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Ladislau Bölöni and Damla Turgut
School of Electrical Engineering and Computer Science
University of Central Florida
lboloni@eecs.ucf.edu, turgut@eecs.ucf.edu

Summary

Mobile sinks can significantly extend the lifetime of a sensor network by eliminating the need for expensive hop-
by-hop routing. However, a sensor node might not always have a mobile sink in transmission range, or the mobile
sink might be so far that the data transmission would be very expensive. In the latter case, the sensor node needs to
make a decision whether it should send the data now, or take the risk to wait for a more favorable occasion. Making
the right decisions in this transmission scheduling problem has significant impact on the performance and lifetime
of the node.
In this paper we investigate the fundamentals of the transmission scheduling problem for sensor networks with
mobile sinks. We first develop a dynamic programming based optimal algorithm for the case when the mobility of
the sinks is known in advance. Then, we describe two decision theoretic algorithms which use only probabilistic
models learned from the history of interaction with the mobile sinks, and do not require knowledge about
their future mobility patterns. The first algorithm uses Markov Decision Processes with states without history
information, while the second algorithm encodes some elements of the history into the state. Through a series
of experiments, we show that the decision theoretic approaches significantly outperform naive heuristics, and can
have a performance close to that of the optimal approach, without requiring an advance knowledge of the mobility.
Copyright c© 0000 John Wiley & Sons, Ltd.

1. Introduction

Traditional sensor networks are composed of a set
of low power sensor nodes which collect information
and forward them through hop-by-hop routing to one
or more sinks. Sinks are assumed to have much
more computational power and energy resources than
the sensor nodes. The traditional vision of a sensor
network assumed both the sinks and the sensor nodes
to be static. Because of the low power resources of
the sensor nodes, energy conservation is an important

factor. Most of the energy of the node is spent for
the wireless transmissions. In this architecture, the
node needs to transmit both its own observations and
forward the transmissions of the other nodes.

An alternative approach, more economical in
terms of consumed power would be for the data
to be collected by a set of mobile sinks, which
are periodically visiting the vicinity of each node.
The sensor nodes are collecting and buffering their
observations, and occasionally transmitting them to
the closest actuator node. This approach leads to a
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2 L. BÖLÖNI AND D. TURGUT

better energy economy in the sensor nodes, because
it eliminates the costly forwarding of packets done by
nodes without renewable energy resources.

Naturally, there will be moments when there is no
mobile sink in the transmission range of the node.
Even when a sink is in the transmission range, it might
be so far that the transmission can happen only with a
large energy consumption. This creates a new problem
for the sensor node: should it send the data now, or
wait for a more favorable moment, when a sink will
be closer, thus the data can be sent with a lower power
consumption? Given that the necessary transmission
power increases very quickly with the distance (in
certain cases, for nodes close to the ground, it can
be as much as the 4th power of distance), the right
choice of the transmission moment can be of major
importance. Of course, if a sensor node waits too long,
it might be forced to transmit at the moment when its
memory buffer is full, while bypassing previous, better
opportunities. Even worse, if there is no mobile sink
in the transmission range when the buffer is full, some
amount of observations will be lost.

In this paper, we study the transmission scheduling
problem for sensor networks with mobile sinks. The
remainder of this paper is organized as follows. The
transmission scheduling problem, its applications and
possible strategies are described in Section 2. Related
work in the domain of sensor networks with mobile
sinks is presented in Section 3. In Section 4 we
present the Oracle Optimal algorithm, an algorithm
which calculates the optimal schedule of transmissions
providing that the movement schedule of the sinks is
known ahead of time. While this requirement, together
with the high memory and computational cost makes
it less suitable for deployment on a sensor node,
the algorithm will serve as a reference for the more
realistic algorithms we present in the next sections.
Section 5 describes a decision theoretic approach to
the transmission scheduling problem. The approach
is based on the building of probabilistic models
of the environment and positions the problem as a
Markov Decision Process (MDP). We propose two
versions of the MDP encoding: one without explicit
encoding of the history of mobile sink and another
one with a simplified encoding of the history. In
Section 6 we present the results of an experimental
study. As expected, the Oracle Optimal algorithm
outperforms the other algorithms. We show that the
decision theoretic algorithms show a performance
close to the optimal and significantly outperform
simple heuristics. We conclude in Section 7.

2. The transmission scheduling problem

The transmission scheduling problem for sensor
networks with mobile sinks is centered on the
decisions of the node whether to transmit or not its
currently collected set of observations to a mobile sink
at a particular moment in time.

Sensor networks with mobile sinks have appli-
cations in areas ranging from environmental data
collection to battlefield surveillance. The transmission
scheduling problem appears in most of these deploy-
ments, although in slightly different formulations. For
instance, our assumption is that data transmission is
initiated by the sensor node, thus the transmission
scheduling problem needs to be solved by the node.
If a certain architecture requires the data transmission
to be initiated by the sink, the transmission scheduling
problem must be solved by the sink. The only
scenario when the transmission scheduling problem
is irrelevant is when the mobile sink visits the sensor
nodes regularly and positions itself at a predetermined
position for receiving data.

In the following, we describe our assumptions about
the deployment scenario. Naturally, the algorithms
proposed in this paper need to be appropriately
modified if deployed under different assumptions.

• The mobile sinks visit every sensor node; all
the nodes will be eventually visited by a sink.
This does not necessarily mean that all the data
collected by the node can be transmitted to the
sink; it is possible that the time interval between
two visits is so large that even with an optimal
strategy some data will be lost.

• The data transmission always happens between
the sensor node and the closest mobile sink.

• The sink does not move during the transmission.
• The nodes have a finite buffer of constant size

and collect observations with a constant bit rate.
• There is no deadline associated with the

transmission of the observations. That is, the
node can buffer information for an arbitrary
amount of time without penalty.

Naturally, the relaxation of some of these assump-
tions leads to more complex problems.

One of the most important assumptions is that we
consider all the transmissions to be from the source
node to the mobile sinks. If we assume that the nodes
can choose between a single-hop transmission to the
sink or a multi-hop transmission, a series of new,
complex choices appear. The node needs to decide
whether to transmit to the sink, to the neighboring
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SHOULD I SEND NOT OR SEND LATER? 3

nodes (initiating a hop-by-hop transmission), or to
wait. At the same time, the node needs to make
decisions whether and when to transmit, buffer or
drop incoming hop-by-hop messages. While the cost
of the node-to-sink direct transmission is limited to the
node, the energy cost of the hop-by-hop transmission
is spread across the nodes of the path. While an
interesting challenge, the detailed consideration of
such systems are outside the scope of this paper. We
will show that an important special case, when the
nodes resort to hop-by-hop transmission only to avoid
loosing data, can be handled with our model.

Let us now consider the objectives of the nodes.
In the big picture the nodes are striving to transmit
all the observations (that is, to minimize the number
of observations lost) while simultaneously minimizing
the energy consumption. The scheduling strategy will
try to minimize an objective function which represents
a balance of these two factors. Neither of these two
objectives alone would yield the desired behavior.
Considering only the energy minimization criterion
would create a sensor which does not transmit any
observation. Considering only the goal to minimize
lost data would create a system which will transmit
at every available opportunity.

Thus, a suitable objective function would consider
both components, for instance, in form of a weighted
sum, which is calculated cummulatively over the
considered time interval. We call this objective
function the Cummulative Policy Penalty (CPP). The
“cummulative” aspect of the definition is important;
for instance a sensor can make a bad decision (e.g.
not to transmit at a favorable moment) without
immediately occurring a penalty.

The transmission energy is fully determined by the
physical factors. We use the following model for the
energy dissipation used for communication [17]:

ptx = (α11 + α2d
n)b (1)

where ptx is the power dissipated when the node is
transmitting to the mobile sink, d is the distance to
the sink, n is the path loss index and b is the number
of bits transmitted. α11 and α2 are positive constants.
The path loss index varies between 2..4 depending
on the environment and the position of the node. In
general, for sensor networks deployed on the ground,
the path loss index is higher. In our experimental study,
we will assume a path loss index of 4. Typical values
of the parameters are α11 =45 nJ/bit and α2 =0.001
pJ/bit/m4 (for n = 4).

In most cases, the data loss penalty component can
be determined by the user based on the requirements

of the application. A special case are systems which
consider hop-by-hop transmission only in the last
resort. These systems would transmit through a hop-
by-hop model only the information which in other
cases would be lost through buffer overflow. One way
to model this by setting the buffer overflow penalty to
the average cost of the hop-by-hop transmission.

3. Related work

The traditional view of wireless sensor networks was
based on the assumption of fixed sinks and multihop
routing in which every sensor node participates.
However, forwarding other nodes’ packets puts a very
significant load on the limited energy resources of the
sensor nodes. Significant research effort was spent on
methods to optimize the energy consumption of the
sensor network.

Recently, several research groups proposed
approaches based on the assumption of mobile sinks.
Whenever their deployment is possible, mobile sinks
can greatly extend the lifetime of the sensor network.
In the best case, the mobile sinks periodically visit the
vicinity of every sensor; in these conditions, all the
communication happens in a single hop between the
node and the mobile sink.

Naturally, the use of mobile sinks opens a number
of new research challenges. In the following, we
review some of these efforts grouped by the research
problems they concentrate on.

Routing towards mobile sinks. These types of
networks assume that only a subset of sensor nodes
are visited by the sinks. The nodes which do not have
direct access to the sink are using hop-by-hop routing
either towards the mobile sink or towards sensor nodes
which are periodically visited by a sink.

The MULE (Mobile Ubiquitous LAN Extension)
[19] architecture has three tiers: (i) a top tier of
WAN connected devices, (ii) a middle tier of mobile
transport agents, and (iii) a bottom tier of fixed
wireless sensor nodes. The mobile transport agents,
which are the equivalents of mobile sinks, are
opportunistic agents capable of short range wireless
communication with the sensors and wireless access
points. The agents use Markov chain theory to
determine the average values of the entities of interest.
The theoretical results were verified with a custom
discrete event simulator.

Scalable Energy-efficient Asynchronous Dissemi-
nation (SEAD) [8] is a distributed self-organizing
protocol that reduces the energy consumption by
the construction of a dissemination tree (d-tree) and
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dissemination of the data to the mobile sinks. SEAD
extends the data placement heuristic [2], but differs
from it by the use of mobile sinks and relaxing the
high network density assumption. SEAD is evaluated
using ns-2 and its performance is compared against the
Directed Diffusion [9], Two-Tier Data Dissemination
(TTDD) [13], and ADMR [10] protocols in terms
of energy consumption per node and average end-to-
end delay. The simulation results show that SEAD
outperforms these approaches in terms of building and
maintaining dissemination trees to mobile sinks.

Hybrid Learning-Enforced Time Domain Routing
(HLETDR) [1] aims to deliver sensor data towards
a mobile sink over multiple-hops. The mobile sink
does not query for data but rather passively listens
for data “pushed” by the source sensor. The sensor
nodes are forwarding their observations towards the
moles, sensor nodes located within the sink’s path.
The objective is to forward the data in a path towards
a mole which is located within the proximity of the
sink. Once the data arrives at the mole, the mole
evaluates the “goodness” value of the path based
on the probabilistic local information of the current
location of the sink and reinforces the route towards
the sink. This reinforcement proliferates to the source
and sets up gradients.

Mobility models of the sinks. The mobility of
the sink can be categorized into three types: random,
predictable, and controllable. In case of random
mobility, the sink travels through the network in
a random walk fashion. In the case of predictable
mobility, the sensor nodes can learn the mobility
pattern of the sink and therefore can predict the
location of the sink at any given point in time. In
the case of controlled mobility the sink mobility is
adaptively controlled based on specific parameters of
the network and/or the deployed applications.

A model for controlled mobility is presented in [24].
In their experiments 256 homogeneous sensor nodes
are arranged in a square grid, with a single mobile
sink moving in the area. A linear optimization model
is used to determine which nodes the single mobile
sink visits and for how long. The authors find that
the energy depletion was more balanced across the
network and the network lifetime was extended up to
5 times compared with a network with a static sink.

The data collection process is modeled as a
queueing system in [5] to measure the impact of
predictable observer mobility (where the observers
correspond to mobile sinks). The network uses only
single-hop communication. The authors show that
predictable mobility can save communication power in

the sensor network. Knowing the path of the sink can
help the sensor and the sink find positions where they
can exchange data with the lowest possible power.

[22] examines how the various sink mobility
patterns affect the network lifetime. The goal is to
adaptively control the sink mobility to reduce energy
consumption, in turn maximizing the lifetime of the
network. The paper assumes an event-driven scenario
with multi-hop communication between the sink and
the sensors. The sink roams inside the network as a
result of the current events which are based on the
“intruder movement” event model.

The SEnsor Networks with Mobile Agents
(SENMA) [21] architecture was proposed for power
constrained large scale dense sensor networks.
SENMA consists of two types of nodes: (i) sensor
nodes which are resource constrained, lightweight,
and low cost, and (ii) resource rich mobile agents
(the equivalents of mobile sinks). SENMA relies on
one hop transmission between the sensor nodes and
mobile agents. For communication, the system uses
a slotted time division duplexing (TDD) system with
opportunistic ALOHA. The opportunistic ALOHA
turns off the sensor automatically when the mobile
agent is no longer in the proximity of the sensor.

The goal of the Two-Tier Data Dissemination
(TTDD) [13] protocol is to provide scalable and
efficient data delivery to multiple mobile sinks. TTDD
uses a grid structure in which only the sensors
placed in the grid points are required to obtain
information for forwarding. Nodes nearby the grid
points (dissemination nodes) receive queries from
the mobile sink. The queries travel through the grid
and data is forwarded back to the sinks by tracing
the reverse path. As TTDD forwards data only to a
fraction of the sensor nodes, it allows a lower control
overhead.

Mobility and routing. This category combines
projects which consider not only the mobility of the
sink, but also routing of the sensed data towards the
sink.

The Mobile Enabled Wireless Sensor Networks
(mWSN) architecture [6] uses multi-hop forwarding
to form a cluster around the expected position of the
mobile sink. mWSN is similar to Data MULEs in
that it is a three-tier architecture, with the top tier
composed of a base station, also called the final fusion
point, the middle tier including mobile sinks such as
mobile phones, laptops, and so on, while the bottom
tier contains the static sensor nodes. mWSN has two
operational modes: local and remote sensing. In local
sensing, once a mobile sink receives a response to
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a query sent to the fixed sensors, the collected data
is transferred to the base station for interpretation.
The query result will then be returned to the mobile
sink. In the remote sensing case, multiple mobile sinks
help gather the data of interest. In this protocol, the
sink trajectory is not controlled but rather it can be
estimated or learned. Theoretical results show that by
learning the mobility pattern of the mobile sinks, the
multi-hop clustering scheme can forward packets to
the estimated positions of the sink in more timely and
energy-efficient manner.

Kansal et. al., [12] proposed the use of controlled
and coordinated motion of network elements to
alleviate resource limitations and improve system
performance by adapting to the deployment demands.
The authors developed an Autonomous Intelligent
Mobile Micro-Server (AIMMS) prototype which
travels across the network to route data from the
deeply embedded nodes. Nodes have to relay data only
for the nodes which do not fall into the transmission
range of the micro-server.

In [7], multiple mobile stations are deployed to
extend the lifetime of the sensor network which is
divided into equal periods of time known as rounds.
Base stations are mounted on unmanned remote
controlled vehicles to be moved from one location to
another and they can be located only at specific places
called “feasible sites”. At the beginning of every
round, the location of the base stations is determined
using an integer linear programming model. The initial
locations of the base stations are selected by the
modified Minimum Cost Forwarding (MCF) routing
protocol [26].

[23] investigates various combinations of networks
with mobile sinks and/or mobile relays. The paper
describes a performance study comparing different
routing algorithms in three cases when (i) the network
consists of static nodes only; (ii) there exists a single
mobile sink; and (iii) there exists a single mobile relay.
A joint mobility and routing algorithm is described
which requires the entire network to know the current
location of the mobile node. The algorithm was then
enhanced such that only a small portion of the nodes
were needed to be aware of the location of the mobile
node while still achieving the same performance as the
previous algorithm. The comparison of mobile relay
and mobile sink revealed that for a sensor network
with a radius of R hops, O(R) mobile relays are
required to be equivalent in performance with the
mobile sink scenario.

A combination of base station mobility and multi-
hop routing strategy are proposed in [14] to maximize

network lifetime. The paper shows that data collection
protocols can be optimized, for instance for a better
load balancing among the nodes in the network, by
considering the mobility of the base station and multi-
hop routing. The authors find that the most desirable
mobility pattern for the base station is to follow the
periphery of the network. The simulation results have
demonstrated that highly loaded nodes reduced their
load by a factor of five and the joint mobility and
multi-hop strategy improved the network lifetime by
500%.

The MobiRoute architecture [15], an extension of
MintRoute [25], is a sensor network with mobile sinks
where the mobility is controlled and predictable and
the sinks have long pauses in their movement called
epochs. In a typical scenario, nodes send data via
multi-hop communication towards the mobile sink
which changes its location based on route traces. A
routing protocol forwarding data towards a sink must
carry out the following processes: (i) inform the node
when its communication link to the sink is broken
due to mobility; (ii) alert the entire network of any
topological variations; and (iii) reduce the packet loss
during the time when the sink moves to a different
position.

In [16], the authors design ANSWER, an
AutoNomouS netWorked sEnsoR system. The
architecture assumes static sensor nodes and (possibly
mobile) aggregation and forwarding nodes (AFNs).
An important role of the AFNs is to organize the
sensors in their immediate vicinity into a dynamic
virtual infrastructure which depends on the current
task. The AFN can perform a controlled mobility
which balances the benefits of getting closer to
the nodes recording a certain action with the
risks of getting too close to potentially dangerous
environments or agents. The paper also proposes a
specific communication infrastructure which puts
emphasis on a dynamic coordinate system, based on
coronas and wedges which also serves as a clustering
architecture, dynamic partitioning of the graph
through coloring and a security architecture.

Transmission scheduling is the process of deter-
mining when to transmit the buffered data.

Song et. al. [20] propose several algorithms for
transmitting from sensor nodes to a sink which
moves on a linear path. The optimal multiple nodes
transmission scheduling algorithm (MTSA-MSSN)
requires the sink to estimate its own current velocity
and direction of the mobility from GPS. The estimated
state, Ê(i), is modeled as a Markov chain in time
domain. The paper also proposes two suboptimal
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6 L. BÖLÖNI AND D. TURGUT

algorithms MSPS-MSSN and MSUS-MSSN. A series
of simulations are performed to study the tradeoff
between the number of successfully transmitted
packets and energy consumption. It was found that
the two suboptimal algorithms show very close
performance to the optimal MTSA-MSSN algorithm.

A distributed opportunistic information retrieval
algorithm that uses channel state information (CSI)
is proposed in [27]. This protocol encodes channel
state into the backoff strategy of the carrier sensing,
which improves robustness against propagation delay.
The information from the sensors is gathered by
the mobile access point. The sensors are sending
their data at the moment when they are activated
by a beacon signal from the mobile access point.
This opportunistic transmission strategy is extension
to SENMA [21] and CSI-based carrier sensing with
negligible propagation delay, the earlier works of
the authors. To minimize the effects of performance
degradation due to propagation delay, the backoff
function is constructed using asymptotic extreme
order statistics. The simulation results indicate that
the CSI-based carrier sensing performance decays
gracefully with the propagation delay. It is also shown
that the performance of the opportunistic strategy
depends on the number of activated sensors.

4. The Oracle Optimal algorithm for
complete knowledge transmission
scheduling

In this section, we develop an algorithm which
finds the optimal transmission schedule under the
assumption that the mobility pattern of the sinks is
known. The definition of optimality in this case is that
the algorithm finds a schedule which minimizes the
cummulative policy penalty for the specified interval.
The objective of this algorithm is to serve as a
baseline for the more realistic algorithms. We call this
algorithm Oracle Optimal to indicate the fact that it
needs advance knowledge of the future movement of
the mobile sinks.

As one of our assumptions we have stated that
the transmission always happens between the sensor
node and the closest sink. Thus, we can characterize
the mobility pattern of the mobile sinks from the
point of view of a node through the vector D =
(dtstart . . . dtstop), where dt represents the distance of
the closest sink at time t.

A transmission schedule is a set of k time points,
such that A = {tstart < a1, a2, ...ak = tstop}, ai <

ai+1 and dai ≤ dtr ∀i where dtr is the transmission
range of the sensor node.

We define the cummulative policy penalty as a
function CPP ([t1, t2], A) ∈ R. CPP can have various
expressions but it is additive over disjoint, consecutive
time intervals:

CPP ([t1, t2], {ai|ai ∈ [t1, t2] ∧ an = t2}+
CPP ([t2, t3], {bj |bj ∈ (t2, t3]}

= CPP ([t1, t3], {ai} ∪ {bj}} (2)

Let us now investigate the number of distinct
possible schedules. Let us assume that we have n
timepoints, out of which in m ≤ n points the distance
is smaller that the transmission range. At any of these
timepoints the sensor has the choice to send or not to
send, thus the number of valid schedules is 2m. As
m can be as high as n, the naive search for the best
schedule is of exponential complexity. We will design
a dynamic programming based algorithm which, for
the average case, can significantly reduce the number
of choices which needs to be investigated.

Property 1 If A = {tstart < a1, a2, . . . ak = tstop}
is the optimal schedule for the time interval
[tstart, tstop] than for all ai the schedules A1 =
{tstart, . . . ai} and A2 = {ai+1, . . . , ak = tstop} are
optimal schedules for the intervals [tstart, ai] and
[ai, tstop] respectively.

Proof: Let us assume that there is a different
schedule A′1 for which Ptotal(A1) > Ptotal(A′1).
Then the schedule A′ obtained from the concatenation
of A′1 and A2 will have a total power con-
sumption Ptotal(A′) = P (A′1) + P (A2) < P (A1) +
P (A2) = P (A), which means that A is not an optimal
schedule, which is a contradiction. 2

The pseudocode of the Oracle Optimal algorithm
is presented in Algorithm 1. While still exponential
in the worst case, the Oracle Optimal algorithm can
significantly cut the computation time by pruning off
branches of computation which yield worse solutions
than the ones already found. In addition, the algorithm
uses an additional heuristic to sort the solutions
starting from the most promising ones. The better
the heuristics, the more significant pruning can be
obtained. In addition to this, the algorithms uses a
cache for the partial results. The exact performance
analysis of the algorithm is outside the scope of this
paper. In practice, the algorithm showed acceptable
running times of less than a minute on a desktop
computer for datasets with up to 1000 possible
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SHOULD I SEND NOT OR SEND LATER? 7

transmission timepoints. However, the computational
complexity and the memory requirements (for the
cache) clearly exceed the possibilities of a sensor
node.

Algorithm 1 The Oracle Optimal algorithm
Function OracleOptimal(D = {dtstart , dtend},

currentBest)
If solution already exists in the cache

Return the solution from the cache
EndIf
PTP = possible transmission points in D
STP = PTP sorted by heuristics
For all points ai in STP

(A1, CPP1) =
OracleOptimal({dtstart , ai}, currentBest)

If CPP1 > currentBest
Continue

EndIf
(A2, CPP2) =

OracleOptimal({ai, dtend}, currentBest)
If CPP1 + CPP2 < currentBest

A = A1 ∪A2

currentBest = CPP1 + CPP2

EndIf
EndFor
add solution to cache
Return (A, currentBest)

EndFunction

5. A Markov Decision Process based
approach for transmission scheduling

A Markov Decision Process (MDP) models decision
making in situations where the outcome depends
both on the actions of the agent as well as outside,
stochastic factors. The operation of an MDP can be
briefly described as follows. The agent can be in any
of the states si, i = 1, . . . , n. The actions the agent
can take are aj , j = 1, . . . , m, although some of the
actions might not be available in all states. If an agent
in state si takes an action a it will transition to state
sj with probability pa(i, j). An important component
of an MDP is the reward or punishment: this can be
associated with a given state R(si), with an action in
a given state R(si, a) or with a certain transition taken
as a result of an action R(si, a, sj). The formulations
are ultimately equivalent, for matters of convenience
we had chosen the rewards to be associated with state-
action pairs.

For agents with a finite time horizon, the goal of the
agent is to maximize the sum of the rewards collected
over its time horizon. For agents with an infinite
time horizon we define a discount factor γ ∈ [0, 1],

and let the agent maximize the discounted reward∑∞
t=0 γt·R(st, at). The discount factor shows that the

agent prefers γ times less a reward at time t + 1
compared with the preference for the same reward at
moment t. γ is usually chosen as a value close to 1.

Solving an MDP is equivalent to finding a policy
P : S → A, that is, a rule which tells the agent that
in state si it should take action a = P (si). Following
the policy will maximize the agents’ discounted
reward. There are several ways of solving MDPs,
the most popular ones being value iteration which
seeks to establish the value of each state and policy
iteration which seeks to find the policy directly,
without establishing the state values as well. Various
combinations of these approaches are also frequently
used.

The Markovian nature of the problem is reflected
by the fact that the action of the agent depends only on
the current state - it does not depend on the history.
What this means in practice is that the MDP state
needs to encode not only the state of the agent but
the state of the environment as well, together with
whatever historical information is deemed necessary.
Finding an efficient representation of all the necessary
information in form of a finite (and preferably small)
set of states is critical to the success of the MDP
approach. The advantage is that once we determined
this representation and have acquired the associated
probabilities, the MDP approach will calculate the
optimal decision policy (in the limit of the expressivity
of the state representation and the accuracy of the
transition probabilities).

The transmission scheduling problem can be
conveniently and (with some representational effort)
compactly represented in the terms of an MDP. The
general outline of such a representation is as follows.
The state of the sensor is determined by the level of
the data buffer as well as the distance of the closest
mobile sink. The actions of a sensor are whether to
send (SEND) or not (DO-NOT-SEND). The reward
associated with a state-action pair is the current
component of the Cummulative Policy Penalty, that is,
a combination of the cost of sending the content of the
buffer and the penalty associated with loosing data.

The transition probabilities between states reflect
the probabilistic evolution of the distance to the closest
mobile sink. We assume that the data transfer always
succeeds if the mobile sink is within transmission
range, thus this component of the state is fully
determined by the action of the agent and the previous
state. If the data buffer content was c bytes at state
si, after a SEND action it will be 0 bytes, while
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after a DO-NOT-SEND action it will be c + r bytes
where r is the data rate of the sensor. The MDP
model can also elegantly handle various complicating
assumptions. For instance, the fact that a transmission
might not always succeed can be simply represented
by adding two outcomes to the given action - one when
it succeeds and one when it does not.

Starting from this general model there are
several alternatives for the building of the MDP
model. We find that relatively subtle decisions can
significantly affect the performance of the model.
The main differentiator among these models is the
representation of the state. The other parameters of the
MDP, such as the transition probabilities are uniquely
determined, once the representation is decided (which
does not mean that they are necessarily easy to
compute). In the following, we describe in detail the
construction of two alternative models: in the first
model we build the most compact state representation
possible, while in the second model we include
information about the distance history at the cost of
the increase of the state space.

5.1. A historyless MDP model of the
transmission scheduling problem

In this model we encode the state as a tuple (b, d)
where b ∈ {1, . . . , m} is a quantization of the buffer
level, while d ∈ {1, . . . , n} is a quantization of the
distance of the nodes.

Let us now discuss the details of the quantization
process. The goal of the quantization of the distance is
to reduce the continuous valued distance measurement
to a (preferably small) number of discrete values. The
quantization is determined by a quantization schedule
QD = {d0, d1, . . . dn−1, dn} with d0 = 0 and dn =
∞. We say that a distance D is in quantum i according
to the schedule QD if di−1 ≤ d < di.

The choice of the quantization schedule can
influence the quality of the decision making. The
goal is to retain as much useful information as
possible, while at the same time reducing the number
of quantums. While developing a theory for the
optimal quantization of distance is beyond the scope
of this paper, we can apply our knowledge of
the application domain to develop an appropriate
quantization schedule.

First, the sensor knows about the distance of the
mobile sink through the transmissions or beacon
signals of the sink. One way this can happen is through
the sink broadcasting its own position. As the mobile
sink is usually a large device such as an unmanned

ground or air vehicle, we can make the assumption
that it has a GPS or other means of self-localization.
Another approach is the node measuring the signal
strength of the sink and using this information to
infer distance. For both cases, the accuracy of distance
measurement is limiting the number of quantums
worth considering. For instance, if the distance can
be measured with an error of -50% / +100% (which
is reasonable for a measurement based on signal
strength) then an appropriate choice of the quantums
would be 10, 20, 40, 80, 160 meters. If, on the
other hand, the measurement is based on a mobile
sink identifying its own position with an accuracy of
10 meters, for instance, through GPS, then the right
choice of the quantums would be 10, 20, 30, 40, . . . ,
and so on.

In all cases, the last quantum should be not larger
than the transmission range of the mobile sink MStr.
Note that if the sink has a high accuracy localization
method, we can still end up with a large number of
quantums.

The second consideration is the transmission range
of the sensor node Str, which is normally significantly
lower than the one of the mobile sink. As the
sensor cannot transmit beyond its transmission range,
necessarily, the action in all states beyond that range
will be DO-NOT-SEND. Therefore, there is no benefit
in partitioning the distances between Str and MStr

into multiple quantums, as they will always map to the
same action.

What remains to be determined is the way in
which the distances between 0 and Str are partitioned
in quantums. The simplest choice is to divide the
distance into k quantums of equal size. This would
yield a quantization into k + 2 possible values with a
schedule of:

QD = {0,
1
k

Str, . . . ,
i

k
Str, . . . , Str,MStr} (3)

The problem remains whether the quantization
retains the most useful information necessary for the
decision process. Notice that the decision to send or
not send depends on the energy necessary to send the
data. If we assume that the node can use the minimum
energy necessary to send the data then this energy can
be calculated either from the laws of propagation [17]
or experimentally for the specific type of environment
[4]. The most important component is the path loss
factor, which can range between 2 and 4.

Intuitively, the distance quantization schedule
retains the maximum information not when it
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SHOULD I SEND NOT OR SEND LATER? 9

partitions the distance equally, but when it partitions
the corresponding transmission power equally, the
latter being the basis of the transmission decision. If
the transmission power has an expression of the type
shown in Equation 1, with a path loss index n and we
want to divide the schedule evenly for the consumed
power, we need to choose a quantization schedule:

QD = {0,
n

√
1
k

Str, . . . ,
n

√
i

k
Str, . . . , Str,MStr}

(4)
We will call this an iso-power quantization

schedule. Figure 1 compares the iso-distance schedule
and two iso-power schedules for an example where
Str = 50, MStr = 75 and the path loss index is 2 and
4, respectively.

0 10 20 30 40 50 60 70 80

1

2

3

Fig. 1. Comparison of distance quantization schedules for
the range of 0 to 80 meters: (1) iso-distance schedule, (2) iso-
power schedule for path loss index 2, (3) iso-power schedule

for path loss index 4.

Let us now consider the problem of quantization for
the buffer level. The buffer is naturally discrete, so
the goal in this case is not to discretize a continuous
value, but rather to reduce the number of quantums.
As a sensor can have several kilobytes of buffer space,
having a separate quantum for each possible value
would yield thousands of states (which then need to
be multiplied with the number of distance quantums
to obtain the states of the MDP).

For the buffer level quantums, again, we need
to consider the nature of the function we plan to
quantize. If our goal is to optimize the transmission
power, we need to consider the full expression of the
cost of the sending of the data. This might include
the cost for the packet overhead. For instance, the

overhead of an Ethernet packet is 26 bytes, to which
additional overhead is added by the higher layers of
the protocol stack (if they are present). In addition,
if the transmission cannot be done in one packet, the
transmission power will increase stepwise, as at every
occasion when an additional packet is necessary a new
overhead will be added.

Despite these complications, the transmission
power will increase roughly linearly with the amount
of data to be transmitted, so a uniform quantization
of the buffer level will be appropriate. We assume
that a step of the quantization represents an increase
equivalent to the sensor data rate for one time step.

With these quantization decisions, we build an MDP
with m× n states, where m is the number of buffer
content quantums and n is the distance quantums.
A state is represented as {b, d}. Based on domain
knowledge, the MDP needs to satisfy the following
requirements:

Requirement 1 ∀d, ∀d′, ∀b ∈ {0 . . . m− 3}, ∀b′ >
b + 1, PDO-NOT-SEND({b, d}, {b′, d′}) = 0.

That is, the sensor cannot move directly into a state
where the buffer content has increased with more than
the sensor data rate.

Requirement 2 ∀d, ∀d′, ∀b, ∀b′ ≤ b,
PDO-NOT-SEND({b, d}, {b′, d′}) = 0.

That is, the buffer content cannot decrease if the
sensor data is not transmitted.

Requirement 3 ∀d, ∀d′, ∀b, ∀b′ > 0,
PSEND({b, d}, {b′, d′}) = 0.

This requirement encodes our assumption that the
transmission of the data is always successful.

Requirement 4 ∀d, ∀d′, ∀b < n− 1,
PSEND({b, d}, {0, d′}) =
PDO-NOT-SEND({b, d}, {b + 1, d′}) =
PDO-NOT-SEND({n− 1, d}, {n− 1, d′})
This requirement expresses the independence of the

distance of the mobile sink from the actions and the
buffer content level.

An MDP which respects all the requirements above
for the case with 2 distance and 3 buffer level
quantums is shown in Figure 2. Due to the structure of
the state encoding, it is convenient to visually arrange
the MDP into an n by m rectangle, where the buffer
content levels are arranged in the columns, while the

Copyright c© 0000 John Wiley & Sons, Ltd.
Prepared using wcmauth.cls

Wirel. Commun. Mob. Comput. 00: 1–18 (0000)
DOI: 10.1002/wcm



10 L. BÖLÖNI AND D. TURGUT

distance quantums correspond to the rows. Thus the
state of the system will progress from left to right for
the DO-NOT-SEND actions, and jump back to the first
column for the SEND actions.

Finally, we need to decide on the rewards attached
to various state-action pairs. Again, we can introduce
some requirements based on domain knowledge.

Requirement 5 ∀d, ∀b < n− 1
R({b, d}, DO-NOT-SEND) = 0

That is, not sending in a state where the buffer is not
full, carries no immediate reward or penalty.

Requirement 6 ∀d
R({n− 1, d}, DO-NOT-SEND) = RDataloss < 0

That is, if the sensor does not transmit when its
buffer is full, it will loose an amount of data equal
to its data acquisition rate, and it will occur a policy
dependent penalty RDataloss.

Requirement 7 ∀b, ∀d
R({b, d}, SEND) = REnergy(b, d) < 0

That is, when sending the amount of data encoded
by the quantum b to the distance specified by the
quantum d, the sensor will occur a penalty (cost) of
REnergy(b, d). Naturally, this cost involves factors such
as overhead, transmission data path loss and so on.
However, this penalty is strictly determined by the
hardware: it does not involve policy decision.

5.1.1. Acquiring the transition probabilities

Notice that the MDP defined in the previous section
has n×m states, and therefore, (n×m)2 transition
probabilities, which is a very large number even for a
moderate number of quantums. For instance, if n =
10 and m = 10 we would need to compute 10000
individual probabilities. However, requirements 1, 2,
3 set most of those probabilities to zero. Furthermore,
requirement 4 guarantees that the number of unique
transition probabilities is even lower:

PSEND({b, d}, {0, d′}) =
PDO-NOT-SEND({b, d}, {b + 1, d′}) =
PDO-NOT-SEND({n− 1, d}, {n− 1, d′}) =
P (d′t+1|dt) (5)

Thus, the only probabilities we need to measure
are the ones of the form P (d′t+1|dt), which is the

conditional probability that the distance is d′ provided
that at the previous time point it was d. There are m2

distinct probabilities of this form, that is in the case
of our running example, 100. Further simplifications
are possible. As the mobile sinks are performing a
continuous movement, the resulting transition matrix
will have most of its values zero except on the diagonal
and the values immediately above and below the
diagonal. This basically means that the distance of
the mobile sink does not jump over quantums - if it
does, it means that either the sampling rate is to low,
or the number of quantums is not sufficient. With this
simplification, the number of unique probabilities to
be calculated will be 3m, that is 30 unique values for
our running example.

These values can be easily acquired from historical
information about the movement of the mobile sink.
Due to the relatively small number of transition
probabilities which need to be acquired, relatively
short histories can be used.

5.2. MDP with history information

Markov decision processes are “historyless”, that
is, the decision to take an action is based only
on the current state. The state, therefore, needs to
encompass all the historical information necessary for
decision making. The choice of the right amount of
information is critical in maintaining the state space at
a manageable size, and ultimately, can determine the
quality of the decision making.

Let us now investigate potential ways of using
historical information in the states of the MDP. In the
historyless version of the previous section, we have
defined the state as dependent of the buffer level and
the distance to the mobile sink.

Note that the history of the buffer level is
uninformative. If the buffer level in a given state is
b, the level of the previous state was b− r, where r
is the data accumulation rate. The only case where
multiple history alternatives are possible is when
the buffer level is zero - this can happen if the
previous action was a SEND. The state itself does
not contain information about how much data was in
the buffer before the SEND action - but anyhow, the
future decision is not affected by this information. In
conclusion, we can ignore the history of the buffer
level in the state representation.

Things are different with the distance of the mobile
sink. Let us assume that the current distance is 40
meters. In the historyless current model, the decision
to send or not send is made based on this information
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(0,0)
 (1,0)

(2,0)


(2,1)
(1,1)
(0,1)


Fig. 2. An example Markov Decision Process, for the historyless encoding. The continuous line arrows indicate the DO-NOT-
SEND actions, while the dotted line arrows indicate SEND actions.

alone. However, if the sensor node knows the history
of distances it might be able to make a more informed
decision. For instance if the distances were 60, 50,
40, the node might conclude that a mobile sink is
approaching, it will come closer with high probability
and therefore it is worth waiting with the sending.
However, if the values were 20, 30, 40 the node will
conclude that the mobile sink is moving away and it
should either send now or be prepared to wait for a
longer time interval, until another mobile sink comes
closer or the current mobile sink turns around.

In the first approximation, we might consider
directly adding the history (for instance for the last
several time periods) into the state. The state encoding
would be {b, {dt, dt−1, . . . dt−k+1}} where k is the
number of time intervals the history is considering.
The problem with this encoding is the explosion of the
number of states, which is m× nk. For our running
example, if we choose n = 10, m = 10, and k = 4, we
have an MDP with 100,000 states and 1010 transition
probabilities. Note that various considerations of our
previous model reduced the number of probabilities
we need to acquire to 30. Although some of the same
simplifying assumptions are applicable here as well,
1010 is such a huge number, that even after all the
simplifying assumptions, we still have a state space
so large that acquiring the transition probabilities from
observations will be unpractical.

Therefore we need to consider a different,
more compact encoding. We will therefore encode
the history h in four discrete cases: STATION-
ARY, FAST-SLOPE-DECREASE, SLOW-SLOPE-
DECREASE and INCREASE. These classifications
are determined by considering the last three readings
of the distance. With this encoding, and considering
the number of distance quantums n = 10, there are

40 different distance states. This yields a theoretical
number of 1600 unique transition probabilities.
However, some of the transitions are not possible,
while others are exceedingly rare. For instance, the
transition from (5, INCREASE) to (4, INCREASE) is
not possible, because if the distance is reduced, the
history cannot indicate an increase of the distance.
On the other hand, the transition (0, INCREASE)
to (10, INCREASE) is technically possible, but it
requires a mobile sink moving unrealistically fast.
Overall, the number of transitions which need to
be considered are about 200-300, which number,
although higher than in the case of the historyless
encoding, is still manageable and can be acquired from
historical information of a reasonable length.

As the reward does not depend on the history, the
rewards associated with the transitions will be the
same to the state-action pairs without history.

6. Experimental results

We performed a series of experiments with a
transmission scheduling scenario involving a field in
which a number of mobile nodes are moving and
collecting the data from the sensor nodes using a one-
hop transmission. The mobility pattern of the mobile
sinks was random waypoint [11]. We have assumed
that the speed of the mobile sink was 1 m/sec or 3.6
km/h. This is a realistic speed for a vehicle moving on
rough terrain. We considered an area of 400 × 200
meters, with 4. . . 20 mobile sinks. The transmission
range of the node was considered to be between 10-
80 meters, a realistic range for a sensor node (for
instance [4] finds the transmission range of second
generation Mica-2 motes to be between 20-50 meters
in an outdoor habitat). Finally, we assumed a 32kB
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12 L. BÖLÖNI AND D. TURGUT

Table I. The parameters of the simulation experiments

General settings
Movement area 400×200 m
Simulation time 2500 sec
Mobile sinks
Number 4 . . .20 (10 default)
Velocity 1 m/sec
Transmission range 80m
Sensor nodes
Buffer size 32kB
Data rate 0.2kB/sec
Transmission range 10 . . . 80m (50 default)
Transmission power model
Path loss index n 4
α11 45 nJ/bit
α2 0.001 pJ/bit/m4

buffer and a data rate of 0.2kB/sec. The parameters of
the simulation environment are summarized in Table
I.

We have implemented this scenario in the YAES
simulator framework [3]. In our experiments we
compare four different sensor implementations:

Oracle Optimal (OrOpt): This implementation
has advance knowledge of the movements of the
mobile sinks and calculates an optimal schedule
which minimizes the given cummulative policy
penalty (CPP). The implementation follows the
description in Section 4. The calculation of the optimal
schedule took approximately 10-30 seconds on a
2.8GHz Pentium 4 computer. Thus, we find that the
Oracle Optimal algorithm is not a feasible on-board
implementation choice for sensor nodes, even if the
movement of the sinks is known. One the other hand,
the schedule can be computed off-line (for instance,
on the mobile sink) and transferred to the node. The
schedule is essentially a list of the time moments when
the node should transmit, and can be represented very
compactly.

As expected, the OrOpt algorithm always outper-
forms the other approaches, and as such, serves as a
baseline to the level of performance is possible for a
given scenario. Note that the fact that the algorithm is
optimal does not mean that, it cannot lose data, as in
certain scenarios the transmission of all the data is not
possible.

Simple heuristics (Simple): This algorithm imple-
ments a simple rule-of-thumb heuristics. The agent
does not transmit when the buffer is below 90% full.
When the buffer is more than 90% full, it will transmit

at the first available opportunity. Note that this is not
a random algorithm, but a relatively good choice for
most possible scenarios.

Markov Decision Process without history infor-
mation (MDP): This algorithm implements the
Markov Decision Process as described in Section 5.1.
The distance was quantized into 10 quantums using
the Equation 4. The buffer level was quantized into 30
equal size, 1kB quantums.

The Markov Decision Process was implemented
using the jMarkov [18] library. The posterior
probabilities were obtained by observing a sequence
of 10000 seconds with the given number of mobile
sinks.

To maintain the cross-validation assumption, we
were careful to separate the training data from the test
data. For all the recorder experiments, the sensor had
seen the given movement sequence the first time.

The MDP was solved using the value iteration
algorithm. From the state values we extracted the
policy, which was represented, very compactly, by
the list of states where the sensor makes the SEND
decision. This choice is justified by the observation
that there are a much lower number of SEND states
than DO-NOT-SEND states. The learning process is
relatively time consuming and probably needs to be
executed off-line. However, the execution of a learned
policy involves a limited amount of computation and
it can be easily performed by the sensor. Essentially,
at any moment when it needs to make a decision, the
sensor identifies the state, by quantizing the distance to
the closest mobile sink and the buffer level and checks
whether the state is in the send lists.

For this historyless MDP model, we find that the
MDP has 403 reachable states, with 10-30 states being
SEND states (depending on the transmission range
and the number of mobile sinks).

Markov Decision Process with history infor-
mation (MDP+h): This algorithm implements the
Markov Decision Process where the state includes
historical information as described in Section 5.2. The
implementation and training details are similar to the
case of MDP without history information. The main
difference is that due to the extra state information, we
have more than 3 times more accessible states (1300-
1500 depending on the transmission range), and about
30-60 SEND states. This however, is still within the
possibilities of the jMarkov framework, and the ability
of the sensor node to implement the policy.

An additional design choice for both MDP models
is the discount rate (or its dual, the interest rate).
Technically, the transmission scheduling problem does
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not have a “natural” discount rate. There is no
technical reason for a sensor to prefer loosing data
tomorrow versus loosing data today. However, the
value iteration solver of an MDP needs a discount rate
lower than 1 to converge. For this reason, we choose a
very slow discount rate of 0.99.

For each sensor model, we run the simulation with
the same scenario and the same location of the sensor.
The experiment was repeated 10 times, and average
measurements retained. We collected the following
measurements:

• Total transmission energy. The total energy
consumed by the sensor node for transmissions
over the timespan of the scenario. If all
other parameters are equal, the lower the total
transmission energy, the more efficient the
algorithm.

• Data loss ratio. The ratio of the data loss caused
by buffer overflow to the total amount of data
captured by the sensor. If all other parameters
are equal, the lower the data loss ratio, the more
efficient the algorithm.

• Cummulative policy penalty (CPP). This is a
composite measure calculated as a function of
the total energy and the number of lost packets.
The exact calculation is dependent on the policy.
For the Oracle Optimal and the two MDP-based
algorithms, this measure is the optimization
criterion. The lower the value of the policy
penalty, the more successful are the algorithms
in accomplishing their stated goals.

Finally, we repeated our measurements for three
different scenarios, differentiated by the expression
of the cummulative policy penalty. Different policies
can be implemented by setting various values for
the data loss penalty. The energy part of the policy
penalty is determined by physical constraints so it is
not available for modification by the user.

• Scenario 1: Balanced objectives. We assume
that the data loss penalty is relatively high,
but it can be offset by energy savings only in
exceptional situations. Thus the sensors pursue
a balanced strategy between maximizing energy
use and minimizing data loss.

• Scenario 2: Data loss reduction priority. In
this case we set the data loss penalty to a very
high value (in our case, 10000). With this value,
the penalty for lost data can never be offset by
energy savings. Thus, the agent will have the
primary objective to reduce the data loss. Only

in the cases of equal amount of data loss will
it make transmission decisions in function of
energy considerations.

• Scenario 3: Energy conservation priority. In
this case we set the data loss penalty to be
equal to sending the data with the maximum
transmission range. Note, that we cannot set
the data loss penalty to zero: by doing so,
the algorithms would optimize the transmission
energy by losing all the collected data.

In the following, we present and discuss the results
for these three scenarios.

6.1. Scenario 1: Balanced objectives

Figure 3 shows the measurements of consumed
energy, data loss ratio and cummulative policy penalty
(CPP) for various settings of the transmission range.

As a first observation, in general, the cummulative
policy penalty is decreasing with the increase of
the transmission range. Having a longer transmission
range, the sensor can have more options, which it can
use to reduce the amount of data loss. An interesting
anomaly can be seen for the two MDP based sensors:
the policy score actually shows a very slight but
noticeable increase at the transmission ranges of 60
to 80 meters. This anomaly can be explained with
reference to the data loss chart: the MDP based
algorithms have learned a transmission policy which
attempts to transmit as soon as the mobile sink gets
in the transmission range. As the transmission range
increases, this policy, although advantageous from the
point of view of data loss, is more expensive from the
point of view of energy consumption.

In the comparison among the four algorithms, we
find that the score of the OrOpt algorithm is the best,
followed in order by MDP+h, MDP and, at some
distance, by Simple. For ranges between 10 and 40m,
the OrOpt, MDP+h and MDP obtain essentially the
same CPP score. From Figure 3 top right, we see
that the two MDP based algorithms can essentially
match OrOpt for minimizing the data loss; the simple
heuristic performs much worse.

The difference between the MDP and MDP+h is
visible on the consumed energy graph (Figure 3, top
left). Here, MDP+h clearly outperforms MDP. This is
due to the higher quality decisions, because the MDP
with history information can better predict the future
distance of the mobile sink.

Figure 4 shows the evolution of the measurements
for varying number of mobile sinks. The overall CPP
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14 L. BÖLÖNI AND D. TURGUT

score shows a decreasing trend with the number of
mobile sinks, as the sensor node is visited more often
by sinks. Again, we find that the two MDP models
match closely the OrOpt for the data loss ratio. This
result, however, is achieved with various levels of
energy expenditure

6.2. Scenario 2: Priority in minimizing data loss

In this scenario, we are using a cost function which
assigns a weight of 10000 to every lost kB of data.
With this setting, the OrOpt, MDP and MDP+h
algorithms will make decisions such that they will
minimize the data loss. The energy consumption will
be considered only in cases when the decision does not
affect the probability of data loss.

The experimental results using these strategy are
shown in Figures 5 and 6. The graphs show similar
trends with the scenario with the balanced priority. The
differences can be summarized in the following points:

• The cummulative policy penalty of the MDP
and MDP+h algorithms are much closer to the
OrOpt algorithm for both variable transmission
range and the variable number of mobile sinks
experiments.

• The consumed energy is virtually identical for
MDP and MDP+h. We should compare this
with the balanced strategy, where the MDP+h
was significantly better. The reason for this
phenomena is that in the data loss minimization
scenario, the MDP’s have little motivation
to optimize their decisions for reducing the
consumed energy.

6.3. Scenario 3: Priority for minimizing energy
consumption

In this scenario, the data loss penalty is set up such
that the penalty of loosing a kB of data is the same as
transmitting it at the distance of 80m. Note that with
this setup the optimization algorithms will still attempt
to send as much data as possible, but they have more
leverage, by the ability to occasionally trade some lost
data for lower values of the energy consumption.

The results of the experiments with this strategy are
shown in Figure 7 and Figure 8. The overall trends
are similar to the previous two scenarios. The main
observations are as follows:

• The MDP+h model is consistently better than
MDP from the point of view of the cummulative
policy penalty. The difference is increasing with

the transmission range, reaching values of close
to 40%.

• MDP and MDP+h still performs very well
from the point of view of data loss ratio (only
marginally worse than the OrOpt algorithm).

6.4. Summary of findings

Overall, we find that the choice of the transmission
scheduling algorithms makes a significant difference
in the performance.

Both MDP and MDP+h can get very close to the
data loss ratio obtained by the optimal algorithm. This
is a somewhat surprising, but positive conclusion, as
we expected the advantage of the optimal algorithm to
be much higher, as it has advance knowledge of the
movement of the sinks. It turns out that the difference
is not significant, both MDP and MDP+h have learned
policies which allows them to achieve near-optimal
data loss values.

The cost of the successful data transmission,
however, is a different matter. It was found that the
oracle optimal algorithm can achieve a slightly lower
data loss rate with up to 70% less power than the other
algorithms. Also, MDP+h can outperform MDP with
up to 40% in certain scenarios.

These are significant differences and fully justify
the effort put into improving the transmission
scheduling algorithms. From the ones considered in
our study, the best algorithm for practical deployment
was found to be MDP+h. However, if the mobility
pattern of the mobile sinks is known in advance, the
optimal algorithm offers sufficient improvement to
justify its calculation on an off-line, high performance
computer and the transmission of the pre-computed
schedule to the sensor nodes.

7. Conclusions

In this paper, we investigated the problem of
transmission scheduling in sensor networks with
mobile sinks. We presented an optimal algorithm
which requires advance knowledge of the mobility
patterns of the mobile sinks. We also presented two
variants of decision theoretic algorithms based on
Markov Decision Processes, one with and one without
history information encoded in the state. Through
an experimental study we compared the proposed
algorithms against a simple heuristics. We found that,
as expected, the optimal algorithm performed best, but
in many scenarios the MDP based algorithms showed
a performance close to the optimal from the point of
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Fig. 3. Scenario 1: measurement results averaged over 10 runs for the four considered transmission scheduling algorithms
for various values of the transmission range. The policy requires a balance of minimizing data loss and minimizing energy
consumption. The graphs represent the total transmission energy (upper left), data loss ratio (upper right) and cummulative

policy penalty (bottom)
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Fig. 4. Scenario 1: measurement results averaged over 10 runs for the four considered transmission scheduling algorithms for
various values of the number of mobile sinks. The policy requires a balance of minimizing data loss and minimizing energy
consumption. The graphs represent the total transmission energy (upper left), data loss ratio (upper right) and cummulative

policy penalty (bottom)
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Fig. 5. Scenario 2: measurement results averaged over 10 runs for the four considered transmission scheduling algorithms for
various values of the transmission range. The policy requires the sensor to minimize data loss. The graphs represent the total

transmission energy (upper left), data loss ratio (upper right) and cummulative policy penalty (bottom)
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Fig. 6. Scenario 2: measurement results averaged over 10 runs for the four considered transmission scheduling algorithms for
various values of the number of mobile sinks. The policy requires the sensor to minimize data loss. The graphs represent the

total transmission energy (upper left), data loss ratio (upper right) and cummulative policy penalty (bottom)
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Fig. 7. Scenario 3: measurement results averaged over 10 runs for the four considered transmission scheduling algorithms for
various values of the transmission range. The policy requires the sensor to minimize total transmission energy, and considers
the penalty of data loss as data transmitted at the maximum transmission distance. The graphs represent the total transmission

energy (upper left), data loss ratio (upper right) and cummulative policy penalty (bottom)
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Fig. 8. Scenario 3: measurement results averaged over 10 runs for the four considered transmission scheduling algorithms
for various values of the number of mobile sinks. The policy requires the sensor to minimize total transmission energy, and
considers the penalty of data loss as data transmitted at the maximum transmission distance. The graphs represent the total

transmission energy (upper left), data loss ratio (upper right) and cummulative policy penalty (bottom)
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view of minimizing data loss. The MDP approach with
encoded history information performed better from
the point of view of consumed transmission power
and appears to be the algorithm with the best balance
between implementation and deployment difficulty
and performance.
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