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ABSTRACT
Recognizing team actions in the behavior of embodied agents has
many practical applications and had seen significant progress in
recent years. One approach with proven results is based on HMM-
based recognition of spatio-temporal patterns in the behavior of the
agents. While it had been shown to work on real-world datasets,
this approach was found to be brittle.

In this paper we present two contributions which together can
significantly increase the robustness of teamwork activity recogni-
tion. First we introduce a technique to reduce high dimensional
continuous input data to a set of discrete features, which capture
the essential components of the team actions. Second, we prefix
the actual team action recognition with a role recognition module,
which allows us to present the recognizer with arbitrarily shuffled
input, and still obtain high recognition rates.

We validate the improved accuracy and robustness of the team
action recognizer on datasets derived from captured real world data.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multi-Agent Systems;
I.5.4 [Pattern Recognition]: Applications

General Terms
Algorithms, Experimentation, Human factors

Keywords
teamwork, roles, recognition, embodied agents

1. INTRODUCTION
Recognizing teamwork in embodied agents has important appli-

cations in areas such as surveillance, training, automated annota-
tion and commentary, as well as in improving the ability of robotic
agents to participate in human teams. Most of the time, the team-
work of embodied agents have a natural expression in coordinated
movement of agents playing specific roles in the team1. Examples
of teams displaying such patterns are sport teams such as football,

1Naturally, teamwork can have many other aspects, in addition to
or replacing coordinated movement; examples are voice commands
and wireless communication.
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basketball or soccer, dance groups, pickpockets in action, groups
of animals such as wolf-packs, bodyguards defending a celebrity,
military units in the battlefield or a MOUT environment, tank units,
air squads, terrorists in a busy marketplace and many others.

Teamwork activity recognition was subject of significant re-
search effort in recent years. The general consensus is that although
some team actions can be recognized based on static configuration,
for more complex team actions we need to consider the tempo-
ral evolution of the agents. Hidden Markov Models (HMMs) are
one of the proven approaches to model temporal evolution of phe-
nomena; indeed, a majority of team action recognition efforts use
HMMs or closely related models. The HMM is a representation of
the idealized team action (ITA), which can be either knowledge en-
gineered (hand crafted) or acquired through learning. These efforts
had shown good recognition accuracy for datasets ranging from
simulations to real world data recorded in controlled settings (such
as military exercises). However, the existing systems are too brittle
for most real-world deployments. Perturbations due to the terrain
or the natural variability in the behavior of the agents can make the
HMM unable to recognize the team action. One additional chal-
lenge of the teamwork activity recognition is that for most applica-
tions, the recognized action needs to be matched with the human
perception of the same action. Humans might label in identical
ways actions which are very different in their physical description
(U-turn to the left or U-turn to the right), or they might distinguish
actions based on knowledge of the agents and the roles (for in-
stance, “stalking”, “following” and “chasing” map to almost the
same physical description, they are differentiated by the role of the
agents: victim, leader, prey).

Let us now see some of the challenges faced by a team action
recognition system, which is assumed to have a representation of
the ITA:

(a) Observation noise.
(b) Alignment problems: translation and rotation of the team ac-

tions compared to the ITA.
(c) Scaling problems: the movement of the team members hap-

pen at a different physical scale compared to the ITA.
(d) Temporal scaling: the movement happens slower or faster

than in the ITA.
(e) Terrain distortion: the movement patterns are distorted as an

adaptation to the particularities of the terrain, such as obsta-
cles or roads.

(f) Movement variants: the team action has several alternative
ways of execution, which map to the same human label.

(g) Role count variants: teams with different number of agents
perform the action with the same label (for instance n body-
guards surround a person).

(h) Uncertainty regarding the role of the agents in the team ac-



tion. An important sub-case is the agents which appear in the
scene but do not participate in the team action (agents in the
bystander role).

(i) Agents changing their roles during the team action.
Different recognizer systems have already addressed at least a

subset of these problems. The problem of observation noise (a)
can be addressed by using Kalman or particle filters on the data
stream. The alignment problems (b) can be handled by the normal-
ization of the observations. This is usually done by transforming
the agents into a coordinate system aligned with the centroid of the
team. This, however, can be problematic if the team is not known
in advance, as bystander agents might shift the position of the cen-
troid. Furthermore, for many team actions, the physical centroid
might not be the logical center of alignment of the team. For a team
of bodyguards guarding a celebrity, the location and the movement
of the celebrity is the logical center and direction of the team. Scal-
ing problems (c) can be handled either through normalization or
by training several HMMs for various sizes. To some level, the
problem of temporal scaling (d) is already addressed by the HMM.
However, certain movement patterns such as “alternative advance
of the two sub-teams for arbitrary, but equal time” can not be en-
coded in the HMM, because it would require historical information,
and the Markov property assumes that the evolution of the system
does not depend on its history.

One example of movement variant (f) is the case when a group
of agents perform a U-turn by turning to the left or to the right
while maintaining formation. While this maneuver maps to the
same label, it requires very different movement patterns and role
assignments. A simple way to handle such variants is considering
the different actions internally and only labeling them identically
at the user interface level. In other cases, however, the differences
are more subtle. One problem, naturally, is that these variants are
labeled identically in training set. Learning techniques based on
unimodal distributions might not be able to accommodate these
variants.

This paper describes our ongoing efforts to improve the perfor-
mance of teamwork activity recognizer systems. We present two
separate contributions, which are integrated in a full team action
recognition workflow. Section 3 describes an approach for discrete
feature extraction from the original data. The discrete features were
carefully selected to match the ways in which a human observer
would understand and analyze the scene; we favor features which
refer to teams as a whole, rather than individual agents. Beyond re-
ducing the dimensionality of the dataset, the features were chosen
to address challenges (a), (c), (e) and, to some level,(g).

Section 4 describes a role recognition system, which allows the
workflow to recognize the likely role of the agent which it would
play in a certain team action before the actual team action was rec-
ognized. This component directly addresses challenge (h), and rep-
resents a necessary precondition to address challenges (g) and (i).
The latter, however, are outside the scope of this paper.

The full team action recognition workflow is described in Figure
1. The contributions described in this paper are marked in shaded
rectangles.

Section 5 describes the results of a series of experiments based
on datasets derived from the recordings of a real world military ex-
ercise, and show that the contributions of this paper significantly
improve the usability and robustness of team action recognition
systems.

2. RELATED WORK
In this section we review work from both the teamwork activity

recognition and the role recognition domains.
Teamwork Activity Recognition. Intille et. al. developed a

system for recognizing multi-agent activities [5]. The system was
evaluated on real-world dataset collected from American Football
plays. Temporal logic and high-level descriptors are used together
with Bayesian networks to classify 10 different Football plays.

Liu et. al. developed the Observation Decomposed Hidden
Markov Model (ODHMM) for multi-agent activity recognition [9].
In the ODHMM approach, team observations are separated into
sub-observations that capture the features associated with each in-
dividual agent in the team. Following the independence assump-
tion, ODHMMs can recognize teamwork activity in sequences
where the number of agents in the team may vary. Furthermore,
ODHMM extends the traditional HMM with a role parameter to
maintain the relationship between agents and their roles. Ex-
perimental results show that multi-agent activities modeled using
ODHMMs outperforms discrete HMMs on an artificial dataset.

Sukthankar et. al. [15] developed the STABR-algorithm for si-
multaneous team assignment and behavior recognition. Initially,
a set of possible team assignments are identified, using template
matching, from the spatial relationships of independent agents.
Next, teams that do not follow any of the pre-defined, parametric,
behavior models over a period of time are filtered out. The STABR
algorithm was evaluated, with good performance, for teamwork be-
havior recognition in a simulated military domain.

In a recent study by Vail et. al. [17] Conditional Random Fields
(CRF), which are related to HMMs, were employed for activity
recognition. Results show that CRFs outperform HMMs for ac-
tivity recognition in a simple test scenario. One drawback of us-
ing CRFs is that significantly more time is required to estimate the
models from observations.

Role Recognition. Multi-agent system frameworks such as
STEAM [16] and Machinetta [14] execute teamwork tasks by care-
fully assigning roles to agents using predefined team organization
knowledge. In teamwork activity recognition systems, however,
the roles are often unknown and need to be inferred from activity
observations.

In [11] Prasad et. al. developed the L-TEAM framework which
use supervised machine learning to automatically learn organiza-
tional roles in multi-agent systems. By inferring organizational
role knowledge, agents in the framework negotiate which role to
play given the task. The learning approach eliminates the need to
manually identify role organization for teams as is done in other
frameworks such as STEAM [16] and Machinetta [14].

Overhearing is an approach for monitoring teamwork activity in
distributed and open multi-agent systems [4] by listening to the
conversation between agents in the team. In many monitoring ap-
plications the goal is to determine whether the team is progressing
towards its joint goal or not. Overhearing systems have been de-
veloped to perform complex tasks such as teamwork plan recog-
nition [7], building and maintaining group formations [8] and role
recognition [13].

In [13], Rossi et. al. propose an approach for recognizing social
roles of agents in a team using rule based systems. Social roles
are assigned to agents by an overhearing agent that can sense the
communication between all agents in the team. The system was
successfully validated against artificially generated organizations
that followed well known protocols.

In [3], Guessoum et. al. develop a fault tolerant multi-agent
framework where the most critical agents are recognized and repli-
cated. The criticality is determined by recognizing activities and
roles of each agent in the multi-agent system. Similarly to over-
hearing approaches, roles are assigned to agents by employing a
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Figure 1: The workflow of teamwork activity recognition system. The contributions of this paper are marked with shaded rectangles.

recognition process to sequences of communication and social in-
teraction between agents.

3. TEAM-ORIENTED FEATURE EXTRAC-
TION

In the team action recognition workflow (Figure 1), the input of
the recognition activity is the geometrical location of the agents in
two dimensional coordinates, with, potentially, the addition of val-
ues such as orientation, or gaze. Basic preprocessing, such as align-
ment on the centroid does not change the nature of this data. As
all agents have the same set of coordinates, the dimensionality of
the input increases linearly with the number of agents in the scene.
Although for small teams of 4-5 agents the resulting input space is
still marginally acceptable for direct input to the HMM, the training
process is facing difficulties in extracting relevant information. One
problem is that important structural information is lost in the form
of the data presented to the HMM. For instance, if we represent the
input space with an 8 element vector {x1, y1, x2, y2, x3, y3, x4, y4} the
HMM will not know that x1 and y1 are referring to the same agent
or that y1, y2, y3 and y4 are referring to the same direction.

In this section we describe a process through which the raw phys-
ical measurements with continuous values are replaced with seman-
tically rich discrete features. The main goal of the discrete value
extraction is to focus the HMM on the features used by humans
when identifying a team action. Many of these features, such as
velocity or curvature are extracted over a sliding window of time,
thus containing historical information which is very difficult to en-
code in a HMM. The goal is not dimensionality reduction; in fact,
as we will see, the number of discrete features exceeds the number
of continuous values.

We classify the extracted features in agent-oriented,
environment-oriented and team-oriented feature functions.

Agent-oriented feature functions extract information from the
movement of a single agent over a sliding time-window. The fea-
tures, together with the allowed discrete values, are summarized in

Table 1: Overview of agent-oriented feature functions.
Name Discretization Description
Velocity {Idle, Low, High} The rate of change of

position.
Acceleration {Accelerating, Decel-

erating, Constant}
The rate of change of
velocity.

Orientation {North, South, West,
East, NorthEast,
NorthWest, South-
East, SouthWest}

Eight-way orienta-
tion with respect to
a global reference
system.

Turning {Steady, Left, Right} The change of orien-
tation.

Curvature {Straight, Curved} The rate at which a
curve changes direc-
tion.

Table 1. As they refer to individual agents, agent oriented features
can not efficiently describe the correlations among the team mem-
bers. They can, however, improve the recognition performance
when used in combination with team oriented feature functions.
Agent oriented features also play a significant role in recognizing
team actions where specific agents play determining roles such as
the leader or captain.

Environment oriented feature functions extract features from in-
teractions of the team members with objects in the environment.
The objects of the environment can be physical or virtual; both
types can be static or dynamic. Terrain features such as buildings
or roads are physical and static. The offside line in a soccer game
is a virtual and dynamic environmental object that can be inferred
from the position of the opponent player who is second nearest to
the end of the playing field. The front-line in a war is a similar
dynamic and virtual object. Table 2 provides a summary of the
environment-oriented feature functions.



Table 2: Overview of environment-oriented feature functions.
Name Discretization Description
Collision {?Object, None} Collision with nearest

environment object.
LineOfSight {?Object} Nearest environ-

mental object in the
agent’s LOS.

LineOfSight
Distance

{Near, Far, None} Euclidean distance to
object in LOS.

Table 3: Overview of the second type of team-oriented feature
functions.

Name Discretization Description
Centroid-
Relative
Position
Vector

{A1, A2, . . . , An} The relative eight-
way position of each
team member with re-
spect to team centroid
and direction.

Role-
Relative
Position
Vector

{A1, A2, . . . , An−1} The relative eight-
way position of
agents with respect to
a privileged agent’s
centroid and direc-
tion.

Cohesion {Separated, Merged} The bonding together
of team members.

Cohesion
Gradient

{Separating, Merg-
ing, None}

The rate at which
the bonding of team
members are chang-
ing.

Cohesion
Direction

{Vertical, Horizontal,
Upward, Downward}

The principal com-
ponent direction of
the positions of team
members.

Team-oriented feature functions extract features expressed rela-
tive to the team. We consider two types of team-oriented features.
The first type are obtained by replacing the (potential) team with
a virtual agent following the team centroid. Thus we obtain the
features TeamVelocity, TeamAcceleration, TeamOrientation, Team-
Turning and TeamCurvature.

In addition to these features we designed a series of team-
oriented features which are not directly related to agent-oriented
feature functions. These features are summarized in Table 3.

Although we cannot exhaustively discuss all feature functions
due to space constraints, we discuss the justification and imple-
mentation of some of the more complex features.

Centroid-Relative Position Vector (CRPV) is a vector of size
n where for every agent we record the semi-quadrant it occupies
in a Cartesian coordinate system centered in the centroid, with the
North direction aligned with the movement of the team centroid
over a sliding window in time. Figure 2 shows the encoding in the
CRPV of a team of three agents.

There are several advantages of the CRPV compared to the abso-
lute positions of the team members. First, the dimensionality of the
input data is reduced. Second, the CRPV is invariant to translation,
rotation and scale.

Determining the CRPV does not require full role recognition to
be performed before its calculations, but it requires us to eliminate

North

South

West

East

NorthEast

NorthWest

SouthEast

SouthWest

A1

A2

A3

North

Figure 2: The centroid-relative position vector a team of three
agents. The team centroid is marked with a dark shaded cir-
cle. The position of agents A1, A2 and A3 are described by the
vector {NorthEast, NorthWest, South}.

the bystander agents (which would shift the position of the cen-
troid). Thus, CRPV can serve as a feature used in role recognition.

Role-Relative Position Vector (RRPV) is an evolution of the
CRPV feature. The RRPV is a vector of size n − 1, where each
element encodes the semi-quadrant occupied by the agent in a co-
ordinate system centered on one agent which has a privileged role.
The coordinate system is aligned with the movement of the privi-
leged agent. One of the advantages of such system is that we can,
for instance, express the movement of the bodyguards relative to a
VIP, or the movement of a group of pickpockets around a victim.

The disadvantage of this encoding is that at least the role of the
privileged agent needs to be determined before feature extraction.
Finally, the privileged role needs to be clearly marked in the ITA,
which requires human intervention in the process.

Cohesion, Cohesion Direction and Cohesion Gradient. In-
tuitively, the Cohesion feature measures how tightly grouped to-
gether are the team members, the CohesionDirection shows the di-
rection of the greatest cohesion, while CohesionGradient measures
the variation of the cohesion. For instance, a team which is splitting
in two groups is loosing cohesion. To extract a set of values which
match well with this intuition, we use a method based on principal
component analysis [2]. We first calculate a scatter matrix

S =

n∑

k=1

(xk −m)(xk −m)t

where xk is the position of agent k in a team consisting of n mem-
bers and m is the location of the centroid:

xk =

(
xk

yk

)
and m =

1
n

n∑

k=1

xk

Next, we analyze the scatter matrix by finding its eigenvalues, λ,
and eigenvectors, e. In our case, since the position of each agent
is described in two dimensions, we will find two eigenvalues and
two eigenvectors. Geometrically e and λ represent the principal
directions of the team member positions and the magnitude of the
directions respectively. The Cohesion feature is the value of the
largest eigenvalue, λmax.
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Figure 3: Plot of a scenario where a team of four agents change
formation over time. The cohesion vector depicts the cohesion
and principal orientation of the team.

The CohesionDirection feature function uses the eigenvector
corresponding to λmax to output the principal orientation of the
team.

The CohesionGradient feature calculates the change of the co-
hesion value over a sliding time window of the historical values of
cohesion.

Figure 3 illustrates a scenario where a team of four agents change
formation over time. For each time step the figure shows the princi-
pal orientation vectors of the team. As discussed above, the larger
of these vectors is chosen as the cohesion vector (and it is rep-
resented in bold in the figure). Initially, at Time = 0, the team
members are in near vicinity of each other; λmax is small and the
output of the Cohesion feature is Merged. Next, at Time = 1, the
team members separate in the x-direction; λmax is increasing and
the output of the CohesionGradient feature is Separating. Finally,
at Time = 2, the separation of the team yields a large enough λmax

value, such that the output of the Cohesion feature is Separated.
Curvature is a measure of the rate at which the trajectory of the

agent changes direction. A simple measure of the curvature can be
defined as:

κ(x) =
| f ′′(x)|

(1 + ( f ′(x))2)3/2

A small value for κ(x) indicates that the movement trace is
straight and when κ(x) is large the movement trace is curved.

The first and second derivative can be calculated directly from
the movement trace of each agent (or team centroid) over a slid-
ing window in time using a finite difference approximation (with
central difference).

4. ROLE RECOGNITION
In systems which recognize teamwork from coordinated move-

ment of agents, the input of the recognizer is a fixed arrangement
of the recorded features of the agents. A four agent team might be
represented by a feature vector {x1, y1, x2, y2, x3, y3, x4, y4} which is
either the direct input of the HMM, or the input to the discretiza-
tion process, as shown in the previous section. However, what does
“agent 3” mean? If we are observing a team sport, such as basket-
ball, we can say that “agent 3” corresponds to the player wearing
the number 3. However, in many applications such as surveillance,

such a clear identification might not be possible. Even in the case of
team sports, players might switch roles during the game. An HMM
which was trained with an input order {1, 2, 3, 4} will not recognize
the same action if it appears encoded in the order {2, 3, 4, 1}. A
related issue is concerned with the number of agents participating
in the team action. Many essentially identical team actions can be
executed with various team sizes. For instance, the defining fea-
ture of bounding overwatch is the alternating advancement of two
groups of agents. This definition remains valid whether the action
is performed in a configuration of 1+2, 2+1, 2+2 or 2+3 agents.

One brute force solution is to train a separate HMM for every
possible team and role size combination. Then, at recognition time,
we repeat the matching algorithm for every possible permutation of
the input data, and pick the one which gives the best match. This
is a significant computational penalty, especially in cases where
the analyzed observations contain agents which are not part of any
team.

In the following, we describe a role recognition module which al-
lows us to recognize what are the (likely) roles played by the agents
in a team action before the team action was recognized. Running
such a role recognition module before the team recognition allows
us to build the ITA based on roles, rather than agents.

4.1 Learning Role Models from Observations
A role model allows us to determine the likely roles the agents

would play in a team action. To understand how this is possible
without the need to recognize the team action as well, let us re-
member that certain roles are strongly identified with certain fea-
ture values.

For instance, in a “follow the leader” action, the leader is at the
forefront of the team. Looking at the formation, we can identify
which agent that “can be” the leader, even before we are certain
that the team action is, indeed, “follow the leader”. The best feature
to decide on this is the centroid-relative position vector; the team
leaders will need to be in the North semi-quadrant.

For identifying the two sub-teams of the bounding overwatch
team action, however, the relative positions are useless. The best
features for this determination are the velocity vectors: the mem-
bers of one team are stationary, while the other ones are moving.

We can draw several conclusions from these examples. First, we
need a different feature set for role recognition than for team action
recognition (although overlaps, of course, exists). As role recog-
nition is targeted towards individual agents, the agent-oriented fea-
ture functions have a significant role. Second, the discriminating
feature changes from role to role. Thus, for our role recognition
model we chose a decision tree representation, which has the ad-
vantage that besides representing the role model, it also allows us
to extract and visualize the exact features which were used in the
classification.

The decision tree learning algorithm used in our study was the
ID3 algorithm followed by a tree pruning procedure to minimize
the effects of over-fitting [12].

Figure 4 illustrate an example of a role model represented by
a decision tree. The tree was trained using discretized agent ob-
servations for four different roles. The dashed rectangles repre-
sent leaves in the tree, which in turn contains class frequencies,
f = {fr1 , fr2 , fr3 , fr4 }, for the roles. The solid rectangles are internal
nodes depicting the features required for classification.

4.2 Acquiring Role Assignment Probabilities
The decision trees, once trained, can be used to calculate the role

assignment probabilities. The first step is to extract observation se-
quences from the movement traces of each agent, which are used
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as input to the decision tree classifier. The output of the classifier
is a class frequency vector, f t, for every observation t in the se-
quence. The probability Pr(ai, r j) that agent ai is playing role r j is
calculated with the following formula:

Pr(ai, r j) =

∑T
t=1 ft

r j∑K
k=1

∑T
t=1 ft

rk

where T is the length of the observation sequence and K is the
number of available roles.

4.3 Role Assignment and Mapping
The goal of the role assignment process is to identify the best

match of role to agent assignments by searching the Pr(ai, r j) val-
ues so that the team-oriented feature vectors, which are used by
the teamwork recognizer, can be re-mapped accordingly. In this
section we describe two distinct strategies for this purpose.

The first strategy, described in Algorithm 1, allows agents to play
multiple roles. For each role in the Pr table the agent with the
maximum probability is selected to represent the role.

The second strategy, described in Algorithm 2, limits agents to
play only one role. A set of candidate assignments is first identified
for all available agents. The candidate set is generated by travers-
ing the roles of each agent and for each agent selecting the role
with maximum probability. Next, conflicts are resolved among the
candidate assignments, by selecting the agent with maximum prob-
ability to represent the role. The agent is then marked as already
assigned a role and not available for future allocation. The proce-
dure is repeated until all roles have been assigned to an agent.

Algorithm 1 Multiple role assignment algorithm.
Require: Role model, RoleModel, and agent observations, Oai .
Ensure: Mapping, Map, of agents, ai, to roles, r j.

1: Pr(ai, r j) = Apply(RoleModel to Oai )
2: for all Roles r j in Pr(ai, r j) do
3: imax = arg maxi Pr(ai, r j)
4: Assign(r j → aimax in Map)
5: end for
6: return Map

5. EXPERIMENTAL RESULTS

Algorithm 2 Unique role assignment algorithm.
Require: Role model, RoleModel, and agent observations, Oai .
Ensure: Unique mapping, Map, of agents, ai, to roles, r j.

1: Pr(ai, r j) = Apply(RoleModel to Oai )
2: while Unmapped roles remaining do
3: for all Agents ai in Pr(ai, r j) do
4: jmax = arg max j Pr(ai, r j), where j , k, ∀rk in Map
5: Assign(r jmax → ai in HypothesisMap)
6: end for
7: for all Roles r jmax in HypothesisMap do
8: imax = arg maxi Pr(ai, r jmax ), where i ∈ k, ∀ak of r jmax

in HypothesisMap
9: Assign(r jmax → aimax in Map)

10: end for
11: end while
12: return Map

Table 4: Dataset summary of teamwork activities, number of
sequences and observations that were used during training and
validation.

Activitiy Sequences Observations
Traveling column 29 319
Traveling line 30 330
Traveling box 33 363
Bounding overwatch 9 189
Wedge 17 187
Team split 15 192
Team merge 15 177

5.1 Experimental Setup
We performed a series of experiments using a dataset which

was acquired from a real world military exercise. The dataset
consists of observations of four tanks which performed seven dis-
tinct teamwork activities. To achieve a larger corpus, the approx-
imately 40 initial team action observations were multiplied syn-
thetically by applying various distortion operations. The resulting
semi-synthetic dataset is summarized in Table 4. The original ob-
servations were made using high resolution GPS devices embedded
in the tanks, thus for practical purposes, they are free of observa-
tion noise. For practical applications, which require observations
of opponent agents, such accuracy is not achievable. To simulate
observation noise in our dataset, we have added Gaussian noise
to the position of each agent by offsetting the coordinates with a
randomly generated number following the Gaussian distribution,
N(µ = 0, σ2 = 1), multiplied with a noise magnitude ε.

5.2 Creating the Idealized Team Actions
In our workflow the idealized team actions were encoded in the

form of an HMM, which was trained using representative exam-
ples of the team action. These examples were extracted from the
observation flow using the teamwork scenario editor and labeled by
hand. The positional observations were fed into the discretization
module which extracted the team-oriented features.

The HMM was trained using the Baum-Welch expectation max-
imization algorithm for a predetermined number of states. We as-
sumed that the emission probabilities of the HMM are described
by a “mixture of Gaussians” multi-modal probability density dis-
tribution. The number of hidden states and the number of Gaussian
components are parameters of the learning process.
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Figure 5: Mean accuracy of teamwork activity recognition ac-
curacy. Hidden states and number of Gaussian mixture com-
ponents range from 1 to 5.

Although one can try to analytically infer appropriate values for
these parameters, this would require an in-depth knowledge of the
team actions, as well as the number of variants which are labeled
the same by human observers. The automatic tuning of these pa-
rameters can therefore save a lot of modeling effort.

We have optimized these parameters by repeating the learning
process for every combination of the number of hidden states and
Gaussian mixture components in the 1 to 5 range with ε = 2.
For each case we have tested the recognition accuracy using a 10-
fold cross-validation procedure. The resulting accuracy values are
shown in Figure 5. The optimal parameter configuration was found
to be 4 hidden states and 3 Gaussian mixture components.

5.3 Performance Evaluation with Unknown
Team-Organization

The experiments in this section measure the performance of
teamwork activity recognition in applications where the role as-
signments are unknown. To simulate unknown role assignments in
the dataset, we have randomly shuffled the agent observations.

Figure 6 shows the teamwork activity recognition performance,
using 10-fold cross-validation. The observation sequences are dis-
torted with Gaussian noise with the multiplier ε ranging from 0 to
10. We repeat the experiments with role assignment algorithms 1
and 2. For comparison, we performed a series of experiments under
the assumption that the agents are always correctly assigned to the
roles, as well as a series of experiments where the randomly shuf-
fled agent observations were fed into the recognizer without role
recognition.

From the experimental results in Figure 6 we can conclude that
our system is able to recognize and assign roles to agents while
still maintaining good teamwork recognition accuracy using both
algorithms. Algorithm 2 slightly outperforms Algorithm 1 for this
problem because the dataset used in this experiment consisted of
teamwork activities performed by four agents where each agent al-
ways play a unique role in the team.

Table 5 illustrates the confusion matrix for teamwork recognition
with Algorithm 2 when ε = 2. In this case the mean accuracy is
92.62% with standard deviation 5.53%.

As a point of reference, our previous work [10] achieved recog-
nition rates of approximatively 82% using noise-free data and the
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Figure 6: Mean recognition accuracy with error bars depicting
standard deviation.

agent observations in the correct order. We conclude that the two
improvements presented in this paper, the team oriented discrete
feature extraction and the role recognition module we expect a sys-
tem which achieves a better performance under less favorable input
assumptions: noisy data and input in which the order of the agents
was randomly shuffled.

6. CONCLUSIONS AND FUTURE WORK
In this paper we concentrated on improving the accuracy of sys-

tems for team activity recognition in embodied agents. First, we
described a set of team oriented discrete features, selected such as
to mirror the features used by humans in the recognition of team
activity. Second, we described a role recognition module, which
allows us to recognize the possible roles played by the agents be-
fore the team action is recognized. This allows us to represent the
idealized team action in terms of roles (rather than agents), and al-
lows the recognizer workflow to recognize the action even is the
input does not contain information about the roles played by the
agents (a situation frequently encountered in applications such as
surveillance).
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Appendix: A Workflow of Teamwork Activity
Recognition with Hidden Markov Models
In the following we quickly summarize a standard workflow of
teamwork activity recognition. The complexity and size of a HMM
is determined by the number n of hidden states. Let us denote the
hidden states of an HMM by ω = {ω1, . . . , ωn} and a sequence of



Table 5: Confusion matrix depicting teamwork activity recognition performance with unknown team-organization.
True Precision

a b c d e f g (%)
Traveling column a 29 0 0 0 0 0 0 100.0
Traveling line b 0 26 0 0 0 0 0 100.0
Traveling box c 0 3 32 2 0 0 0 86.49
Bounding overwatch d 0 0 1 7 0 0 0 87.50
Wedge e 0 0 0 0 17 0 0 100.0
Team split f 0 0 0 0 0 13 2 86.67

Pr
ed

ic
te

d

Team merge g 0 1 0 0 0 2 13 81.25
Recall (%) 100.00 86.67 96.97 77.78 100.00 86.67 86.67

observation vectors with VT = {v1, v2, . . . , vT}. The parameters de-
termining the HMM can now be defined as follows:

(a) Transition probabilities,
A = {αi j}, where αi j = P(ω j(t + 1) | ωi(t))

(b) Emission probabilities,
B = {β j(v)}, where β j(v) = P(v | ω j(t))

(c) Initial probabilities,
π = {πi}, where πi = P(ωi(t))

Thus, we can model a teamwork activity as θ = {A,B, π}.
Estimating HMM Parameters. Estimating θ from sequence

observations is performed using the Baum-Welch expectation max-
imization (EM) algorithm [1]. It is important that θ is carefully ini-
tialized. For this purpose we have employed the segmental k-means
algorithm [6].

Teamwork Activity Classification. We represent a idealized
team action with multiple, internal HMMs estimated with different
number of hidden states. At the cost of increased processing time
for parameter estimation and classification, this approach is more
robust towards variations in activity complexity. The teamwork ac-
tivity classification algorithm can be separated into three phases:

(a) The probability P(VT | θ) of the input sequence is calculated
for all internal HMMs in each activity model using the for-
ward evaluation algorithm [2].

(b) The internal HMM with maximum P(VT | θ) is selected to
represent each activity model.

(c) Finally, the activity model with maximum P(VT | θ) is chosen
as the final classification.
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