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Abstract. We describe an approach for learning the model of the op-
ponent in spatio-temporal negotiation. We use the Children in the Rect-
angular Forest canonical problem as an example. The opponent model
is represented by the physical characteristics of the agents: the current
location and the destination. We assume that the agents do not disclose
any of their information voluntarily; the learning needs to rely on the
study of the offers exchanged during normal negotiation. Our approach
is Bayesian learning, with the main contribution being four techniques
through which the posterior probabilities are determined. The calcula-
tions rely on (a) feasibility of offers, (b) rationality of offers, (c) the
assumption of decreasing utility, and (d) the assumption of accepting
offer which is better than the next counter-offer.

1 Introduction

Spatio-temporal negotiation is a specific case of multi-issue negotiation where the
issues under negotiation can be spatial or temporal values. In previous work [7, §],
we have shown that spatio-temporal negotiation has differentiating properties
which require specific negotiation protocols and offer formation strategies.

In most practical negotiation problems, incomplete information is the default
assumption. The self-interested negotiation partners disclose preferences only in
the degree they believe that it allows them to reach a more favorable agreement.
Naturally, a better knowledge of the opponent’s preferences allows an agent
to form better offers, and ultimately to reach a more favorable deal. Thus, in
the recent years, a relatively lively research area deals with learning opponent
preferences from the exchange of offers in the course of normal negotiation. In
addition, argumentation techniques allow a more controlled way for agents to
share a specific part of their preferences.

The preferences of the agent participating in spatio-temporal negotiation are
defined in terms of physical properties such as current physical location, desired
destination, current and maximum velocity, remaining fuel, desired trajectories
and so on. This requires a different approach compared to worth oriented or task
oriented domains.

In this paper, we outline a technique which allows an agent participating in a
spatio-temporal negotiation to learn the preferences of the opponent agent. The
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negotiation protocol we assume is a simple exchange of binding offers - that is,
there are no arguments exchanged, the agent needs to infer the preferences of the
opponent from its offers, or from the rejection of its own offers by the opponent.
We are using the Children in the Rectangular Forest canonical problem as our
working assumption, being a simplified environment, which however, represents
all the properties of general spatio-temporal negotiations.

Our approach is based on Bayesian learning which was previously used for
multi-agent negotiations by Zeng and Sycara [10], Li and Cao [6] and others. The
agent updates its beliefs about the opponent’s preferences after each negotiation
round.

The main contributions of this paper are the specific techniques which need
to be used to calculate the posterior probabilities considering the spatial and
temporal nature of the preferences, and the specific dependencies between the
preferences. In addition, in contrast with most previous work in preference learn-
ing, we do not assume that the opponent uses a specific negotiation strategy.

The only assumptions about the opponent are those dictated by common
sense: (a) that it does not make binding offers which are not feasible for itself
(b) that is does not make binding offers which are not rational for itself (they are
worse than the conflict deal) (c) that from a pool of available offers it presents the
ones with the higher utility for itself before the ones with the lower utility, and
(d) that it doesn’t reject the offer which is better than the counter offer it plans
to propose next round. Note that the third requirement does not necessarily
imply a uniform concession. There is a very large space of possible strategies
which verify these requirements. These four assumptions translate into three
algorithms for the computation of the posterior probabilities in the Bayesian
learning.

The remainder of this paper is organized as follows. We succinctly describe
the CRF problem in Section 2. Then we introduce the theory of Bayesian learning
in Section 3. We design three ways to determine the posterior probabilities of
preference in learning agent. In Section 4, we design two strategies with different
parameters for the opponent agent, and show the experimental study about
the performance of learning. We talk about the related work in Section 5 and
conclude in Section 6.

2 Justifying the CRF problem

Children in the Rectangular Forest (CRF) is a canonical problem designed to
study spatio-temporal negotiations. It states that two children in the physical
map go from their sources to destinations with their own speed. There is a
rectangular forest in front of them. If the children join together, they can traverse
the forest as a team with the speed of the slower child. Otherwise they have to go
around the forest independently (see Figure 1). The key point for this problem is
that the two children should negotiate and find a common path which potentially
saves time compared to the case when they travel independently.
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Many real life applications can be abstracted into the CRF problem, such as
cooperative control of unmanned air vehicles (scouting and convoy) [9], multi-
agent routing [11], RoboCup soccer (when and where the robot receives the ball,
and when and where it passes the ball to teammates), and so on.
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Fig. 1. The CRF problem: two children A and B try to move from sources S4 and Sp
to destinations D4 and Dp with their own speed V4 and Vp. The dashed line indicates
the trajectory of their conflict deals, and the solid line indicates the trajectory of an
agreement.

In previous work [7, 8], we found that the optimal trajectories of the conflict
deal and the collaboration deal should be a sequence of straight lines, and the
meeting and splitting locations should be at the edges of the forest. So the offer
between two agents contains at least four issues: the meeting location L,,, the
meeting time t,,, the splitting location Ls and the splitting time ¢.

When an agent receives an offer from its opponent, it should check if the offer
is feasible and rational for itself. The offer is not feasible if the agent can not get
to the designated locations on time. The offer is not rational if it is worse than
the conflict deal. To evaluate the offer, the cost function is defined as the time
to arrive destination. Mathematically, for an offer O = (L, t,n, Ls, ts), agent A
(going from S, to D4 with speed of v4) can arrive the destination at
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where the dist(S4, L) means the spatial distance between source location S4
and meeting location L,,. The first two conditions in Equation 1 indicate the
agent couldn’t reach the meeting location and splitting location on time. So the

cost of the offer will be infinity.

The cost of the conflict deal (CC(?TZ fliet for the agent A) is the time to arrive
the destination if the agent doesn’t negotiate. Obviously, such value is a criterion
to decide whether the opponent’s offer is rational or not. In addition, each agent
has a best offer Ol()fs)t whose trajectory is a straight line between source and

destination, and the corresponding cost Clgjs)t is the ideal time it can arrive the
destination. However, in most cases, the best offer for an agent may be neither
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feasible nor rational for the opponent. In this paper, the utility of an offer is
defined by the time the agent can save, divided by the time saved by the best
offer.
A A
Cconflict -C (O) (2)
A A
C i

conflict est

U4(0) =

There are three states for the utility of an offer in Equation 2: (a) the utility
is minus infinity, which means the offer isn’t feasible for the agent; (b) the utility
is a negative number, which means the offer isn’t rational for the agent; and (c)
the utility is a positive number between zero and one, which means that the offer
is a potential deal for both negotiators. Thus, the objective of the negotiation is
to find a deal between two agents, which is feasible and rational, and its utility
is maximized in agent point of view.

For a negotiation with incomplete knowledge, it is hard for an agent to find an
offer which is also feasible and rational for the opponent, unless it knows the op-
ponent’s preference. Such preference includes the opponent’s source, destination
and its speed. In the next section, we will start to discuss how the learning agent
guesses these information from a sequence of offers proposed by the opponent.

3 Bayesian learning of preferences

The nature of the offer discloses some velocity information between agents.
Specifically, for an offer by the opponent, the agent can easily calculate the
common speed that the opponent wants to use to traverse the forest. This speed
can not exceed the maximum speed of opponent, because it will not propose an
offer which is not feasible for itself. In this way, to guess the speed of opponent,
the learning agent just needs to calculate the maximum common speed from all
the previous offers it received from the opponent. Moreover, it should add some
time buffers in the splitting time field (if necessary) when proposing the next
counter offer to the opponent.

To guess the source location and destination of the opponent, the map is
divided into grid. The combination of a grid in the source area and another one
in destination area is called a location model. The learning agent tries to guess
the location model of the opponent, by updating the probabilities (belief) of all
these combinations. Initially, each location model has equal probability, and the
sum of these probabilities equals to one. From time to time, these probabilities
are updated along the number of offers the learning agent receives from the
opponent.

3.1 Bayesian learning

Bayesian learning is the classical method to update the belief based on evidences
[6, 10]. Mathematically, the probability that the opponent is in the location
model {sz, sy, dz,dy} (the coordinates of the grid cells), when receiving a new
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evidence Oy (receiving an offer from opponent) can be calculated based on Bayes’
theorem.

Pr(O:|{sz, sy, dz,dy}) Pr({sxz, sy, dz,dy})
SR Zer T Pr(Ou{i, 5. k. 1Y) Pr({i, 5. k. 1})

where grid is the number of pieces the learning agent divides the map in each
dimension, and ¢ is the order of the offers it receives from the opponent. The
formula shows that the posterior probability of a location model can be calcu-
lated by the prior probability times the probability to propose the offer given
the opponent is indeed in the specific location model, and then normalized by
all the updated probabilities. The learning algorithm is shown in algorithm 1.

Pr({sz, sy,dz,dy}|O;) =

3)

Algorithm 1 Algorithm for the learning agent

1: initialize all location models and assign them equal probability;
2: for t =1 to theEndO f Negotiation do

3:  get the opponent’s offer Oy;
4 for all location models {3, j, k,} do

5 calculate Pr(O¢|{i,j,k,1});
6 updated posterior probability Pr ({4, j, k,[}|O¢);
7:  end for
8
9

0:

normalize all the updated probabilities;
propose next offer to opponent;

10: end for

3.2 Determining the posterior probabilities

In this subsection, we will discuss how the learning agent calculates
Pr(0O¢|{i, j,k,l}) - the probability to propose the offer Oy, given that the oppo-
nent is in location model {i, j, k, [}. First, we establish four basic rules according
to the assumptions of opponent agent. We let the learning agent eliminate non-
rational location models which break these rules. Next, the learning agent will
calculate the expected utility of opponent at a specific negotiation round, and
increase the probabilities of the location models whose actual utilities of the offer
are close to the expected one. At last, we introduce a half Gaussian approach to
overcome the case where the learning agent doesn’t know the expected utility
for the opponent.

The four basic rules

We are going to make four basic assumptions about the behavior of the
opponent agent in the negotiation. First, the opponent will not propose an offer
which is not feasible for itself. Second, the opponent will not propose an offer
which is not rational for itself, (otherwise, it will arrive the destination later than
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its conflict deal). The third assumption is the opponent will propose a counter
offer whose utility for itself is less or equal than the previous offers. This means
that at each round of negotiation, the opponent should concede or at least insist
on its last offer. The last assumption is that the opponent will accept the agent’s
offer if its utility is higher than the next counter offer. If the opponent in an
assumed location model proposed an offer which breaks these rules, the learning
agent will eliminate the possibility of that location model.

Practically, the value of Pr(O¢|{i,7,k,1}) = 0 if the opponent was assumed
at location model {i,j, k,} but its last O; breaks the four basic rules. All the
other location models in the learning agent’s belief share the same probability.
Next, the learning agent will continue to discriminate these rational models and
finds the one more likely.

Updating belief based on expected utility

A self-interested agent will not only act rational, but also propose the most
profitable offers at first, and concede to less profitable ones later. Using this idea,
the learning agent can calculate the expected utility at a specific negotiation
round, and assign more probabilities to those location models for which the
utility of the offer is close to the expected one. In practice, the learning agent
assumes that the opponent proposes offers with utilities starting from 1.0 at the
first call and linearly decreasing during the negotiation.

EUM) =1-axt (4)

where t is the order of the offers by the opponent and « is the conceding speed.
At each negotiation round, the location model whose utility of the offer Oy is
close to EU(t), will have its probabilities increased based on the Gaussian p.d.f.

1 W04 {34, k1) —EU ()2
. _ b kol

Pr(0t|{27]7 kv l}) U\/%G (5)
where Ui(O, {i,7,k,1})) is the utility of the opponent’s offer O; when it is as-
sumed in location model {4, j, k,l}, and o is the coefficient of confidence. There
are several approximations for this approach. The first one is we transfer a four-
dimensional vector (offer O¢) into a value (utility U;) and assume they have the
same posterior probabilities.

PT(Ot|{iaj7 kv l})

= PT(Ut‘{ig}k(}lji?Sf;(,?fk‘fl]}fﬂ{myk’l}) (Bayes'theorem)
= Pr(Ug{i, j,k,1}) x Pr(O:|U, {i, j, k,1}) (definition of utility)
= Pr(Uil{i, j,k,1}) (assumption)

The equation assumes that Pr(O:|Us, {i,j,k,1}) = 1. In general, an agent
may find many offers given a specific utility, and the assumption is not true
for those strategies which want to try out every possible offer before conceding
the utility. However, considering the negotiation time is crucial, we assume the
opponent can only select one offer given a specific utility.

Another approximation for this approach comes from the four basic rules.
The learning agent eliminates the probability of non-rational location models
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whose utilities are negative or greater than the utility of the opponent’s last
offer. Such elimination cuts off the Gaussian p.d.f (see Figure 2(a)), and the
integral of the remaining part doesn’t equal one. The assumption here is we
ignore these parts because all the probabilities will be normalized later, and we
just need a discriminant value to judge the distance between the actual utility
and the expected one. In the mean time, we can also change the variance of
Gaussian p.d.f to reduce the impact of this approximation.

second  first
expected offer  offer

third
update

first update
last offer

best offer ’/

0 1 . 1
utility 0

probability
probability

second update

utility

(a) Expected utility method (b) Half Gaussian method

Fig. 2. Two methods to discriminate location models in the learning agent: 2(a): it
updates belief based on Gaussian p.d.f which center at the expected utility and 2(b):
it updates the probabilities based on half Gaussian p.d.f with the center at the utility
of last offer.

The main deficiency of this approach is the difficulty to find a correct con-
ceding speed to calculate the expected utility. If the opponent uses a different
strategy which is not linear concession in utility, the learning agent may make
a wrong guess. To overcome this problem, we need to model the opponent’s
strategy and calculate the expected utility based on the probabilities of strategy
models [5] (we leave it in the future work), or we can apply it in a save way
which we will discuss next.

Updating belief based on the half-Gaussian distribution

The idea of this approach is that an agent will concede step by step. At each
step, it will give up a small amount of utility and see if the opponent accepts it.
In this way, if the opponent which is assumed in a location model proposes two
adjacent offers which have a big difference in utilities, the probability that the
opponent is in that location model should be small.

Figure 2(b) depicts the way the learning agent calculates the conditional
probability Pr(O|{i,J,k,1}). As we discussed above, the offer O, is first trans-
ferred into utility Uy, given the assumption that the opponent is in location
model {i, j, k,1}. Then, the learning agent calculates the probability of the offer
based on utility and half Gaussian p.d.f, in which the mean of the Gaussian is
at the utility of the last offer given the opponent is in the same location model.
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4 Experimental study

4.1 Strategies used by the opponent

Before we study the performance of the learning, we introduce several simple
strategies which the opponent might use in the CRF game. The first strategy
is called Monotonic Concession in Space (MCS), which is parameterized by the
conceding pace at each side of the forest (Cpneet, Cspiit). The MCS agent proposes
its best offer at first, and then concedes in spatial fields to the opponent’s last
offer. The meeting time field is tightly calculated based on the agent’s own speed,
and the splitting time field is added some time buffer according to the maximum
common speed in opponent’s previous offers. When the MCS agent doesn’t have
space to concede its offer or the next concession breaks the rationality constraint,
the agent quits the negotiation. On the other hand, if the next conceded offer
is worse than the opponent’s last offer in utility, the MCS agent will agree the
opponent’s offer (see Algorithm 2).

Algorithm 2 The MCS agent

1: the agent receives an offer O; from the opponent;

2: calculates conceded offer Opeqt according to (Cmeet, Cspiit);
3: if not exist Oneqst then

4: if O; is rational and feasible then

5: agree the opponent’s offer Oy;
6: else

T quit the negotiation;

8: end if

9: else

10:  if U(O:) > U(Opest) then

11: agree the opponent’s offer Oy;
12: else

13: propose counter offer Opeqt;
14: end if

15: end if

The second strategy is called Uniform Concession (UC), which is parameter-
ized by the conceding speed A. The idea is the MCS strategy doesn’t test all the
combinations of meeting and splitting locations across the forest, nor add any
time buffer in the meeting time field. In this way, it may omit some potential
deals. The UC agent, however, searches the offers in the whole spatio-temporal
domain, and uniformly concedes in utilities of those offers. Specifically, the agent
proposes an offer based on a range of utility. The length of the range is the con-
ceding speed \. The higher boundary of the range is initialized as one (the utility
of the best offer), and it decreases with the amount of A\ at the next time. To
calculate the next counter offer, the UC agent searches all possible combina-
tions whose utilities are in the current utility range, and selects the one which
is most similar to the opponent’s last offer. The similarity between two offers is
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defined by the sum of squared difference for each issues ||Onext — Oopponent ||
When the lower boundary of the utility range is less than zero, the agent quits
the negotiation without agreement. When the utility of the opponent’s offer is
greater than the lower boundary of the utility range, the UC agent agrees the
opponent’s offer (see Algorithm 3).

Algorithm 3 The UC agent

1: the agent receives an offer O; from the opponent;
2: Create Set{of fer) to hold all possible offers;
3: while Set(of fer) is empty do
4: lower = lower — )
5: if lower <0 then
6: quit the negotiation;

7 end if

8:  find all Of fer that U(Of fer) € (lower, lower + \);
9: add all Of fer in Set{of fer)

10: end while

11: find Onewt < argminges(of fery Stmilar(of fer, Oy);

12: if U(O¢) > lower then

13:  agree the opponent’s offer Oy;

14: else

15:  propose Opext

16: end if

4.2 Performance of learning

In this subsection, we focus on the accuracy of learning by comparing the op-
ponent’s actual location model with the probabilities of location models in the
learning agent’s belief. At first, we generate a typical scenario and see how the
probabilities are updated during the negotiation. Then, we study the statistical
performance in random generated scenarios.

A typical scenario

Figure 3 shows a typical scenario, where the opponent is located at the centers
of grids in a specific location model and the learning agent is located at the lower
corners of the forest. We let the learning agent use different methods to update
the posterior probabilities. The opponent uses MCS strategy with parameter of
(2,2). Figure 4 shows the updating progress in the learning agent’s belief. For
all these three methods, 81 location models are initialized as equal probabilities
at the beginning. When the learning agent uses four basic rules to update the
posterior probabilities, some of location models are eliminated when the learning
agent believes them non-rational. At the end of learning process, there are still
9 models it couldn’t decide. So they share equal probabilities in learning agent’s
belief (see Figure 4(a)). Then, we assign a conceding speed for the learning
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Fig. 3. A typical scenario: both the source and the destination area is divided into 3
X 3 girds, which corresponds to 81 location models. The opponent agent is located at
the center of grid (0,0) and wants to move to the center of grid (0,2) with the speed of
1.0. The learning agent is located at the lower-left corner of the forest, insists its best

offer until the end of negotiation.
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Fig. 4. The probabilities are updated along the number of offers from the opponent,
the bold line is the opponent’s actual location model in the learning agent’s belief. The
learning agent use: 4(a): four basic rules, 4(b): expected utility with correct conced-
ing speed, 4(c): expected utility with incorrect conceding speed, 4(d): half Gaussian
method, to determine the posterior probabilities.
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agent to calculate expected utility by opponent, and let it negotiate with the
same opponent. The 9 remaining location models are then further discriminated
(see Figure 4(b)). However, the deficiency of using expected utility is disclosed
when we assign an incorrect conceding speed in the learning agent’s assumption
(see Figure 4(c)). At last, half Gaussian method gives a relatively compromised
outcome, with the probability of the correct location model between the correct
and incorrect Expected methods (see Figure 4(d)).

A statistical study

We enumerate all the other combinations where the opponent’s source and
destination are initialized at the centers of grids. We let the opponent use simple
strategies we discussed above and the learning agent use the four basic rules
to update the belief. We calculate the averaged number of opponent models
remained in the belief over all the combinations of grids and we increase the grid
resolution in the map (see Table below):

MCS ucC
Cm,eet:27 Osplit:2 a=0.02
grid=3, 81(models) 5.271 4.099
grid=4, 256(models) 9.731 7.016
grid=5, 625(models) 17.733 11.9936

0 10 20 30 40 50 60 70 o 10 20 30 40 50 60 70
Error tolerance Error tolerance

(a) correctness (b) accuracy

Fig. 5. The values of correctness and accuracy in the function of error tolerance in
1000 random generated scenarios.

The next question is how to decide whether the error tolerance due to the
resolution of the grids is not high enough, and the opponent is not at the centers
of the grids. Intuitively, the learning agent may eliminate the correct opponent
model based on the four basic rules if the opponent is not at the center of the
grids. This is a trade-off between the correctness and the accuracy of learning.
The correctness of learning is defined by the number of experiments that the cor-
rect location model is still remained in the learning agent’s belief, over the total
number of experiments. The accuracy of learning is the averaged probabilities of
the correct model in all the experiments. If the error tolerance is too small, the
correct location model may be eliminated, so its probability will be zero. On the
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other hand, if it is too large, the number of location models remained in the be-
lief is also large, so the probability of the correct location model will be very low
too. In the experiment, we generate 1000 random scenarios, we let the learning
agent use the four basic rules negotiating with a MCS agent. We calculate the
correctness of these 1000 learning, and the accuracy of the learning. In addition,
we change the value of error tolerance as well as the grid number to see the
tendency of correctness and accuracy (see Figure 5). From the experiment, by
increasing the error tolerance until the amount of time for the opponent travels a
half length of grid diagonal, both correctness and accuracy are balancing. That’s
because if the opponent’s source and destination are at the edge of grids, it is
still believed as rational as it is located at the centers.

0.05

I four basic rules
0045 I expected utility
[Ihalf Gaussian

0.035F

o
1=}
@

0.025

Accuracy

=4
Q
N

0.015-

0.01f

=4

0.005

o

MCs22 MCs44 UC0.02 UC0.05

Fig. 6. The statistical study about the three learning approaches, when the opponent
use the MCS22;, MCS44, UC0.02, and UCO0.05 strategies respectively. The results come
from 1000 random generated scenario with learning agent’s grid number of 6, error
tolerance of 10. The learning agent which uses expected utility method assume the
opponent’s conceding speed is 0.03.

With a balanced error tolerance, we continue to study the performance of
learning in 1000 random generated scenario when the learning agent use each
of three methods to update the belief, and with opponent use simple strategies
with different parameters (see Figure 6).

4.3 Performance of negotiation with or without learning

This subsection investigates how to apply the output of learning to accelerate
the speed of negotiation. We design a strategy which is similar with the UC,
but has full-knowledge about the opponent’s preference (UCF). Contrasting to
search offers within the small utility range, the UCF agent just has a conceding
level. When proposing the next offer, it will choose the offer whose utility is
higher than the current level and providing the opponent best utility. If there no
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such offer exists, the level is decreased. If the opponent doesn’t accept the offer,
it will also decrease the level in the next round. When the level is less than zero,
the agent quits the negotiation.

In the experiment, we generate 1000 random scenarios, letting the learning
agent select its next counter offer in the same way as the UCF agent. The
difference is it guesses the opponent as in the most probable location model
in its current belief. If it couldn’t find any offer satisfy the requirements, it
doesn’t decrease the level but continue to search by changing the assumption
that the opponent in the second most probable location model. After a certain
round of search (a certain amount of probabilities in belief have been searched),
it decreases the utility level until find the next offer. The story behind this
approach is that the learning agent initially doubts the correctness of its own
belief before it concedes the utility level, which in other words, it updates the
subjective things it can control before concede the objective things it can not
control (such as the opponent’s strategy, and the nature of scenario).

0a — I testing agent
opponent

Number of negotiation rounds

0 A A
UC0.05 UCF0.05 HG3 HG6 HG10 UC0.05 UCF0.05 HG3 HG6 HG10

(a) Number of negotiation rounds (b) Averaged utilities

Fig. 7. The benefit of learning: UC0.05, UCF0,05, HG3, HG6 and HG9 negotiate
with another UC0.05 in 1000 random scenarios

We compare the averaged number of negotiation rounds, and the average
utility of the testing agent as well as the opponent gains, among the UCF agent
(an agent with full knowledge), the UC agent (an agent without knowledge and
without learning), and the learning agent (an agent which uses half Gaussian
method, without knowledge but with learning), when each of them negotiates
with another UC agent as a fixed opponent (see Figure 7). From the experiment,
we can see: (a) the number of negotiation rounds is dramatically decreased if
the agent is learning; (b) the utility of the deal is also improved if the agent
learns; and (c) the effect of the first two observations are more obvious when the
learning agent increase the grid resolution of the map.



14 Yi Luo and Ladislau Bo6loni

5 Related work

Fatima et al. [4] used the shrinking pies model to investigate the multi-issue
negotiation problem with deadlines. They assume a common preferences pool
that both agents know in advance. During the negotiation, the agent assumes
that the opponent uses the same strategy, and it guesses which type of preference
in the common pool that the opponent is. In this paper, we also divide the
preference into discrete representations of grids, and we remove the non-rational
opponent model in the same way. However, we don’t assume the learning agent
knows the opponent’s offering strategy, but we try to abstract the offer into the
utility point of view to update the probabilities.

Hindriks et al. [2] used the Bayesian learning to study the opponent’s type
for each issue. They apply the probabilistic guess over a set of hypothesis and
update the probabilities based on the distance between the opponent’s expected
bid and its actual bid. In this paper, we also try to guess the expected utility
of opponent’s offer, but we found that it is difficult to arbitrarily decide the
conceding speed in the spatio-temporal negotiations. Moreover, issues of the
offer in our problem are inter-dependent and the utility function is non-linear.
Thus, we update the probability based on the expected utility and we design the
half Gaussian method to compromise the risk of incorrect guess.

In addition, this paper also introduces some similar strategies which apply
the learning result to improve the negotiation outcome, like the meta strategy
introduced by Faratin et al. [3], the Bazaar model introduced by Zeng et al.[10],
the learning strategy introduced by Bui et al. [1] and others.

6 Conclusion

In this paper, we applied the Bayesian learning in the spatio-temporal negoti-
ation problem. The learning agent guesses the opponent’s preference from the
sequence of offers it received. We designed three approaches to update the prob-
abilities of opponent’s location models in learning agent’s belief. First of all, for
those non-rational models in which a rational opponent will not propose the of-
fer, we eliminate their possibilities immediately. Then we continue to distinguish
location models based on the expected utility for a specific negotiation time. At
last, half Gaussian method is introduced to punish those models whose utilities
of two adjacent offers have large difference. At the end of this paper, we evalu-
ate these approaches and show the accuracy of learning by statistical analysis,
then we show the benefit of learning when it negotiates with a fixed opponent
in random scenarios.

Our future work is to continue the learning for the opponent’s strategy mod-
els, or the belief about belief if the opponent is also learning. Combining the
preference model with the strategy model will lead the negotiation to a decision-
making problem, which gives the learning agent much more advantageous than
its opponent. We will also apply the output of strategy models to help the agent
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calculate the next expected offer (instead of calculating the expected utility in
this paper). In this way, the preference models can be further updated.
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