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ABSTRACT 
This paper discusses a new cellular neural nehjork model of the time-coding pathway of sound 
localization. The key feature ofthe model is lateral inhibition which is supposed to play crucial role in 
sound localization. The possible role of this inhibition is examined on the basis of our model and several 
conlusions are drawn concerning the expected nature of inhibition. It is also shown that by use of 
inhibition a group of neurons may be much more sensitive to interaural time difference than one individual 
neuron. Hence, our model for the first stage of the sound localization system solves a “hyperacuity in 
time I ’  problem. 

1 Introduction 
The barn owl can catch its prey in total darkness relying on acoustic signals only. It can localize sound within 

1-2” in azimuth and elevation and can detect interaural time differences as short as some tens of microseconds. 
The neural mechanism underlying this fascinating ability has been investigated for decades and now we know a lot 
about how the brain of birds localizes sounds using differences in the arrival of time and intensity [9-12,181. 
However, several open questions are still waiting for answers. Two unsolved problems in sound localization we 
consider here are as follows: 
0 How can an owl detect interaural time differences as short as some tens of microseconds while a single action 

potential persists considerably longer, on the order of 1000 microseconds at the very least? 
0 How can an owl resolve phase ambiguity which results from the fact that time is measured by the phase of the 

input signals? 
The first question concerns the operation of the sound localization system of the owl and involves a type of 

hyperacuity : the sound localization system can mark shorter delays of time arrivals of sound than the duration of 
an impulse which indicates the time arrival. With other words, the selectivity of a group of neurons is greater than 
that of one individual neuron. Hence, this is a kind of effect of hyperacuit?, in time. 

We tried to develop a model of the time coding pathway of sound localization using cellular neural networks 
(CNN, see [3,17]). Cellular neural networks have proved to be useful dynamic spatiotemporal models for 2 1/2 D 
neural structures [20] as well. The key point of our model is inhibition. We have investigated the possible role that 
inhibition plays in improving the selectivity to interaural time differences and eliminating phase ambiguity. Our 
model considers many facts and observations neurobiologists have collected through the many years of intensive 
research - so we hope it is a neuromorphic model -, but it does not aim to reproducing all results found in the 
literature, rather illustrating that this simplified model can explain some phenomena and that it is worth drawing 
some interesting conclusions relating the nature of the biological connections. In this way we have a CNN model 
for hyperacuity in time, which, in a way, is a complement to the CNN model for hyperacuity in space [5]. 

As a summary, we show that (1) lateral inhibition greatly improves the selectivity for interaural time difference 
(ITD), (2) excitatory convergence of the different frequency channels can decrease phase ambiguity, ( 3 )  a 
feedback inhibition to the space-specific neurons greatly suppresses phase ambiguity, (4) a feedforward inhibition 
(of the same magnitude as that of the feedback inhibition) gives worse results - in each level of the sound 
localization system - than a feedback inhibition. In Section 2 a schematic drawing of the overall model is given. 
Section 3 reviews the CNN implementations of the building blocks (neurons, synapses etc.) of the model. In 
Section 4 the input data of the model is given. Section 5 discusses how coincidence detection is achieved in the 
auditory pathway and how the strength of inhibition can improve the selectivity for interaural time differences. In 
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Section 6 a model is introduced for the convergence of the different 
frequency channels completed by a feedback inhibition which aims at 
decreasing phase ambiguity. For lack of space, only the main results 
are introduced here, the detailed description of the model and 
experiments is given in [ 161. 

2 The overall model 
The schematic drawing of our model is displayed in Figure 1. 

Signals from the left and right ears pass through the basilar 
membranes and nucleus magnocellularis (NM) and converge in the 
nucleus laminaris (NL) where the coincidence detection of action 
potentials arriving from opposite directions takes place. The nucleus 
laminaris projects to the central nucleus of the inferior colliculus 
(ICc), where the selectivity for interaural time differences is enhanced. 
To this point frequency channels are strictly separated. The ICc 
projects to the external nucleus of the inferior colliculus (ICx). This is 
the first nucleus of the time-coding pathway where the different 
frequency channels converge in order to resolve the phase ambiguity 
problem. The description of the connections is detailed in Section 5 
and 6 .  

3 CNN models of neurons, synapses and axons 
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Figure 1: Schematic drawing of the 
model 

For lack of space, the CNN models of the building blocks of our model cannot be detailed here, only a short 
summary is given and we refer to [6,14,15] for a detailed description. 

The equivalent electrical circuit of neurons we use in our model (magnocellular neurons, NL neurons, 
interneurons) contains three ion channels, one is a non-gated leakage channel to maintain the resting membrane 
potential, the other two are voltage-gated sodium (Na) and potassium (K) ion channels to generate action 
potentials. 

Action potentials (spikes) propagate along the magnocellular 
axons. Axons and signal propagation on them are modelled using a 
multi-compartment model well known from cable theory [6,8]. The 
timing of spikes is so that the time needed for a spike to travel along 
the axon is approximately the same as the duration of the spike. 
Figure 2 displays the state voltage of units along the axis at a given 
moment. Action potentials generated by a magnocellular neuron and 
recorded at one point of the axon model are displayed in Figure 3. 
The excitatory synaptic connections are modelled with ion channels 
whose reversal potential is between the reversal potentials of the 
sodium (Na) and potassium (K) ions, and the conductance is 

state voltage of units 

unit along the axoii 

Figure 2: State voltage of units along L..? 
axon at a given time 

nonlinearly dependent on the difference of the membrane potential and the reversal potential 

4 Input data of the model 
In our model we use two kinds of input data: artificial and real world data. Ideal sinusoid signals generated by 

a computer simulation as artificial input are used when the effect of 
single-frequency tones is investigated. The real world data was a 
stereophonic signal of a short, sharp noise captured with the SGI 
Indigo workstation and processed through a basilar membrane 
simulation. The basilar membrane accomplishes a form of bandpass 
filtering. The general equation for the filter shape is given by the 
gammatone function which was originally used by psychologists [ 1,7] 
to describe the filter responses they obtained in single unit studies 
with cats. 

In our simulation we use 10 channels distributed logarithmically 
in the 300..8000 Hz frequency range. Accordingly to the Nyquist 
theorem we have to take the sampling rate of the sound data at least 
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Figure 3: State voltage versus time of 
one unit at a given Doint of the axon 
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As we mentioned above, there is considerable 
evidence that in the nucleus laminaris (NL) of owls 
interaural time differences map into a neural place 
coding via coincidence detection of signals from the left 
and right ear. The first model to explain the encoding of 
interaural time dgfference (ITD) was proposed by 
Jeffress in 1948 (Figure 4). Here fibers from the left and 
right nucleus magnocellularis (NM) converge on the 
nucleus laminaris (NL), and the place of the neuron 

The exactness of this model was verified by the 
experiments and results of M. Konishi and his 
colleagues. Their findings indicate that the 

responding maximally denotes the corresponding ITD. 

about 2 ms. It is also evident in 
Figure 2 that a spike has no 
distinct peak along the axon. So 
the place of the exact 
coincidence cannot be 
determined on the basis of this 
model. 

We have completed the 
original delay line-coincidence 
detector model (above) with a 
lateral inhibition (via an 
interneuron) between the 
neighboring neurons. It is a fact 
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Figure 4: The Jeffress model for encoding 
interaural time differences 
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Figure 5: The Jeffress model completed by lateral inhibition. Each neuron 
synapse to an inhibitory interneuron for  simplicity only one is indicated in 

the$gure) which inhibits the neighboring cells 
that antibodies against GABAa have been discovered in nucleus laminaris which indicates many inhibitory 
synapses but the origin of the inhibitory axons is not yet known. It is also not clear whether inhibition occurs at all 
in nucleus laminaris. We assumed that there is lateral inhibition via interneurons and examined the effect of this 
inhibition on the neuron's ability to detect coincidence of the input signals. The new structure is displayed below 
in Figure 5. 

In this new structure each NL neuron synapse to an inhibitory interneuron (for simplicity only one is indicated 
in Figure 5) ,  which inhibits the neighboring neurons (we took the neighborhood 3). The number of NL neurons in 
the line is 15 in accordance with the neurophysiological data. The CNN template for the coincidence detection is 
given in Appendix 1 of [ 161. Next we discuss the nature of the inhibitory connections. 

As neurons receive several inhibitory synapses, the net synaptic current originating from the inhibitory 
synapses is 

3 

(2) 

where k . .  is the strength of the synapse between the ith and j th  neurons, and E,, is the reversal potential 

characterizing the inhibitory synapse. 
I/  
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In our experiments we used a large number of different values of k . As a result of many experiments we have 

stated that the best coincidence detection was achieved when the spatial distribution of the inhibitory connection 
strengths was set as displayed in Figure 6. It has turned out that to obtain good results self-inhibition must be little 
or zero. 

Next we show the results of two experiments. In the first experiment we examined how the effectiveness of 
coincidence detection depends on the strength of the inhibition. The effectiveness of the coincidence detection is 
measured by the number of spikes of NL neurons. The responses of cells 5 ,  7, 8, 9 and 11 were recorded at 
different inhibition strengths. Results are displayed in Figure 7. We used uniform inhibitory values, i.e. 

!I 

k = k = constant in the above equation (see 

Figure 7).  When there was no inhibition at all, 
all cells responded maximally (this is not 
displayed in Figure 7). With increasing 
inhibition, coincidence detection is more and 
more robust. Figure 7 displays responses of 
cells at three different strengths of inhibition 
( k  = 0.1, 0.4 and 0.5) in three columns. We 
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Figure 6: Spatial distribution of inhibitory synaptic 
can observe that in the third column (strongest I 
inhibition) practically only Cell 8 responds. According to this simulation, it is very likely that inhibition plays 

strengths 

crucial role in coincidence detection. 
In the second experiment we recorded the 

responses of 7 cells (cell 5-1 1) while the arrival 
time difference of the left and right input 
signals was changed. The inhibition was the 
same during this experiment (k  = 0.4). 
Figure 8a shows the responses of the seven 
cells when the time difference is 0. 
Coincidence is detected by Cell 8 which 
responded most vigorously. Delaying one of 
the input signals by 3 0 p ,  Cell 7 detected the 
coincidence (Figure 8b). Further delaying the 
same input by the same period, Cell 6 showed 
the strongest response (Figure 8c) etc. 

The structure of Figure 5 can be considered 
as an aggregate model of coincidence 
detection. It is very likely, however, that the 
auditory system of owls uses several stages for 
this task. We developed a model which 
contains the next stage of the sound localizing 
system too (ICC). In this model, each NL neuron 
makes an excitatory synapse to an ICc neuron 
and an inhibitory interneuron (of this latter only 
one is indicated). The interneuron then inhibits 
the neighboring NL neurons (feedback 
inhibition) and the neighboring ICc neurons 
(feedforward inhibition). On the other hand, 

k = 0.1 k = 0.4 k = 0.5 

I 
Cell 7 ~ 

' I  

I 

Cell 8 

. . . . . . , . . . . . 

'igure 7: Responses of cell 5, 7, 8, 9 and 11, respectively, 
it three different, increasing values of inhibition. A row 
:ontain the responses ofthe same cell at different inhibition, 
I column displays the responses of different neurons at the 
'ame inhibition 

each ICc neuron again inhibits - via an inhibitory interneuron - all neighboring ICc cells (second feedback 
inhibition). So we model here three kinds of inhibition: two feedback and one feedforward.-By applying various 
sets of inhibitory connections, we could observe some interesting facts: 

(1) If the feedback inhibition in the NL and the feedforward inhibition is zero, the effect of the feedback 
inhibition in the ICc is the same as displayed in Figure 7 and 8 (the aggregate model). Therefore the assumption 
of inhibition in the NE i s  not necessary (but cannot be precluded). 
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(2) When only feedforward inhibition is 
used, with the same connection strengths as in 
the case of feedback inhibition, the 
coincidence detection is much poorer in the 
higher frequency band. 

(3) In the lower frequency band, however, 
feedback inhibition is insufficient to produce 
the same selectivity as in the higher frequency 
band. In this case feedforward inhibition is 
indispensable. 

We also concluded that by using feedback 
inhibition both in the NL and the ICc, the 
selectivity of ICc neurons to interaural time 
difference was better than that of NL neurons. 
This is in accordance with the observance that 
ICc neurons are more selective for time 
disparity than NL neurons and that application 
of bicuculline to ICc reduces this improved 
selectivity which suggests that inhibitory 
circuits between neurons tuned to different 
ITDs must be involved [4,9]. The ITD-curves 
measured on our model indicating the better 
selectivity of ICc neurons are shown in 
Figure 13 of [16]. 

6 Resolving phase ambiguity 

At = 0 At = 3 0 p  At = 6 0 p  

Figure 8: Responses of cell 5, 6, 7, 8, 9, 10 and 11, 
respectively, at three different, increasing values of interaural 
time difference: (a) At = 0 ,  (6) At = 3 0 p ,  (e) At = 6 Q p  

Neurons in the nucleus laminaris and central nucleus of the inferior colliculus respond not only to one ITD (z) 
but also to time differences that are separated by integer 

multiples of the stimulus period (z  + nTc where Tc is the 
period characterizing the given frequency channel). This 
phenomenon is called phase ambiguity which is a 
consequence of the fact that the NL receive phase-locked 
spikes [lo]. We call the value z “real ITD”, and the 

different z + nTc values “virtual ITDs”. Phase ambiguity 

can be eliminated with the convergence of multiple 
frequency channels, because the detection corresponding to 
z takes place at the same neuron in each channel, but the 

values ofz + nTc vary from channel to channel. This 
convergence is the key to the resolution of phase ambiguity. 
Experiments of M. Konishi and his co-workers show that a 
single space-specific neuron (in the ICx ) receives inputs 
from a tonotopically organized array of neurons which are 
tuned to the same ITD and its phase equivalents [19]. 

Here we shortly summarize our results. We have 
developed a model in which the different frequency 
channels not only converge, but there is a feedback 
inhibition in the ICx which is assumed to cancel the 
responses to the virtual interaural time differences. The 
structure of this part of the auditory pathway model is given 
in Figure 9 and the CNN template for the converging 

; pzq 
Ihighercenters/ connections 

Tigure 9: Model of the circuit resolving phase 
zmbiguity. ICc neurons coding the same ITD but 
uned to different ,frequencies converge to an ICx 
ieuron (space-specific neuron). This neuron 
xcites an inhibitory interneuron which inhibits 
he neighboring space-specific neurons (ITD 
:electivityj and the neurons with different 
Fequencies 

frequency channels with feedback inhibition is given in Appendix 2 of [16]. We used two kinds of input: first three 
tones of different frequencies, then a stereophonic signal of a short, sharp noise processed through a basilar 
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membrane simulation. In this latter experiment 10 frequency channels were used. in both cases we concluded that 
only by use of the convergence of the different frequency channels - without inhibition - the phase ambiguity was 
partly reduced. Feedback inhibition, however, further suppresses the secondary peaks corresponding to virtual 
ITDs (see Figure 15 in 11161). It can also be observed that the inhibition resulted in a decrease in the number of 
spikes which is again in agreement with physiological data (see [4]). 

Conclusions 
A cellular neural network of the time-coding pathway of sound localization have been presented. On basis of 

the model we have shown that inhibition must play a crucial role in sound localization and have drawn some 
interesting conclusions concerning the possible types of inhibition. In addition, we have shown that a kind of 
hyperacuity in time can be observed in the sound localization system. 

Acknowledgements 

the National Research Fund of Hungary, Grant No. TO 116528. 

References 
[ I ]  E. de Boer and H. R. de Jongh, “On cochlear encoding: Potentialities and limitations of the reverse correlations technique”, 
Journal of the Acoustical Society of America 63, pp. 1 15-135, 1978 
[2] C. E. Carr and M. Konishi, “A circuit for detection of interaural time differences in the brain stem of the barn owl”, J. 
Neuroscience 10, pp. 3227-3246, 1990 
[3] L. 0. Chua and L. Yang, “Cellular neural networks: Theory”, IEEE Trans. CAS, Vol. 35, pp. 1257-1272, 1988 
[4] I. Fujita and M. Konishi, “The role of GABAergic inhibition in processing of interaural Lime difference in the owl’s 
auditory system”, J. Neuroscience 11, pp. 722-739, 1991 
[ 5 ]  W. Heiligenberg and T. Roska, “On biological sensory information processing principles relevant to cellular neural 
networks”, in T. Roska and J. Vandewalle (eds.), ‘Cellular Neural Networks’, J. Wiley and Sons, Chichester, London, New 
York, 1993 
161 A. Jacobs, T. Roska and F. Werblin, “Techniques for constructing physiologically motivated neuromorphic models in 
CNN”, Proc. 3rd Int. Workshop on Cellular Neural Networks and their Applications, Rome, Italy, pp. 53-58, 1994 
[7] P. I. M. Johannesma, “The pre-response stimulus ensemble of neurons in the cochlear nucleus”, Proceedings of the 
Symposium on Hearing Theory, IPO, Eindhoven, The Netherlands, pp. 58-69, 1972 
[8] C. Koch and I. Segev (eds.), Methods in neural modelling: from synapses to networks, MIT Press, Cambridge, MA, 1989 
[9] M. Konishi, T. T. Takahashi, H. Wagner, W. E. Sullivan and C. E. Carr, “Neurophysiological and anatomical substrates of 
sound localization in the owl”, in Auditory Function: Neurobiological Bases of Hearing, edited by G. M. Edelman, W. E. Gall 
and W. M. Cowan, John Wiley & Sons, 1988 
[lo] M. Konishi, “The neural algorithm for sound localization in the owl”, in The Harvey Lectures, Series 86, pp. 47-64, 1992 
[ l l ]  M. Konishi, “Listening with two ears”, Scientific American, April 1993 
[12] M. Konishi, “Deciphering the brain’s codes”, Neural Computation 3, pp. 1-18, 1991 
[13] J. Lazarro and C. Mead, “A silicon model of auditory localization”, in C. Mead: An introduction to neural and electronic 
networks, MIT Press, 1988 
[ 141 K. Lotz, Z. Vidnyanszky, T. Roska, J. Vandewalle, J. Hhori ,  A. Jacobs and F. Werblin, “Some cortical spiking neuron 
models using CNN”, Proc. 3rd Int. Workshop on Cellular Neural Networks and their Applications, Rome, Italy, pp. 41-46, 
1994 
[15] K. Lotz, A. Jacobs, J. Vandewalle, F. Werblin, T. Roska, Z. Vidnyanszky and J. Hamori, “Cellular neural network 
models of cortical neurons with diverse spiking patterns”, received as regular paper by the International Journal of Circuil: 
Theory and Applications, 1995 
[16] K. Lotz, L. Boloni, T. Roska and J. Hiimori, “A CNN model of the time coding pathway of sound localization -. 
hyperacuity in time”, Report NIT-4-1 995, Neuromorphic Information Technology, Graduate Center, Hungarian Academy of 
Sciences, 1995 
[17] T. Roska and L. 0. Chua, “The CNN Universal Machine - an Analogic Array Computer”, IEEE Trans. CAS-11, Vol. 40, 

[18] T. T. Takahashi and M. Konishi, ”Selectivity for interaural time difference in the owl’s midbrain”, J. Neuroscience 6, pp” 

[19] H. Wagner, T. Takahashi and M. Konishi, “Representation of interaural time difference in the central nucleus of the barn 
owl’s inferior colliculus”, J. Neuroscience 7, pp. 3105-31 16, 1987 
[20] F. Werblin, T. Roska and L. 0. Chua, “The analogic cellular neural network as a bionic eye”, Int. J. Circuit Theory and 
Applications, 1995 (to appear) 

The advice and encouragement of Prof. M. Konishi is gratefully acknowledged. The research was supported by 

pp. 163-173, 1993 

3413-3422, 1986 

675 


