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ABSTRACT
The current state of the art in simulating highway driving
extensively relies on models using formulas similar to those
describing physical phenomena such as forces, viscosity or
potential fields. While the parametrization of these formu-
las can account for the limitations of the driver (such as re-
action delay), they are badly suited for modeling conscious
behavior. In this paper we describe our simulation archi-
tecture which uses an agent-based model to represent the
conscious tactical and strategic behavior of the agent. This
model will act as a high level input to a state-of-the-art vir-
tual physics model which models the physical vehicle and
the subconscious aspects of the driver behavior.

The concrete aspects of driving modeled in this paper are
the strategic lane preferences of the drivers, with a special
attention to the optimal lane positioning for a safe exit. We
have used the model to simulate the traffic on Orlando’s
Highway 408. The results match well with the real world
traffic data. The increased simulation detail can be applied
to crash prediction and the control of intelligent transporta-
tion system devices, such as variable speed limits.

1. INTRODUCTION
Existing microscopic traffic simulation models heavily rely
on mathematical formulas similar to those describing various
physical phenomena: forces, viscosity, potential fields and
so on. We will call these virtual physics models. Over the
course of the last fifty years there was a gradual shift from
formulas relying on fluid dynamics towards the individual
treatment of the vehicle as a particle subject to a collection
of forces.

These models have been proved predict well the integrative,
long term parameters of the traffic, such as throughput or
average speed in congested traffic. These values are highly
useful for making long-term decisions such as highway plan-
ning. Their level of detail, however, is insufficient to model
events depending on specific driver decisions – such as the

incidence of crashes. On the other end of the spectrum,
we find purely agent based simulators such as the NetLogo
[9] based http://ccl.northwestern.edu/netlogo/models/

Traffic2Lanes. These efforts are successful as proofs of con-
cepts, yet their realism and simulation accuracy is arguably
lower than state of the art virtual physics models.

Our work is centered on improving the accuracy of micro-
scopic highway simulation through agent based modeling of
the conscious aspect of the driver behavior. These type
of models are sometimes called “nanoscopic” traffic simula-
tions [6, 3]. Lower level behavior, such as the vehicle physics,
the driver’s reflexive action, and those aspects of the driver’s
behavior which have been learned to the point of becoming
automated will be handled by the virtual physics model aug-
mented to allow for the integration of the agent based com-
ponent. For the starting point of the contributions described
in this paper see [5].

The conscious part of the driver’s behavior can be classified
into strategic and tactical behavior. Strategic behavior in-
volves decisions which are planned for the overall success of
the drive (safe and fast arrival to the destination). Exam-
ples involve route planning, joining or leaving convoys, and
choosing the appropriate highway lanes. Tactical behav-
ior includes actions taken to achieve short term advantages:
overtaking a slow moving vehicle, escaping from a dangerous
situation, increasing the distance from an erratically moving
vehicle and so on. Our technical approach will be to separate
the behavior of the driver into three simulation modules, as
described in Figure 1.

The virtual physics model models the physics of the ve-
hicle as well as those aspects of the driver which are either
reflexive (such as emergency braking) or learned to the point
of becoming sub-conscious (such as lane following and keep-
ing a constant distance from the car in front). Our current
model is based on [5], but we shall investigate other models
as well.

The agent model models the conscious cognition of the
human driver. This includes both strategic planning (which
exit to take, which lane to prefer for long distance driving)
and tactical (the decision to join a convoy or overtake a slow
moving car). The agent model will receive input from the en-
vironment (including sensor data, signaling data, vehicle-to-
vehicle and vehicle-to-infrastructure communication). The
agent model acts through the virtual physics model, by tem-
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Figure 1: Overall architecture of the simulation
model integrating the virtual physics model, the hu-
man agent and the automation model.

porarily changing its parameters, which, when the action is
finished, will return to default values.

The automation model which models the action of the
driver assist technologies, such as intelligent cruise control,
emergency brakes, lane following and others. This compo-
nent replaces the virtual physics model with a separate con-
trol system. The transitions between the virtual physics and
the automation model need to model the real world transi-
tion of control between driver control and automation.

Due to space limitations, this paper will concentrate on a
single, important aspect of strategic behavior, the planning,
decision and execution of lane changes. For an even more
concrete focus, we describe in detail the planning for a safe
exit from a congested highway - which requires a number of
lane changes ahead of the exit. It was found that about 10%
of the crashes occurring on highways are sideswipe crashes
while about 11% of them are angle crashes [7]. Both types
are associated with lane changes (the reminder of the crashes
are mostly rear-end crashes). Modeling the mechanics of this
process is of a major importance as it can predict traffic
simulations with high crash risk.

The reminder of this paper is organized as follows. Section 2
describes the virtual physics models which are the baseline of
the contribution described in this paper. Section 3 describes
the model through which the agent’s preferences for specific
lanes are enacted. Section 4 introduces a probabilistic model
of success for lane changes. In Section 5 we apply the model
to the problem of safe exit/merge from highways. We apply
our work on the simulated traffic of Orlando’s Highway 408
in the real world traffic data. We conclude in Section 6.

2. VIRTUAL PHYSICS-BASED MODELS
As shown in Figure 1, our agent-based driver model is closely
integrated with and acts through the virtual physics model.
To motivate this architecture, and to provide the founda-
tion for the presentation of the agent model, we will briefly
describe a collection of technologies which together are a
good sample of the state of the art in virtual physics based
models. These components will be used in our system to
model vehicle physics and subconscious driver behavior. The
virtual physics model has three main components: a time-
continuous car following model, a lane change model and a
human driver model.

2.1 Car following models
Car following models describe the behavior of a car on a
single lane highway. Most such models calculate the accel-
eration or deceleration of the car though a formula of the
following general pattern:

dvi(t)

dt
= f(∆xi, vi,∆vi) (1)

where ∆xi = xi+1(t) − xi(t) is the distance between the
vehicle and its immediate leader, and ∆vi = vi(t)− vi+1(t)
is the approaching speed. The specific formula we choose to
use is the one introduced by Treiber et al. [10]:
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where a is the maximum acceleration of the vehicle, v0 is
the desired speed, and δ(.) is the desired distance from the
leading vehicle. This distance depends on a number of pa-
rameters through the following formula:

δ(vi,∆vi) = ∆xmin + viT +
vi∆vi

2
√
ab

(3)

where ∆xmin is the minimum distance in case of congestion
(vi = 0), T is the safe time headway which models the buffer-
ing time of the driver, and b is the comfortable deceleration,
which couldn’t be less than -9 m/s2 on a dry road.

Let us now discuss the intuitions behind this formula. On
a free road, the instant acceleration changes from the max-
imum acceleration a (when the vehicle is still vi = 0) to 0
(when the vehicle reaches its desired speed vi = v0). If a
vehicle follows a leader with a negligible approaching speed
(∆vi ≈ 0), the term viT in Equation 3 dominates such that
the vehicle maintains a distance viT from the leader.

In the situation when the vehicle approaches the leader with
a high speed, the last term vi∆vi/2

√
ab dominates and the

formula dictates a deceleration. The most extreme case is
when the vehicle moves with its desired speed v0 and ob-
serves a still obstacle at the distance of xi. To avoid a col-
lision, the vehicle must brake with deceleration −b when it
reaches a distance of ∆xi = v2

i /2b. Indeed, this is exactly
what the model predicts:

dvi(t)

dt
= −a

(
δ

∆xi

)2

= −a

(
vi∆vi
2
√
ab

)2

∆x2
i

= − v4
i

4b∆x2
i

= −b

(4)



The car following model, defined in this way is considered
collision free.

2.2 Lane changing models
Our baseline model extends the car following model with
the lane change model described by Kesting et al. [2]. This
model assumes that lane changes happen instantaneously:
for a shift to the left lane, a vehicle which has been previously
in the middle lane, at time t disappears from the middle lane
and appears in the left lane. This opens the possibility that
a car, coming from behind in the new lane with a higher
speed can not break sufficiently quickly and collides with
the lane changing car. The model assumes that it is the
responsibility of the lane changing car to ensure that the
rear left vehicle j− 1 has sufficient buffer distance such that
it can decelerate before hitting the lane changing vehicle

âj−1(t) ≥ −bmax (5)

If this condition is not satisfied, the vehicle concludes that
it is not safe to change lanes.

The second feature of the lane changing model is the anal-
ysis of the motivations to change lanes, and the “politeness
of the drivers”. We assume that the goal of the vehicles is
to achieve their desired speed, which implies a certain de-
sired acceleration âi. The motivation of the driver to change
lanes is such that it can achieve this acceleration (which, we
assume, is not achievable in the current lane). However,
the changing of lanes might also trigger accelerations in the
other vehicles: for instance, it allows the current follower to
accelerate, and it might force the new follower to brake.

The notion of politeness models the fact that the driver
might consider the accelerations of the other vehicles as well
when taking a decision to change the lane. The politeness
parameter p specifies how much does the vehicle discount
the other vehicles’ desired acceleration compared to its own.
A value p = 0 indicates an impolite, fully selfish driver which
does not care about other drivers (however, it still considers
the safety criteria). The vehicle i will decide to change the
lane if the following inequality is verified:

(âi + p · (âj−1 + âi−1)− (ai + p · (ai−1 + aj−1)) ≥ ∆pth
(6)

where ∆pth is the politeness threshold. The left hand side
is the difference between the new accelerations âi, âj−1 and
âi−1 if the vehicle i successfully changes into the target lane
and the old accelerations ai−1 and aj−1 if it doesn’t change
lane. The intuition is that the vehicle favors to change lane
only when the advantage of the action is greater than the dis-
advantage it exerts to its neighboring vehicles. However, be-
cause the vehicle i can not obtain the parameters (T, v0, a, b)
for its successor i − 1 and j − 1, the utility of lane change
can only be calculated by vehicle i’s own parameters.

2.3 Human driver model in the virtual
physics approach

A human driver is in some aspects “less capable”, but in
other aspects “more capable” than the abstract driver envi-
sioned in the models considered up to this point. State of
the art microscopic traffic models consider some aspects of
the human driver such as reaction time, fatigue and cogni-

tive limitations and integrate them in the equations of the
virtual physics model.

For instance, our baseline model inspired from Treiber et al.
[11] implements the following aspects. First, we consider the
fact that humans can not perform an indefinite number of
decisions per unit of time. This is modeled by considering
a time step ∆t. At every time step ∆t the drivers observe
the traffic and make a decision about acceleration. This
acceleration value will remain constant for the next interval
∆t:

vi(t+4t) = vi(t) + v̇i(t)4t

xi(t+4t) = xi(t) + vi(t)4t+
1

2
v̇i(t)4t2 (7)

Another aspect of the human behavior modeled is the reac-
tion time T ′ necessary to reason about the traffic situation
and make decisions accordingly. This can be achieved by
substituting in Equation 1 the current state (∆xi, vi, ∆vi)
at time t− T ′. If t− T ′ falls between two simulation steps,
then it will be adjusted as:

x(t− T ′) = βxt−n−1 + (1− β)xt−n (8)

2.4 A critique of virtual physics models
Virtual physics integrate physical aspects (such as maximum
acceleration a and maximum breaking b) with psychological
aspects such as desired speed v0, and even cognitive limi-
tations such as the reaction time tr. A well tuned virtual
physics model can provide a good simulation of the overall
flow of the traffic. It can not, however, model well the details
of specific situations.

For instance, the model presented above assumes that the
only justification for a lane change is to achieve a more fa-
vorable acceleration. This obviously covers only short term
behavior, but even then, it fails to account for some impor-
tant aspects of driver behavior, such as the preference to
overtake on the left side or the tendency to return to the
preferred lane after overtaking. The model completely ig-
nores strategic lane change behavior, such as merging into
traffic, moving to a preferred lane, positioning to the right
lane for a forking highway and the preparation for exit.

Let us consider the issue of politeness as described in the
model above. A driver might act politely towards cars which
are trying to merge into the traffic from a merging lane which
is shortly terminating. The same driver might aggressively
pursue its goal of changing lanes when this is necessary for
him to make the desired exit. The problem is not with the
physical expression of the politeness, but with the fact that
this politeness is modulated by higher level cognitive acts,
which can not be modeled as forces.

3. STRATEGIC LANE CHANGE BEHAV-
IOR

Many highway simulation models assume that the lane
change decision is based on a near-term optimization cri-
teria. The vehicles will change lanes if they can get closer
to their desired speed. This, of course is only true under
the ideal assumption of an infinitely long highway, with no
road signs or obstacles and drivers who have no preconceived
ideas about the traffic lanes.



In a real world traffic, especially for highways traversing
cities, however, there are a number of considerations which
affect this behavior:

- Entrances: the drivers enter the highway on the
rightmost lane which often serves as a temporary merg-
ing lane. The drivers need to merge into traffic before
the lane ends.

- Exits: when drivers exit the highway, they need to po-
sition themselves to the appropriate exit lane (usually
one or two rightmost lanes, but occasionally a leftmost
lane). Depending on the traffic, the approaching ma-
neuver must be started long before the exit.

- Avoid the rightmost lane. If the highway has more
than two lanes, and there is a zone with many en-
trances and exits, then most drivers prefer not to drive
on the rightmost lane, to avoid interference with cars
entering and exiting the highway.

- Leftmost lanes as high speed lanes. The leftmost
lane is usually deemed a high-speed lane and is avoided
by vehicles which drive slower by choice or necessity
(such as trucks). Vehicles which are pushing the posted
speed limits, however, are preferring the leftmost lane.

- Lane number variations. The number of lanes on
the roads changes with the location. Lanes terminate,
new lanes are added in busy areas. The termination
of lanes is usually signalled ahead.

- High occupancy vehicle lanes. Some highways des-
ignate the rightmost lane as a high occupancy vehicle
lane. This would naturally be a preference for qualify-
ing vehicles, but it also requires the traversal of many
other lanes for entrance and exit.

Beyond the conditions imposed by the highway configura-
tion, the lane change behavior also depends on the strategies
of the individual drivers. Some drivers might try to reduce
the number of lane changes, while others make them every
time it might offer a short term advantage. Some drivers
prefer to position themselves to the correct exit lane long
time ahead, while others might wait to the last minute to
move towards the exit. Some drivers prefer the leftmost
lane, while others try to avoid it and prefer middle lanes.

In this paper we introduce a framework which models the
static and dynamic lane preferences of the drivers. The
framework integrates with the virtual physics based mod-
els described in the previous section - it does not replace
but augments them. The preference model does not elimi-
nate the optimization for the desired speed from the sources
of driver decision. For instance, in an open highway with
the planned exit far away, speed optimization might trump
the preferences for certain lanes. When approaching the de-
sired exit, however, positioning to a preferred lane gradually
takes priority.

This agent-based model of traffic simulation allows us to
study aspects of traffic which are impossible with previous
models. Examples of the kind of questions we can answer
are:

- Are highway exits which are close to each other a help
or hinder to the smoothness of traffic?

- How does a left exit changes the shape of traffic?

- Do drivers which wait for the last moment to move
for the exit lane help or hinder traffic? What about
their performance (time to destination?) Their safety?
Other’s safety? Overall driving comfort?

- Do drivers who prefer the inside lane move faster?

We start by defining our notion of utility of a lane. The
first idea would be to use the left hand side of Formula 6 as
the utility metric. This value, however, can be negative: it’s
range is [−C,C] where

C = (a+ bmax) (1 + p) (9)

We need, however, a strictly positive utility metric for the
further definitions. To achieve this, we add C to the formula.
Thus the utility of the current, left and right lanes will be
defined as:

Uc = ∆pth + C

Ul = (âi + p · (âj−1 + âi−1)− (ai + p · (ai−1 + aj−1)) + C

Ur = (âi + p · (âh−1 + âi−1)− (ai + p · (ai−1 + ah−1)) + C

The preference model modifies the virtual physics model by
assigning the preference value Wc ∈ [0.0, 1.0] to the lanes
of the road. The preference values are assigned to the indi-
vidual lanes based on a longer term planning process. The
virtual physics model will consider the weighted utilities of
the lanes Uw

c = Wc · Uc and so on.

This way, the vehicle might not move to a low priority lane
even if that would confer a temporary advantage. Yet, the
agent’s behavior would still retain the smoothness associated
with the virtual physics model. When all the lanes have the
same preference, the behavior reverts to the basic virtual
physics model.

The preference weights are directly associated to the lanes
of the highway, yet the vehicle needs to make decisions one
lane change at a time. Thus the vehicle occasionally needs
to accept a decrease in utility in order to reach a preferred
lane after more lane changes.

To resolve this problem, we define the lane change prefer-
ences as follows. Wc is the preference of the vehicle’s current
lane. Wl and Wr are the maximum of all the preferences to
the left and right of the vehicle, respectively.

Let’s now consider some examples of the use of the prefer-
ences by the agent:

i) When entering the highway, the agent will set the pref-
erence of its terminating entrance lane to zero. This
will cause it to move to the highway’s continuing lanes
as soon as it is safe (see Figure 2(a)).

ii) When driving on the highway, the vehicle will assign
higher preference to the lanes it prefers driving on. The
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Figure 2: The agent tries to evaluate the preferences
of lane changes.

preference gradients will be, however, milder. This al-
lows the other components of the simulation to override
this behavior, if significant advantage is to be gained -
or if the tactical maneuver requires it (see Figure 2(b)).

iii) When the vehicle needs to “give a way” to a police car
or emergency vehicle, it will set the specific lane(s) to
zero preference, which will force it to move to one of
the non-zero preference lane as soon as it is safe. Once
the emergency vehicle has passed, the vehicle resets its
lane preferences to the previous ones (see Figure 2(c)).

iv) If the vehicle prepares to exit, it will modify the lane
preferences to prefer the exit lane. Note that this
does not mean that the vehicle will immediately change
to the exit lane, as a number of other safety condi-
tions need to be satisfied for each lane change(see Fig-
ure 2(d)).

v) Avoiding entering lanes. Let us consider a vehicle which
is on inter-city routes prefers to drive on the rightmost
lanes. These lanes, however become extremely busy be-
fore and after exits with cars which are entering and
exiting the highway. Thus many drivers prefer to the
left side of the road around the exit to their default
preferences after the merge finished. This shows in Fig-
ure 2(e). Note that this preference has again relatively
mild gradient, and can be overwritten by other consid-
erations.

3.1 Modeling lane changes under different
conditions

The default virtual physics model assumes lane changes hap-
pened as the result of an opportunity. In real life, however,
there are cases where the vehicle is forced to change lanes,
even if the change doesn’t improve the utility. For instance,
the agent needs to give up its fast left lane in order to exit,
or it needs to give way to an emergency vehicle.

These situations are modeled in our simulator by setting the
preference of the current lane to zero. Even in these cases,
although the vehicle wants to change lanes, it might not be
able to, because the safety conditions will not be satisfied.

We define the time to change lane the amount of time be-
tween the moment when the weighted utility dictates a lane
change until the moment when the lane change is safely ac-
complished. If the vehicle is not able to change the lane
before the utilities are reversed (or the lane ends), we say
that the vehicle missed the lane change.

To mimic the behavior of human agents in such situations,
we introduced a speed adaptation technique. The safety con-
dition for lane change is more likely to be satisfied if the
vehicle modifies the speed such that it matches the one of
the desired destination lane. Thus, under situations of forced
lane change, the vehicle will change its desired speed to the
current speed of the neighboring vehicle in the destination
lane. If the vehicle needs to cross several lanes (as the case
of the exit) it will change its desired speed in steps, always
adapting it to the speed of the next destination lane. Once
the forced lane change situation is terminated, the desired
speed of the vehicle reverts to the one dictated by the virtual
physics model.



4. A PROBABILISTIC MODEL OF SUC-
CESS FOR LANE CHANGES

Many drivers prefer to drive during most of the journey on
the faster lane on the left side of the highway. To finish the
journey, however, they need to exit from the rightmost lane.
Thus, for most drivers, exiting the highway is a maneuver
which requires several consecutive forced lane changes. In
situations of heavy traffic, this can represent a significant
safety risk.

Different drivers approach the problem of exit differently.
Some prepare a long time ahead, moving towards the right-
most lanes. This, however, increases congestion on those
lanes. Others remain on the fast lanes until the last moment
– this however, requires several successive lane changes with
very little room for error.

In this section, we describe in detail the considerations of
preparation to exit, based on the lane change preference
model introduced in the previous section. Similar consid-
erations apply for the case when a vehicle needs to merge
from a lane which soon will terminate.

Probability of successful lane change: The need to pre-
pare in advance for exit is due to the fact that a driver who
intends to perform a lane change might not be able to exe-
cute it for a certain amount of time.

The difficulty of the lane change depends on the local den-
sity of the vehicles in the target lane Di and the average
speed difference between the vehicle and the neighboring
vehicles in the target lane ∆Vi. An experienced driver can
estimate Pr(t,Di,4Vi) - the probability that it can success-
fully change lanes in time t for a specific value of the density
and speed difference. For the purpose of our simulation, we
have collected this data by identifying lane change events in
the simulator logs. The probability was extracted from the
histograms of the time it took to actually perform the lane
change.

Probability of successful exit If the vehicle is currently
n lanes away from the exit lane, it will need to successfully
execute n lane changes before exit. The driver needs to start
its exit preparations at such a time / distance ahead so that
it can successfully exit with a certainty (high probability).

In the rest of this paper we will use 90% for this probability
value. This value requires some explanation, as it appears
to be low: it would imply that 10% of the drivers will miss
their exits. In reality, only a much smaller number of misses
happen. What will happen in practice is that either (a)
some of the other drivers will change their behavior such
that they allow the vehicle to exit or (b) the vehicle will
move even if the safety conditions are not satisfied. Note
that case (b) does not immediately imply a crash, only a
dangerous situation.

Let us now analyze how a driver can calculate the prepara-
tion time necessary for a safe exit with 90% certainty. Sup-
pose we have Pr(ts, Di,4Vi)- the probability of a single lane
change which is finished at time t when the next lane i has
density Di and speed difference4Vi. In general, if the agent
tries to change from lane i to j in time n, the probability

that it can succeed is

Pr(i, j, n) =
∑n−(j−i)+1

t=1 Pr(t,Di+1,4Vi+1)Pr(i+ 1, j, n− t) i < j∑n−(i−j)+1
t=1 Pr(t,Di−1,4Vi−1)Pr(i− 1, j, n− t) i > j

1 i = j

(10)
The probability of successful change across multiple lanes
can be calculated through a recursive algorithm. As the
probability of successful exit is monotonically (but not lin-
early) increasing with the time of exit preparation, we can
find the minimum preparation time necessary to achieve any
given successful exit probability through binary search in the
space of calculated probabilities.

For a driver it is usually easier to tie the exit preparation to
a specific distance to the exit rather than to a specific time
to exit, as the current distance to the exit is usually easy to
estimate from the information on the road signs. The “time
to prepare” can be converted into “distance to prepare” by
simply estimating the average speed of the vehicles on the
lanes separating the vehicle from the exit lane.

Using these algorithms we can envision a fictional optimal
exit model. This driver would first observe the relative
speeds and densities in all the lanes which separate the vehi-
cle from the exit lane. Then, using the calculations outlined
above, the driver would be able to calculate the optimal time
when it needs to start its exit maneuver (for a specific value
of safe exit probability).

5. EXPERIMENTAL RESULTS
5.1 Simulation parameters
For the experimental study we have run experiments us-
ing our simulator which implements the virtual physics and
agent models. The agent model also includes a number of
tactical behavior components not discussed in this paper
(such as communication through signaling), which ensures a
higher accuracy and realism of the overall simulation. The
experiments have been performed on a detailed, lane-by-lane
model of a 22.13 mile stretch of Highway 408. Inflow and
outflow information was acquired from the statistics of the
expressway authority1. The vehicle inflow was modeled as
a Poisson traffic, matching the specified average inflow rate.
The statistical data, however, does not provide an explicit
mapping between the point where a specific vehicle enters
and leaves the highway. Thus, for our model, we choose
exit points for the vehicle stochastically, with the probability
that the vehicle entering at entrance i will have a destination
at exit j being:

Pr(j) =
Out(j)

Out(j) +
∑

k>j Out(k)−
∑

l>j In(l)
(11)

where In(l) is the inflow rate of entrance with label l, and
Out(k) is the outflow rate of exit with label k. The denom-
inator in the Equation 11 is the total number of vehicles
which will pass or exit the location. However, the selection

1http://www.expresswayauthority.com/Corporate/ about-
Statistics/HistoricalTraffic.aspx



Table 1: Default parameters of the simulation
Parameter Symbol Value
simulation step ∆t 0.1s
maximum deceleration bmax 5.0m/s2

vehicle length xlength 4m
minimum distance ∆xmin 2m
acceleration a 1.5m/s2

desired deceleration b 2.0m/s2

headway time T 1.5s
desired speed v0 105km/h± 20%
politeness p 0.5
politeness threshold ∆pth 0.2
visibility range xvisibility 400m
reaction time T ′ 0.4s
lane change time tlane 2.0s

probability is calculated with the assumption that the ve-
hicle doesn’t exit before j, so we need to normalize them
as

Pr(i, j) =
∏

i<m<j

(1− Pr(m))Pr(j) (12)

To simulate the highway in the rush hour, we increase the
inflow and outflow rate by the flow ratio. The parameters
of the simulation are summarized in Table 1.

For the following experiments we will study two different
types of vehicle behavior with the same virtual physics
model but different agents. The SIG agent does not change
the speed of the vehicle when trying to change lane. In con-
trast, the VAR agent is changing its desired speed to match
the destination lane, according to the technique described
in Section 3.1.

5.2 Rate of exit misses function of the exit
preparation distance

In this experiment, we study the rate of the exit misses (or,
in a different interpretation, of the dangerous exits) in func-
tion of the distance where the vehicles start their preparation
for exit by changing their lane preferences to prefer the exit
lane (as in Figure 2(d)).

Figure 3(a) shows rate of exit misses for the two agents SIG
and VAR for regular traffic on Highway 408. We find that for
both agent types the miss rate decreases with the distance,
but in general the VAR agent has a lower miss rate.

Figure 3(b) shows the same measurements for rush hour
traffic (with the inflow and outflow increased five times).
The conclusions from the normal traffic situation extend to
this scenario as well. The rate of exit misses of the VAR
agent did not change significantly, on the other hand the
miss rate of the SIG agents is much higher, and it cannot be
reduced below about 20% even with early preparation.

We conclude that the technique of adapting the speed to the
target lane is a major component of safe driving under high
traffic conditions. While this might appear as a common-
sense advice for an experienced driver, it is an observation
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Figure 3: The rate of exit misses function of the
preparation distance with normal inflow and outflow
rate 3(a), and during rush hour 3(b).

which does not appear in purely virtual physics based mod-
els, yet it emerges naturally when that model is augmented
with an agent-based conscious behavior simulator.

5.3 Average lane change time
In this series of experiments we studied how long it takes for
a SIG or VAR agent to perform a single lane change under
various traffic situations. We assumed a very long prepara-
tion distance (1000m) and for each lane change forced by the
strategic agent behavior we logged the traffic situation and
the time to succeed ts. Thus, the log does not contain the
opportunistic lane changes dictated by the virtual physics
model. To gather all possible local traffic situations, we run
a set of simulations with different flow ratios.

In Figure 4(a) (SIG) and Figure 4(b) (VAR), we divided the
density and speed difference into small ranges and plotted
the average time to succeed function of density and speed
difference.

The first conclusion we can reach from these graphs is that
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Figure 4: Average lane change time for the SIG and
VAR agent in various traffic situations.

both the speed difference and the density affect the time to
change lanes. As expected, the time for the VAR agent is
consistently shorter than for the SIG agent, reconfirming the
validity of the speed adaptation strategy. For example, when
the density is 30 vehicles per km, and the speed difference
is 20 km/h, it takes 17.49s to do a lane change. However,
if the agent adapts the desired speed, it only takes 6.94s to
change a lane.

Another insight is that if the vehicle density is low, the speed
difference has little effect on the lane change time, because
the agent can simply let the high speed vehicle pass and
change into the next lane before the new one comes. In the
high density lane, however, as the speed difference increases,
it needs to wait a long time before the safety condition is
satisfied. On the other hand, with the same speed difference,
the more vehicles in the agent’s next lane, the more time it
needs to take for a single lane change.

We conjecture that an experienced driver has an intuitive
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Figure 5: The average speed compared to the de-
sired speed for arrived vehicles during rush hour on
Highway 408.

understanding of the values of these graphs (choosing the
graph which corresponds to his own driving style, SIG or
VAR). What this means that given a specific traffic condi-
tion, the driver can estimate the time it will take to change
lanes. This estimation will serve as input for the next ex-
periment.

5.4 Adaptive preparation distance
It appears that the safest choice is to choose a VAR type
agent as a sufficiently long preparation distance such that
the risk of missing the exit is minimized. Unfortunately, such
an agent would loose performance. Figure 5 shows the aver-
age speed for all arrived vehicles compared to their desired
speed. The average speed of the VAR agent is significantly
lower, which translates to longer trip times. Some of this
is the unavoidable cost of safety. However, by maintaining
the same preparation distance both under easy and difficult
conditions, the agent is unnecessarily loosing performance.

Figure 6 plots the missing rate as well as the averaged speed
in the function of the inflow ratio. We compare four strate-
gies: SIG and VAR with a fixed preparation distance of
600m, and their “intelligent” variants with adaptive prepa-
ration distance INT-SIG and INT-VAR. We find that, as ex-
pected, the adaptive strategies have a more “flat” diagram,
allowing us to choose our preferred compromise between per-
formance and risk.

6. CONCLUSIONS
Agent-based modeling can contribute significantly to the ac-
curacy of microscopic highway simulations, in modeling the
conscious behavior of the driver and the action of the au-
tomated driver aids. Yet, agent researchers need to thread
carefully: we are contributing to a field with 50 years of his-
tory, with a collection of finely tuned models, which perform
very well as long as their operational assumptions are main-
tained. There is little to be gained from insisting on a“pure”
agent-based model. First, there are low level aspects of the
driving which do not conform to the definition of an agent.
Second, even if we manage to force our model into an agent
straitjacket, we will need to reinvent the significant amount
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Figure 6: The rate of exit misses and average speed
in the function of flow ratio on Highway 408

of fine tuning which went into the virtual physics models.
On the other hand, if we successfully integrate the virtual
physics and agent models, the benefits are immediate.

This paper described an approach where the model of the
conscious driver – representing the strategic thinking about
lane preferences and planning for a safe exit – is integrated
with and acts through the virtual physics model. We found
that the model makes successful predictions on issues which
are out of reach of the virtual physics based models. For
instance, our model correctly predicts that the highest safety
risk for exits appears at the case of moderate congestion,
both low traffic cases and high congestion is comparatively
more safe. This matches well with the results of studies of
predicting crash prone situations for rear-end crashes [8] and
lane-change crashes [7, 4, 1].
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