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Abstract

In this paper we are considering an autonomous robot mov-
ing purposefully in a crowd of people (a marketplace). The
robot should take into consideration the social costs of its
movement, expressed in terms of violation of the personal
space of the humans, blocking their path or even making
physical contact with them. On the other hand, the full avoid-
ance of any social cost might jeopardize the mission of the
robot - in a sufficiently dense crowd, movement is impossible
without violating at least some social norms. The individu-
als in the crowd, including the robot, periodically encounter
micro-conflicts where they need to change their behavior to
avoid large social costs (such as bumping into each other). We
model the resolution of micro-conflicts as a series of games
where the payoffs integrate the social and mission costs of the
action choices. We show that human behavior corresponds to
a strategy which is not necessarily optimal on a single-game
basis; instead, it reflects the personality and social status of
the person and the psychological requirement of consistency
in behavior. We describe a robot behavior which classifies
the strategy used by the opponent in the micro-conflict and
chooses an appropriate counter-strategy which takes into ac-
count the urgency of the robot’s mission.

Introduction
Marketplaces are complex environments where physical ob-
stacles are combined with crowds of people. The individ-
ual members of the crowd move in a purposeful way: move
from one shop to another, stop at various landmarks or head
towards the exit along a pre-planned but not rigidly fixed tra-
jectory. We will say that the individuals have a mission with
a specific value and urgency. The movement of people in
such environments is governed by social norms: they are not
supposed to violate each other’s personal space, block each
other’s intended direction of movement or physically bump
or push each other. The social norms for physical movement
depend on the culture and social setting. Different cultures
define the personal space of an individual differently, and put
different penalty on physical contact. Whether movement in
a certain environment can be performed without violating
any social norm depends on the density of the crowd: be-
yond a certain density, an individual which tries to avoid
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any violation of personal space will not make any advance
at all. Groups of individuals moving in dense crowds will
enter into micro-conflicts if following their planned trajec-
tory would create an unplanned, large social cost through
physical collision or severe violation of personal space. The
attribute micro illustrates the fact that these conflicts are nor-
mally resolved in several seconds: one or more participants
will alter their speed and/or path, reducing the social cost to
an acceptable level.

In this paper we consider the case of an autonomous robot
which moves in such an environment. The robot, just like the
human participants, has a mission which can be expressed in
physical terms. For instance, the mission might be to reach
a certain landmark by a certain time, to follow one or more
humans at a certain distance, or to maintain its position in
a team formation while moving in the crowd. At the same
time, the robot needs to stay out of trouble: it must avoid
violating the social norms which govern the crowd, tak-
ing into account the local social and cultural norms. Part
of this can be achieved through path-planning: the robot
can plan its path around landmarks and try to avoid dense
crowds. Dynamic path replanning, using algorithms such as
focussed D*(Stentz 1995) or D*-lite (Koenig and Likhachev
2005) can allow the robot to avoid large, persistent crowds of
people. Occasional micro-conflicts with human participants,
however are unavoidable, and the urgency of the robots mis-
sions makes it unfeasible for the robot to be always the one
which “gives way”. In general, the robot must avoid violat-
ing the social norms, but it should be able to accept some
social costs, if it is necessary to achieve its mission.

To successfully participate in micro-conflicts, the robot
needs to have an operational model of the social costs and
mission costs as perceived by the local society and the in-
dividual participants. Furthermore, it needs to have a model
of the strategies deployed by the human participants when
participating in the micro-conflicts, such that it can develop
effective counter-strategies which either mimic or extend
those used by humans.

A multidimensional cost model
One way to quantify the decision making process of hu-
mans in social settings is by taking into consideration the
costs and benefits of certain actions. For our scenario, we
assume two large classes of costs: social costs depend on



the social norms governing the environment and the par-
ticipants while mission costs depend on the specific goals
of the human or robot. For humans, the social costs are
rooted in the psychology and social conditioning. While
robots, naturally, do not have these factors, in order to be
accepted by humans as natural participants in the crowd,
they need to emulate the human behavior as closely as pos-
sible (Nakauchi and Simmons 2002; Walters et al. 2005;
Pacchierotti, Christensen, and Jensfelt 2005). Thus, we will
assume that humans and the robots use the same cost types
(but their values, naturally, can be different).

Modeling the social costs of moving in crowd
We will model the social costs of moving in the crowd by
a number of geometrical zones associated with the oppo-
nent agents. An agent incurs costs whenever it enters into
one of these zones. The zones are not necessarily circular,
they move and change orientation with the agents. The costs
associated with these zones are justified by psychological
models of human perception, and they must be calibrated
for the individuals as well as for the culture.

For the work in this paper we consider three zones:
Physical contact zone: represented by the actual physical
size and shape of the human or robot agent. Violating this
zone means physical contact and carries a large social cost.
Personal space: is the spatial region which a person (and
by extension, a robot) regards as psychologically his (Hall
and Hall 1969). Within the personal space, we model the
personal distance (1-1.5 ft) and the social distance (3-4 ft).
The cost decreases towards the outside of the area, becoming
zero outside the social distance perimeter.
Movement cone: the movement cone represents the space
where the human or the robot made public its intention to
move. For the purpose of this paper, we consider the move-
ment cone as circular pie extending from the agent in the cur-
rent direction of movement, for a radius equal of 3 seconds
movement with the current speed. The movement cone is
only relevant for a mobile agent. By violating the movement
cone, the opponent forces the agent to change its movement,
unless it accepts a high social cost by violating the personal
space or even the physical space.

We are using a model where the social costs are additive
across the cost types and for the multiple agents. For in-
stance, if the agent violates more than one agent’s personal
space, it will occur the sum of the costs. On the other hand
we retain only the maximum social cost for each micro-
conflict.

We need to consider the relationship of these social
costs to similar geometric models used in robot naviga-
tion. For instance, the movement cone concept is related
to that of collision cone (Chakravarthy and Ghose 1998),
while the personal space can be perceived as similar to
potential field methods (Ge and Cui 2002; Huang 2009;
Lamarche and Donikian 2004; Waydo and Murray 2003).
These models are a direct input to the movement control
of the robot, for instance in the choice of the velocity vec-
tor (Guy et al. 2009; Van den Berg, Lin, and Manocha 2008;
Van Den Berg et al. 2011). In contrast, the social costs are

not a direct input to the movement control: instead, they pro-
vide input to the high level decision making. For instance,
an agent might decide to move ahead, even if this leads to a
high social cost or even a collision. Naturally, once the high
level system.

Modeling mission costs
We assume that the participants in the crowd have tasks
to accomplish, thus any delay caused by a micro-conflict
comes with a mission cost.

For a non-urgent mission, the mission can still be
achieved at an arbitrarily later time - thus the mission cost
of a delay is proportional with the delay. For urgent mis-
sions, the delay reduces the probability of mission success,
thus the cost of the delay escalates in time.

For the purpose of this study we assume that the human
participants have non-urgent missions. The mission of the
robot is to follow its owner in the crowd. Repeated delays in
the resolution of a micro-conflict make the robot fall more
and more behind, modeled with a mission cost which for
every new second of delay considers the full amount of time
the robot is behind its owner. On the other hand, the robot
is able to catch up with its owner between micro-conflicts
(or equivalently, the owner will wait for the robot to catch
up). Other assumptions are, of course, possible, but they are
beyond the scope of this paper.

Micro-conflicts and resolution strategies
Micro-conflicts
A micro-conflict is a situation in the movement of an agent
in the crowd where the next planned action of the agent has
a significant, unexpected social cost by violating the zones
of one or more opponent. For the current work we will only
consider micro-conflicts with exactly two participants. Fur-
thermore, we assume that micro-conflicts will be attended to
in the reverse order of their maximal costs (which means in
dense crowds, agents will ignore lower stake micro-conflicts
until the ones with higher stakes are resolved).

The answer of the agent to a micro-conflict involves the
consideration of other alternatives to the currently planned
movement: the agent might stop, continue moving with a
different speed (faster or slower) or it can replan its trajec-
tory. In this paper we model this choice with a two-player
one-move game. The move C (collaborate) corresponds to
the player stopping, while the move D (defect) corresponds
to the agent moving on its currently planned path. This
model can account for a slow-down (by alternating C and
D moves), but it does not cover the options of accelerating
or changing the movement path.

The payoffs of the game are given by the total costs in-
curred by the players for the various combinations of moves.
The games are not, in general, symmetric, as the cost func-
tions differ from agent to agent.

As a note, for these games it is more convenient to speak
in terms of cost minimization rather than payoff maximiza-
tion. Rigurously, the payoffs are the costs with a negative
sign.



Figure 1: A moment in the scenario of the robot navigating a crowd of people on the market. The left screenshot shows the
visualization of the scenario in the simulator at time t = 21sec. The right diagram shows the cummulative social cost at
that particular moment. The goal of the robot can be interpreted as an attempt to move while keeping to the “valleys” of this
constantly changing surface.

The life cycle of a micro-conflict
A game can be technically created among any pair of agents.
However, if the agents are sufficientlly far away from each
other, the moves (D,D) will have no cost in the game. The
agents enter into a micro-conflict when the (D,D) move pair
has a non-zero cost for at least one of the agents. The conflict
is resolved when the (D,D) move pair will have again a zero
cost.

A micro-conflict is not necessarily resolved in a single
game. It normally requires a series of games, each with a
specific set of costs. Even if the two agents play (C,C) which
means that they start the next game from the same physical
position, the costs of the new game might change if one of
the agents has an urgent mission, which would change the
mission component of the cost. Figure 2 shows the evolution
of the games played during a hand-crafted micro-conflict
where a robot and a human are heading to a collision course
on right-angle trajectories.

It is impossible to predict the nature of the games which
will occur during a micro-conflict. The agents heading on a
collision course will at some moment encounter some vari-
ation of a Hawk-Dove game, where in the case of a (C,D)
or (D,C) play the player moving D will have an advantage,
but a (D,D) move will have a large cost for both players. It is
not necessary, however, for each of the games encountered
during the resolution of a micro-conflict to be Hawk-Dove
games.

Modeling the human opponent: Strategy
consistency and choice of strategies
We call strategy the algorithm used by an agent to deter-
mine its choice of move in a given game. Restricting our
considerations to a single game, game theory would tell us

to choose a move which maximizes our payoffs with the as-
sumption that the opponent also plays the perfect strategy.
As the games in the micro-conflicts are not zero-sum, this
would correspond to a maximin strategy (risk minimization).

However, this is not an accurate model of human behavior,
because the human game-playing strategy takes into con-
sideration other factors beyond the current game. First of
all, crowd participants will encounter many micro-conflicts
over time, each micro-conflict consisting of several games.
Human psychology rewards perceived consistency and pre-
dictability and there is a social cost of being perceived in
having an erratic behavior.

Second, beyond the micro-conflict games costs, the agents
behavior must be consistent with other social values such as
dignity, politeness, “face” and other metrics. The first impli-
cation of all this is that instead of choosing a strategy for
the individual games, the agents will choose meta-strategies
which they will follow consistently across the games of the
micro-conflict. Meta-strategies can contain stochastic ele-
ments, considerations of factors outside the current game
(such as the history of the games in the micro-conflict or
predictions of future games).

The existence of stable meta-strategies means that the
players can, to a certain degree, predict the moves of the op-
ponents. Under these conditions, maximin is not an optimal
strategy - stochastic expectation maximization strategies can
yield a better value in the long run.

The next questions involves whether humans use mixed
strategies in micro-conflicts. It is well known that for Hawk-
Dove games the only symmetric Nash equilibrium is a mixed
strategy equilibrium. On the other hand it had been argued
that the randomness involved by mixed-strategies is not the
normal way for humans to operate: humans do not perform



Game at t=8.0 (moves: R: C, H: D)
Civilian C D

Big-
Dog
C 38.268 13.500

1.000 22.535
D 12.500 37.268

1.000 18.750

Game at t=9.0 (moves: R: D, H: C)
Civilian C D

Big-
Dog
C 25.768 2.000

20.750 37.268
D 0.000 24.768

24.535 12.500

Game at t=10.0 (moves: R: D, H: D)
Civilian C D

Big-
Dog
C 25.768 2.000

2.000 0.000
D 0.000 24.768

2.000 0.000

Game at t=11.0 (moves: R: D, H: D)
Civilian C D

Big-
Dog
C 1.000 2.000

2.000 0.000
D 0.000 0.000

2.000 0.000

Figure 2: A hand-crafted single-conflict scenario between a
robot and a human. The screenshot of the scenario (above)
at time t=7.0 and four individual games at times t=8.0 to
t=11.00 as they appear during the resolution of the micro-
conflict.

mental coin-tosses, and even if they would want to, they
have difficulty generating random outcomes without exter-
nal physical means. In the particular case of micro-conflicts,
however, we can safely assume the existence of mixed strate-
gies as there is sufficient randomness both in the lack of
knowledge about the exact game (the Harsányi interpreta-
tion (Harsanyi 1973)) as well as in the uncertainty about
the strategy of the opponent (Aumann and Brandenburger
1995).

Modeling human meta-strategies
One of the characteristics of human meta-strategies is that
humans enter into micro-conflicts with a clear view of what
type of resolution they would prefer. These strategies not
only determine the behavior of a specific human player,
but they also provide information to the other players. The
use of a specific meta-strategy in the case of a human is
signalled through the physical movement itself. In human-
to-human interaction there are a number of other means
through which this communication can happen: there is a
priori information which can be inferred from social sta-

tus, previous acquaintance and physical characteristics. In
addition to this, human players can perform communica-
tion during the micro-conflicts using social signalling(Vin-
ciarelli, Pantic, and Bourlard 2009) or even natural language.
These communication means, however, are not available for
human-to-robot interaction.

We will consider four meta-strategies. For each, we will
describe the intent of the agent A when encountering agent
B, followed by its expression in terms of costs.

MS1 Respectful: I am going to give B a wide berth. Agent A
tries to avoid any social cost in the interaction with B,
playing C for all games unless the predicted costs are very
low.

MS2 Tight-after: I am going to let B pass, but pass very close
behind him. This can be modeled by a stochastic model
where the agent plays with a high confidence that the op-
ponent plays D (in our model, 0.75).

MS3 Tight-front: I am going to cross in front of B (but will
avoid direct physical contact). This can be achieved by
a stochastic strategy which weights the opponent’s pre-
dicted choice with a high confidence that the opponent
plays C (in our model, we assume a probability of 0.75).

MS4 Bully The agent decides to minimize its mission costs,
ignoring almost all social costs. The assumption behind
this model is that this behavior will make the opponent
play C, thus keeping the costs low.

These meta-strategies can be transformed into a specific
mixed strategy for each individual game encountered by the
agent in the resolution of the micro-conflict. Note that al-
though these meta-strategies are not optimal, certain com-
binations can yield near optimal social costs for the overall
micro-conflict. The encounter between a bully and a respect-
ful agent will yield a low social cost through the restraint of
the respectful agent. However, the series of C moves by the
respectful agent implies a high delay and thus a high mission
cost for it.

Another observation is that the high level intent in the
meta-strategy might not necessarily be accomplished. If
both agents use Tight-front, naturally, only one of them can
pass first. What will happen is that depending on the geomet-
ric configuration, there will come a moment when the other
agent’s cost for the D move will outweigh all other consider-
ations, and it will need to play C, allowing the other agent to
pass first. Nevertheless, the series of moves will be different
from that of an agent which would have played Tight-after.

Adapting the robot strategy against the human
opponent
There is a strong motivation for the robot to play a meta-
strategy which is, at least superficially, similar to that of hu-
mans. Furthermore, if the robot can make the assumption
that the human will play a consistent meta-strategy from
a certain set (such as the MS1 . . . MS4 strategies outlined
above), it can try to infer what strategy the opponent uses
and choose an advantageous counter-strategy. As we have
seen, human players have various means of social signalling
to communicate their chosen strategy. If the robot lacks the



ability to communicate in a similar way, it needs to rely ex-
clusively on the information gleamed from game-play.

We have implemented a framework which adapts the
meta-strategy deployed by the robot to the opponent, by
classifying the opponent based on the opponents moves.
This is performed by performing a series of simulated
plays from the opponent’s perspective using four internal
simulated agents which conform to the four human meta-
strategies. The results of the simulated plays are compared
to actual play performed by the opponent, and their match
updates the classification of the opponent.

The output of the classifier allows the robot to adapt its
behavior to the opponent, by probabilistically predicting the
next move of the opponent, and using it to weight the costs
of its own moves. For instance, if the agent classifies its op-
ponent as a Bully, the agent only needs to consider the costs
of the (C,D) and (D,D) move pairs, knowing that the oppo-
nent always plays D.

Experimental results
In the following we describe the results of a series of ex-
periments involving the behavior of a robot in a crowd. The
experimental scenario involves a marketplace in a Middle-
Eastern country. The area is a narrow space surrounded with
shops whose entrances serve as landmarks, as well as in-
ternal obstacles. A number of shoppers perform purpose-
ful movement, which involves visiting shops for a shorter
or longer times. The path chosen by the individuals bal-
ances the length of the path with the avoidance of the ob-
stacles and large groups of people. Micro-conflicts are re-
solved through a succession of games with the four meta-
strategies described in the previous section. We assume that
the meta-strategies of the individuals are distributed as fol-
lows: 10% Respectful, 30% Tight-after, 50% Tight-front and
10% Bully. A game which is “stuck”, in the sense that both
sides play C for three times in a row, are resolved through
path re-planning, by considering the opponent as an obstacle
and calculating an avoiding path.

In this baseline scenario we consider the presence of
a patrol of peacekeeping soldiers traversing the market
while being accompanied by a Boston Dynamics Big Dog
robot(Raibert et al. 2008). The mission of the robot is to
follow the soldiers through the crowd as closely as possi-
ble, while “staying out of trouble”. The soldiers can change
their movement at any time, triggering frequent path replan-
nings, for which we use the D*-lite algorithm (Koenig and
Likhachev 2005). The robot participates in micro-conflicts
in the same way as the human participants. Naturally, the
robot’s personal space and physical space is different from
that of a human (a Big Dog robot is larger than a human). In
addition, the robot’s mission cost escalates with any delay -
that’s is successive C plays within the same micro-conflict
will become more and more costly.

We have run experiments with the robot using one of five
meta-strategies (Respectful, Tight-after, Tight-front, Bully
and the Adaptive strategy). Each experiment has been re-
peated 20 times, and the results averaged. Figure 3 shows
two sets of measurements illustrating the performance of the
robot on these metrics.

The left diagram shows the maximum social cost for each
micro-conflict. The Bully strategy incurs the highest cost in
a consistent way. However, there is little consistent differ-
ence between the remaining strategies. The Adaptive strat-
egy performs among the best or very close to the best for a
number of points (at crowd sizes of 25, 30, 40, 45 and 60)
but in the middle of the group for others, and in two occa-
sions (65 and 70) beats only the Bully strategy. Overall, this
illustrates the fact that the probabilistic inference of the op-
ponents behavior (coupled with the stochastic nature of the
meta-strategies themselves) can occasionally lead to wrong
choices, even if they work on the average case.

The right diagram on Figure 3 shows the sum of the mis-
sion costs for each scenario. Intuitively, this number is the
sum of the meters the robot falls behind the patrolling sol-
diers for each scenario. For this metric, the different meta-
strategies are more clearly separated: as expected, the Bully
strategy occurs a cost of zero, as it will never concede pri-
ority. It is followed by the Tight-front, Adaptive, Tight-after
and, at large distance, by the Respectful strategy.

Taking into consideration the fact that the goal of the
robot is to balance its mission goals with the desire to min-
imize social costs, we can conclude that the Adaptive meta-
strategy and the Tight-front meta-strategy are significantly
better than the other strategies considered (Bully, Tight-after
and Respectful) which fail at one or the other requirements.

The relative closeness of the performance of these two
meta-strategies is an interesting result of our studies. We
conjecture that a consistent Tight-front strategy will incur
public perception costs not necessarily captured in the phys-
ical model of social costs, so for a practical implementa-
tion, the Adaptive strategy will be preferable. Nevertheless,
if the requirements for opponent classification are missing,
the Tight-front meta-strategy represents a close fallback.

Conclusions
In this paper we described a method for the navigation of
a robot in a crowd of people with purposeful movements.
Inevitably, the robot will enter into micro-conflicts with the
human participants, which can be resolved through a series
of games. We described a number of meta-strategies which
model human behavior, as well as an adaptive strategy for
the robot which is based on the classification of the oppo-
nent’s meta strategy. Natural extensions of this work include
the consideration of games with more than two choices (cor-
responding to speedup, slowdown and evasive maneuvers)
as well as the impact of social signalling between the partic-
ipants.
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