation cycle

Maximum energy unit level 800 Maximum amount of energy available in each energy resource

Initial agent energy 8000 Agent energy at start of game

Agent processing cost 1 Processing cost applied at each game loop iteration

Agent maximum flee speed 15 Speed at which an agent can flee

Agent weight 0.1 Determines energy cost for movement

Agent maximum speed 10 Maximum normal speed which an agent can move

Agent energy intake 200 Maximum amount of energy that can be gathered per iteration

Sensor area 1600 Sensor area for each agent

Multiply cost 4000 Energy cost for invoking multiply command

Attack cost 100 Energy cost for invoking attack command

Agent attacked cost 1000 Energy removed from agent when being attacked

V. EXPERIMENTS

In the following we present the results of a series of test runs which quantitatively measure the

performance of the implementations under various scenarios. We repeat our disclaimer: the results do not

reflect the potential performance of the paradigms themselves, only the performance of a specific agent,

implemented by reasonably proficient developers, in a limited amount of time, following the paradigm.

We are publishing this information in the hope that it provide a useful input to software developers in

similar situations.

We performed two types of experiments. In the non-competitive experiments the agents are acting on

a map populated with a small number of agents of the same type. In competitive experiments, the map

contains two equal size teams of opponent agents. All experiments were executed using the FFM game

configuration presented in Table IX. The map we used is shown in Figure 2.
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TABLE X

INDIVIDUAL AGENT PARADIGM EVALUATION RUNS. DATA IS COLLECTED OVER 50 GAMES.

Name Agents Survivors Energy Exploration Move Attack Flee Multiply Eat

AffectiveAgent (A1) 12.46 8.02 2784.14 0.10 421.80 0.83 0.57 0.89 11.94

GenProgAgent (A2) 1.00 1.00 17144.27 0.32 805.06 0.00 0.00 0.00 93.94

Reinforcer (A3) 1.00 1.00 7330.79 0.11 356.46 0.00 0.00 0.00 0.40

CBRAgent (A4) 1.00 1.00 13388.70 0.26 770.08 0.00 0.00 0.00 53.82

RuleBasedAgent (A5) 2.36 2.36 19582.18 0.33 659.67 0.00 0.00 0.32 83.11

NaiveAgent (A6) 29.24 7.24 1894.32 0.52 349.31 0.00 0.00 0.97 19.97

GamerAgent (A7) 2.16 2.16 21105.46 0.39 588.96 0.00 0.00 0.37 107.80

CrowdAgent (A8) 2.62 2.62 6629.97 0.10 432.65 0.00 0.00 0.59 17.41

NeuralLearner (A9) 1.00 1.00 9294.27 0.10 957.52 0.00 0.00 0.00 15.68

SPFAgent (A10) 11.18 6.48 2225.94 0.08 557.78 0.63 0.00 0.82 7.32

CxBRAgent (A11) 2.80 2.56 27705.05 0.61 564.42 0.00 0.00 0.39 179.25

KillerAgent (A12) 1.00 1.00 19152.07 0.41 780.30 0.00 0.00 0.00 117.28

A. Results: Non-competitive

Non-competitive experiments are performed by running games where the agents are acting in an

environment populated with friendly agents of the same type. The goal of the agents is to survive and

maximize the sum of their energy levels. There is still a level of competition for the finite amount of

resources, although the agents might choose to implement an equalitarian sharing of the resources. From

the implementation point of view, agents recognize as friendly the agents with the same type string. We

can still create opponent agents from the same code by labeling their type differently, e.g. CBRAgent-1,

CBRAgent-2 and so on.

The statistics in Table X are the averages of 50 game runs for each paradigm and show the average

values for total number of agents created during the game; the number of survivors at the end of the

game; the average agent energy at the end of the game; the map exploration percentage (ranging from

0-1) and the average number of move, attack, flee, multiply and eat commands invoked. Naturally, the

attack and flee statistics will be low in these experiments since most agents were designed to never attack

friendly agents. The box-plots in Figure 8 and Figure 9 show the median, inner quartile, outer quartile

and outliers of the collected data for each agent paradigm.

Through these diagrams we can interpret the general strategies of the paradigms, as well as their relative

success in following their strategy. The number of agents created during the game shows that only about
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half of the implementations choose to take advantage of the multiply feature of the game. In general, the

paradigms which use teamwork had chosen to multiply more often, such that they can better deploy their

teamwork strategies. SPFAgent, AffectiveAgent and CrowdAgent exhibit this behavior. The strategy of

the NaiveAgent is to create a large number of agents, however, most of these agents failed to survive. In

the experimental setup we can see that the cost for multiplying is high. Therefore, Naı̈veAgent’s overall

performance in terms of maintaining a healthy population is poor. Naı̈veAgent’s main weakness is that

it can not adapt to changes in game setup without re-scripting parts of the agent.

CxBRAgent, GamerAgent and RuleBasedAgent are the most efficient paradigms at gathering energy

resources and exploring the map. Notice, that this performance depends mostly on the heuristics. For

instance, in the absence of opponent agents on the map, the main paradigm of the game theoretic agent was

never invoked in these runs. There is a strong correlation between average agent energy and exploration.

CxBRAgent, GamerAgent and RuleBasedAgent are also able to maintain a healthy population.

B. Results: Competitive

The results for the competitive games were obtained through a pair-wise scrimmage of the paradigms.

Every game involved agents from two paradigms. The initial number of agents from each paradigm was

3. During the game, the number of agents can change through the multiply action, or by agents being

destroyed or starved. The type of agent whose sum of energy was the largest was declared the winner.

Table XI shows the percentage of wins over 64 games for each potential pair of paradigms.

The results are an average of 64 games. The final results are presented in the win-loose matrix in

Table XI. The results show the percentage of wins and losses over the repeated games in terms of the

total amount of energy of the paradigms agents at the end of the game.

As expected, the explicitly programmable paradigms provided the best results: CxBRAgent, GamerA-

gent, RuleBasedAgent and Naı̈veAgent are the most successful paradigms in the competitive experiment.

Naı̈veAgent presents an interesting case: while most paradigms fare better if they are in a non-

competitive environment, Naı̈veAgent, which has relatively sophisticated scripts for encounters with

opponent agents, but no self-regulating model, fares better in a competitive environment. We find this

observation illustrative for the strengths and limitations of the scripting based approaches.
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Fig. 8. Results of the non competitive experiments. The box plots show lower quartile, median, upper quartile and outliers of

50 repeated experiments.
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Fig. 9. Results of the non competitive experiments (cont’d). The box plots show lower quartile, median, upper quartile and

outliers of 50 repeated experiments.

VI. QUALITATIVE FINDINGS

A. Development process

The process of developing the twelve agents for this comparative study was organized in two stages.

In the first, closed phase, the developers were working on the agents in isolation. Only a very simple

random agent and the initial version of the KillerAgent was provided as an illustration of the API. The

testing in this phase was performed mostly in non-competitive settings. Some developers have tested their

agents in competitive scenarios, by running their agents under different type strings. In some learning

based paradigms the developers created “bootstrap” agents as training partners or ways to collect training

information.

In the second, open phase of the development process, regular competitive runs were organized,
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TABLE XI

WIN-LOOSE MATRIX FOR PAIR-WISE AGENT COMPETITIONS. DATA IS COLLECTED OVER 64 GAMES. THE STATISTICS SHOW

PERCENTAGE OF WINS AND LOSSES WITH RESPECT TO FINAL GROUPED ENERGY IN ROWS AND COLUMNS RESPECTIVELY.

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

A1 - 50.00 84.38 56.25 15.63 0.00 23.44 76.56 71.88 59.38 1.56 42.19

A2 50.00 - 98.44 64.06 21.88 28.13 12.50 78.13 75.00 81.25 3.13 31.25

A3 15.63 1.56 - 1.56 1.56 1.56 1.56 17.19 1.56 51.56 0.00 0.00

A4 43.75 35.94 98.44 - 25.00 18.75 17.19 62.50 60.94 73.44 1.56 21.88

A5 84.38 78.13 98.44 75.00 - 31.25 51.56 92.19 85.94 92.19 32.81 78.13

A6 100.00 71.88 98.44 81.25 68.75 - 40.63 76.56 84.38 75.00 31.25 65.63

A7 76.56 87.50 98.44 82.81 48.44 59.38 - 92.19 93.75 78.13 18.75 78.13

A8 23.44 21.88 82.81 37.50 7.81 23.44 7.81 - 43.75 57.81 1.56 10.94

A9 28.13 25.00 98.44 39.06 14.06 15.63 6.25 56.25 - 65.63 3.13 9.38

A10 40.63 18.75 48.44 26.56 7.81 25.00 21.88 42.19 34.38 - 6.25 28.13

A11 98.44 96.88 100.00 98.44 67.19 68.75 81.25 98.44 96.88 93.75 - 95.31

A12 57.81 68.75 100.00 78.13 21.88 34.38 21.88 89.06 90.63 71.88 4.69 -

which allowed the developers to observe the behavior of their own and of competing agents. However,

the developers could not use opponent agents in scripted training scenarios. The developers had the

opportunity to further develop or fine tune their agents to improve their performance in these competitive

runs. We encouraged the developers to share their heuristics with each other, and emphasized that the goal

is not to obtain the agent with the highest performance, but to best express the “spirit” of the paradigm.

Nevertheless, a certain level of competitive pressure did develop between the developers.

By allowing encounters between the agents during the development process, we tried to guarantee

that the agent can not win the game by a “surprise tactic” which might have been overlooked by the

other developers. An example of this occurred when one of the developers discovered a hole in the game

API, through which the agent could change the type string during the game and thus prevent attacks by

masquerading as a friendly agent. This security hole was patched.

The comparison study allowed us to observe the software engineering approach through which the

developers analyzed the problem, approached the implementation, debugged or refined the agents. We

were also interested in the ways whether the developers changed their software engineering methodology

in response to the initial performance results. We found that the choice of the paradigm was critical

in determining the flow of the development process. We encouraged the developers to use disciplined
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software engineering approaches, in particular the iterative waterfall model, following clear cycles of

requirements analysis, design, implementation and testing. We found that this model was followed very

well in paradigms which involved explicit programming.

For paradigms where the behavior of the agent was determined by learning or encoded in variables such

as force fields or affective or grouping parameters, software engineering techniques could only be applied

to the development of the framework of the implementation. The main problem was that the results of a

certain chunk of development effort was difficult to predict. Re-starting the learning process with a new

set of parameters had frequently led to an agent with a lower performance. Adjusting the parameters of

the force field to achieve a new behavior frequently invalidated previously achieved behaviors. All this

made it difficult to apply quality assurance techniques.

B. Explicit vs. implicit programming

We found that the explicit programming paradigms (scripting, rule based, CxBR and, to a certain level

CBR) were easier to program, yielded a steady improvement in their performance during the development

process and did not require costly rewriting (although, occasional Java refactorings were performed). The

human knowledge integrated in these agents allowed them to outperform their implicit cousins in test

runs.

All paradigms which relied on learning (neural networks, genetic programming and reinforcement

learning) have been successful in creating agents which can survive in the environment in the absence of

predators. For these paradigms the developers spent significant time designing learning scenarios in which

the learning process can be steered in the right direction. A major difficulty was that these scenarios had

to be populated with agents. The most problematic turned out to be the neural network agent, whose

supervised learning algorithm required an existing agent to perform the scenario to generate “correct”

input and output pairs. Admittedly, this issue would be irrelevant in applications where such an imitation

target exists and can be used at will.

Another challenge was the acquiring of meaningful learning experiences. Many developers expressed

frustration that the Feed-Fight-Multiply game is “not a good target for learning”. Indeed, most of the life

of an agent is spent in random wandering. Thus an overwhelming majority of the actions of the agent carry

no reward: in fact, they have a small penalty in the form of the energy expenditure for movement. Fighting

carries a heavy initial penalty, thus all learning algorithms developed an overly defensive behavior. The

energy reward for destroying an opponent agent is easily quantifiable but almost impossible to accidentally

discover. The indirect benefits, such as the removal of a competitor for resources are very difficult to
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quantify. Nevertheless, we find that the FFM game resembles many real environments in that meaningful

learning experiences are rare, and the chance of accidental discovery of a correct solution negligible.

Still, it would be a mistake to conclude that learning paradigms are not useful for developing embodied

agents. Rather, before the agent paradigm, its granularity level and its coverage is chosen, the developers

need to perform a careful analysis of what can, and what (most likely) can not be learned in the given

environment. We found that in the context of the FFM game there are three clearly distinguishable

subjects of learning.

Parameter learning is the search for the optimal value of certain numerical parameters with continuous

values which determine the behavior of the agent. An example is an agent which learns the best value of

the speed to be used in exploring the environment for food, such that the explored territory is maximized,

while the energy expenditure minimized relative to the possible reward.

Policy learning is the learning of a model which can decide which behavior (chosen from a discrete,

limited set) has to be applied in various circumstances. An example is an agent which learns to decide

whether to flee or fight an opponent agent.

Algorithm learning is the learning of a multi-step algorithm whose application benefits the agent. An

example would be an agent which discovers an algorithm for visiting food locations in the optimal order.

All learning agents were successful in parameter and policy learning and performed better than human

intuition for these tasks. Algorithm learning however, poses significant theoretical and practical problems.

From the studied paradigms only genetic programming is able to explicitly represent a general purpose

algorithm, but algorithms can be encoded indirectly in the neural network weights or the reinforcement

function. However, the size of the data structures associated with the current implementations significantly

limit the complexity of the algorithms which can be represented.

The closest thing to algorithm learning were the approaches developed by the reinforcement learning,

case-based reasoning and neural network agents for collision avoidance, or approaching the food items.

None of the models were successful in developing path planning algorithms (such as an approach for

visiting food locations). The genetic programming approach was the only learning model which would

represent (and, theoretically evolve) such a model. However, an examination of the evolved genetic

programs showed that they are more policy learning than algorithm learning.

The inability of the learning paradigms to discover algorithms inevitably put them at a disadvantage

against explicitly programmed agents which can deploy advanced algorithms such as A* path planning

and incrementally built internal maps. The practical conclusion is that developers can obtain the best

performance by limiting learning to parameter and policy learning, and supply the agents with explicitly
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programmed algorithms.

C. A rose by another name

Many paradigms led to surprisingly similar implementations, while giving very different interpretations

to the variables involved. For instance, the developers of affective models AffectiveAgent and CrowdAgent

used the variables describing the emotional states as just another state variable and applied regular

programming techniques on them, on hindsight labeling them with emotional significance. For instance,

the write-up for affective agents contained terms such as “emotional quagmire” for being stuck in a

local minima. On the other hand, many developers assigned anthropomorphic significance to their state

variables (“the agent gets angry”), even if their paradigm did not require it.

A similar phenomena was observed related to contexts. Context based reasoning, as implemented

in the CxBRAgent requires the developer to actively identify the context of the agents operation and

describes ways to handle it. However, the idea of a context was used in similar ways in other approaches.

RuleBasedAgent represented context with generated facts inserted in the knowledge base. The CBRAgent

utilized its “cases” in similar ways to contexts. The tactical behaviors evolved in the first step of the

evolution of the GenProgAgent are essentially behaviors appropriate for certain contexts, while the second

step of the evolution determines the context change rules.

The SPFAgent and the CrowdAgent ended up deploying very similar attraction and repulsion forces,

starting from different physical models and very different high level interpretations.

D. The flight into heuristics

Although the game was not easy (humans playing it at first time did not perform better than agents),

human users could easily come up with rules of thumb which can be used to make decisions in the game.

The ease of representing these heuristics in the agents was a determining factor in the performance.

Paradigms which can do this only in a very convoluted way (such as learning based models, and, in lesser

degree, the potential field, crowd and affective models), had scored the worst in direct comparisons. What

is more, certain types of mistakes committed by the agents were obvious even for casual observers, and

led to significant developer frustration.

Interestingly, developer frustration with certain types of suboptimal agent behaviors were not always

in direct proportion to its impact on game performance. For instance, due to the game physics, the

agents could easily overshot the food location if they approached it with a too fast speed. In this case,

many agents had to perform several back-and-forth movements to position themselves next to the food.
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However, although damaging to the agents’ “perceived performance”, this action actually consumed very

little energy, and had almost no influence over the performance of the agent. On the other hand, incorrect

decisions regarding the attack or flee behavior, or a bad choice in the multiplying behavior was not

detected by onlookers.

As a result, many developers have spent significant effort to fix the visually obvious mistakes. In most

cases, this involved a “flight into heuristics”. This tendency of abandoning the paradigm for ad hoc fixes

for perceived performance problems was especially visible in the second, open phase of development.

E. Paradigm-specific goals and generic paradigms

This study considered a large number of paradigms, bound together only by their ability to implement

an agent which can function in the Feed-Fight-Multiply environment. Most of these paradigms were not

originally alternatives to each other. Some paradigms were originally proposed as a generic programming

model (for instance, rule based systems), while others were developed as solutions for specific problems

(such as crowd modeling). The historical evolution of the paradigm and computer science in general, had

frequently changed the positioning of the paradigm. Some paradigms were found to be applicable to a

larger number of goals than originally designed. For instance, in this study we have found that context

based reasoning, originally proposed for the simulation of anthropomorphic agents, was found to be a

good methodology for the design of performance oriented agents.

For other paradigms it was found that they outperform other approaches on a more limited set of

problems than originally proposed. For instance, neural networks remain a vigorous research area with

strong applications, but they are not viewed any more as a general purpose solution to the goals of

artificial intelligence. Finally, some paradigms have shifted their focus from the domains they were

initially proposed.

The open nature, and the multiple paths to success of the Feed-Fight-Multiply game allowed us to

evaluate the strengths and weaknesses of the various paradigms against different stated goals. Raw

performance (in terms of maximum energy or highest number of agents) is not the only criteria against

which to evaluate an agent. If an agent is used in a simulation study, for instance, the anthropomorphism

of an agent - its ability to simulate the behavior of a human under similar conditions is the main goal.

A related concept is the believability of the agent. In contrast to anthropomorphism, which sets hard

standards for simulating human behavior, believability strives to create an illusion of natural behavior.

This is important in entertainment applications, such as games but also in training and interactive tutoring

systems. Agents used as game opponents might need to be designed to provide a predetermined level of
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performance in a consistent manner, such that they act as enjoyable game partners.

Different paradigms might be better choices depending on the stated goal of the agent. The goal of the

crowd modeling is not to design an agent which would provide a high performance, but to provide an

agent which models the behavior of humans in a similar situation. Anthropomorphism and/or believability

is also the central goal of the affective computing paradigm. Several studies have indicated that the use

of affective model can also provide agents with higher performance [23]. In our study we did not find

that the affective model would provide an immediate performance advantage, however affective concepts

were used successfully as design principles in many agents which obtained good performance results. It is

difficult to say if these performance advantages were obtained because of the use of affective concepts, or

whether the developers simply gave an affective interpretation to the terms after the design was completed.

Table XII concisely summarizes the application domain generalizations, specifications or shifts we

have experienced during the design and implementation of our agents. Note that the “initially proposed

application domain” column is specifying the “common wisdom” associated with these paradigms as

perceived by the authors, while the “perceived best use” is based on the implementation experience of

the Feed-Fight-Multiply agents.

F. “Paradigm-pure models considered harmful” or “Let us now praise the paradigm”?

Finally, let us consider a very general question: are paradigms useful at all in agent development?

To answer this, we need to first clarify the difference between an agent development paradigm and an

algorithm. A paradigm is a guiding principle around which the agent development is organized. Some of

the paradigms compared in this paper are also general purpose algorithms, which can be used in limited

parts of the agent, without requiring an overall commitment from the developers.

The question is whether there is any advantage of organizing the development of an agent around a

paradigm. This study required paradigm-pure implementations from the developers, that is, the developers

were not allowed to borrow elements from other paradigms. In general, academic research projects would

more likely be insisting on paradigm purity, as opposed to product development projects in the industry.

This is partially justified by the different deliverables of an academic research group vs. a development

team in the software or hardware industry. If our object is the study of a certain paradigm, paradigm purity

is a natural choice. But what about the case when the objective is to optimize some type of performance

measure?

In our study, the developers’ subjective opinion was strongly against the paradigm purity requirement.

As we have shown in the “flight into heuristics” section, many developers felt a significant peer pressure
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TABLE XII

INITIALLY PROPOSED APPLICATION DOMAIN OF THE PARADIGMS VS. PERCEIVED BEST USE IN THE CONTEXT OF THIS

STUDY

Paradigm Initial proposition Perceived best use

Affective programming Anthropomorphism, believability, performance Anthropomorphism, believability, if loosely in-

terpreted, general purpose design methodology.

Genetic programming General purpose learning Parameter and policy learning

Reinforcement learning General purpose learning Parameter and policy learning

Case based reasoning Algorithm learning Policy learning

Rule based, forward

reasoning

General purpose AI General purpose

Naı̈ve programming

(scripting)

Believability (in games) General purpose, performance

Game theory Decision making Decision making

Crowd modeling Anthropomorphism, credibility Anthropomorphism, credibility

Neural networks General purpose AI Parameter learning

Social potential fields General purpose movement control Specialized movement control

Context based reason-

ing

Anthropomorphism General purpose design paradigm.

to add additional heuristics, at the expense of the paradigm, to correct perceived performance and behavior

problems.

Certainly, some paradigms made it exceedingly difficult to transfer human knowledge and rules of

thumb to the agents, leading to performance problems. But, the other side of the coin is that an unchecked

free-form development leads to a random collection of heuristics whose interactions are poorly understood.

A good example is the Naı̈veAgent whose heuristics provided good performance in competitive scenarios,

but which starved itself of resources by exponential multiplication when it was alone on the map. Of

course, this could have been corrected with another heuristic, but it still leaves the basic problem unsolved.

In general our study supports the choice of a paradigm which can provide a coherent narrative to the

development process, but it is not so restrictive that it would hinder the transfer of human knowledge to

the agent. In particular, the ability to incorporate pre-existing algorithms is critical to the development

of high performance agents.
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VII. CONCLUSIONS

In this paper we reported on a study comparing 12 paradigms for implementing autonomous agents

in an environment inspired from artificial life and turn based strategy games. The paradigms cover a

wide variety of approaches, from high level, logic based approaches to behavior based, physical models.

Although apparently we compare “apples to oranges” these approaches are united by the fact that all of

them can serve as the central paradigm of an agent implementation. When a paradigm did not cover all

the aspects of the agent implementation, we complemented them with simple heuristics.

We have found that the choice of the paradigm determines the software development process and

requires a different set of skills from the developers. In terms of raw performance, we found that the best

performing paradigms were those which (a) allowed the knowledge of human experts to be explicitly

transferred to the agent and (b) allowed the integration of well-known, high performance algorithms. We

have found that maintaining a commitment to the chosen paradigm can be difficult; there is a strong

temptation to offer shallow fixes to perceived performance problems through a “flight into heuristics”.

Our experience is that a development process without the discipline enforced by a central paradigm leads

to agents which are a random collection of heuristics whose interactions are not clearly understood. We

have also found that many, apparently different paradigms, are different labels of fundamentally similar

principles, such as the notion of modeling movement through forces, the notion of context, and so on.

This study is part of our ongoing effort to investigate and compare methodologies for build-

ing embodied agents. The source code and playable simulation runs is available from the website

http://netmoc.cpe.ucf.edu/Yaes/index.html.
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