NESTA: NASA Engineering Shuttle Telemetry Agent

Glenn S. Semmel
Steven R. Davis, Kurt W. Leucht
Dan A. Rowe, Kevin E. Smith
National Aeronautics and Space Administration
Kennedy Space Center, FL 32899, USA

Abstract

The Spaceport Processing Systems Branch at NASA
Kennedy Space Center has developed and deployed an agent
based tool to monitor the Space Shuttle’s ground processing
telemetry stream. The application, the NASA Engineering
Shuttle Telemetry Agent, increases situational awareness for
system and hardware engineers during ground processing of
the Shuttle’s subsystems. The agent provides autonomous
monitoring of the telemetry stream and automatically alerts
system engineers when predefined criteria have been met. Ef-
ficiency and safety are improved through increased automa-
tion.

Sandia National Labs’ Java Expert System Shell is employed
as the rule engine. The shell’s predicate logic lends itself
well to capturing the heuristics and specifying the engineer-
ing rules of this spaceport domain. The declarative paradigm
of the rule-based agent yields a highly modular and scalable
design spanning multiple subsystems of the Shuttle. Several
hundred monitoring rules have been written thus far with cor-
responding notifications sent to Shuttle engineers. This pa-
per discusses the rule-based telemetry agent used for Space
Shuttle ground processing and explains the problem domain,
development of the agent software, benefits of Al technology,
and deployment and sustaining engineering of the product.

Introduction
Problem Description

NASA Kennedy Space Center (KSC) is responsible for pre-
launch ground checkout of the Space Shuttle. The Launch
Processing System (LPS) at KSC provides facilities for
NASA Shuttle system engineers, contractors, and test con-
ductors to command, control, and monitor space vehicle sys-
tems from the start of Shuttle interface testing through vari-
ous phases including terminal countdown, launch, abort, saf-
ing, and scrub turnaround.

LPS continually monitors the Shuttle and its ground
equipment including environmental controls and hardware
that loads propellants. Consoles with vehicle responsibili-
ties communicate information directly to and from the Shut-
tle computer systems. Consoles with ground support equip-
ment responsibility communicate information to and from
the hardware interface modules which are connected to the

Copyright (© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Ladislau Boloni
Dept. of Electrical and Computer Engineering
University of Central Florida
Orlando, Florida, 32816 USA

a o
Non-critical, . S
Monitor Only m !L y’/
Shuttle Data Stream Applicati — -ﬂ
pplications {2
Measurements &’a
2=
g“’““d :"a'd'f""m < Commands |y aunch Control and Monitor_ [T i"/,
Fup!)olt < ,,',:te, ace Processing [€————» \——""aﬂ
Measurements | System =

Figure 1: Ground Control and Monitoring at NASA KSC

numerous ground support systems. See Figure 1. Each mod-
ule is capable of interfacing to approximately 240 sensors
or controls. Overall, some 50,000 temperatures, pressures,
flow rates, liquid levels, turbine speeds, voltages, currents,
valve positions, switch positions, and many other parame-
ters must be controlled and monitored.

Using LPS, NASA Shuttle engineers and contractors at
KSC are responsible for certifying that ground checkout
of the Space Shuttle has been performed according to pro-
gram specifications. The Operations and Maintenance Re-
quirements and Specifications Document (NASA 2005) lists
those procedures. For over 25 years, engineers have used
LPS to verify Space Shuttle flight readiness and to control
launch countdown. LPS has performed superbly well. Re-
cently, much of the LPS hardware was upgraded assuring its
continuance for many more years. However, the system ar-
chitecture was not changed and software remains basically
the same. As a result, the level of situational awareness
has not increased proportionally to what would otherwise
be possible with more modern software technologies.

After the Shuttle Columbia disaster on February 1, 2003,
the Columbia Accident Investigation Board (Gehman et al.
August 2003) proposed recommendations to improve safety
from both an organizational and technical perspective. The
Board indicated the need to “[adopt] and maintain a Shuttle
flight schedule that is consistent with available resources.”
Also, both management and engineering support staff must
maintain an awareness of anomalies and those must not be
lost “as engineering risk analyses [move] through the pro-
cess.” Given two tragic losses of a crew and Shuttle, today
NASA engineers have an even greater pressure to be more
vigilant in identifying problems. At KSC, ground process-
ing of the Shuttle is performed by thousands of employees,
both contractors and civil servants. Anomalies must be de-

tected and reported to prevent problems with Shuttle subsys-
tems, countdown, and launch. The aging LPS hardware has
limited resources and precludes the level of automation and
notification warranted by this domain.

Contractors at KSC are responsible for the day to day op-
erations, checkout, and maintenance of the Shuttle. They
are the primary users of LPS. NASA Shuttle engineers are
civil service employees who oversee the contractors. Given
the limitations and resource scarcity of LPS, NASA Shuttle
engineers needed a tool to provide more insight and situa-
tional awareness and oversee the work performed by con-
tractors. An increased insight could help detect anomalies
that might otherwise go unnoticed, whether by process er-
ror, software or hardware failures in the monitoring equip-
ment, or many other possible causes. A tool was needed
to complement LPS that could autonomously and continu-
ously monitor Shuttle telemetry data and automatically alert
NASA Shuttle engineers when predefined criteria have been
met. In the latter half of 2003, a software tool was pro-
posed to provide better insight into Shuttle ground process-
ing and increase the level of situational awareness. This tool
is known as the NASA Engineering Shuttle Telemetry Agent
(NESTA).

Objectives

Data processed by LPS is distributed on a local area net-
work. As shown in Figure 1, the distributed data is known
as the Shuttle Data Stream (SDS) (Lockheed 1991) and con-
tains real-time vehicle ground processing data. It is used by
monitor-only applications. The primary objective of NESTA
is to provide full time autonomous monitoring of the SDS
and to automatically alert NASA engineers in near real-time
when pre-defined criteria have been met. Types of moni-
toring criteria include expected operational events or mile-
stones (e.g. vehicle power up, start of launch countdown
test, etc.) as well as unexpected events or failures (e.g. large
difference between redundant sensor values). NESTA al-
lows Shuttle engineers to work on other tasks while mini-
mizing the risk of losing awareness of real-time Shuttle pro-
cessing data and events.

NESTA acts as a software agent for the NASA engineer.
For this discussion, an agent is defined as rule-based, au-
tonomous software that reacts to its environment and com-
municates results to a human, a NASA engineer in this us-
age. Agents have been extensively researched (Wooldridge
2000; Russell & Norvig 2003). Agents standards (FIPA
2002) and frameworks (Bo6loni & Marinescu 2000; JADE
2004) have also been developed.

The primary objectives for NESTA include:

e Allow a NASA engineer to specify rules to be applied to
measurements published in the SDS.

e Generate near real-time notifications and alerts in the
form of emails or wireless pages. Notifications may in-
clude a text message and measurement values, and may
be sent to multiple users when the rule’s premises are sat-
isfied.

e Monitor up to four separate SDS sources. This includes
four control rooms used for checkout and launch of the

Shuttle and its components.

e Process multiple types and subtypes of measurements in-
cluding discretes (i.e. boolean measurements), analogs
(i.e. floating point measurements), and digital patterns
(i.e. integer measurements).

e Allow users to create and modify multiple monitoring re-
quests without restarting NESTA.

Why an Al Solution

NESTA leverages various Al technologies within a rule-
based paradigm including forward chaining, fast pattern
matching via the Rete algorithm, declarative programming,
predicate logic, and more. Al was a natural fit for mon-
itoring the SDS since pattern recognition and analysis are
the primary needs. Although pattern identification could be
achieved by employing regular expression libraries within
various procedural and object oriented languages, those
paradigms are not specifically intended for this type of appli-
cation and have less efficient matching algorithms. The pat-
tern matching algorithms of rule-based expert system shells
are highly specialized and tuned. Also, Al, particularly rule-
based languages, lends itself better to this domain since pat-
tern recognition wrapped within a premise-action construct
closely mirrors the level of abstraction at which the domain
experts work.

The type of data signatures sought by Shuttle engineers
requires the derivation of rules that are of the same granu-
larity as those typically used in rule-based languages. For-
tunately, Shuttle engineers were already accustomed to rep-
resenting knowledge at a fine grained level. The engineers
are adept at either constructing the rules themselves or ex-
pressing the knowledge in pseudo code that lends itself well
for translation directly into declarative rules. Many of the
rules are either standalone or work in conjunction with sev-
eral other rules. This suggests a highly modular system with
a rule being a suitably sized working block.

Other Attempted Solutions

NESTA is a peripheral advisory tool to the real time con-
trol system within LPS. There were three previous projects
that attempted to upgrade LPS in the last 15 years. Even
though those efforts had significantly greater objectives that
spanned well beyond just advisory applications, they were
advertised to include many of the capabilities that NESTA
provides and much more. Approximately half a billion dol-
lars was spent on those efforts and upwards of 600 people
worked on the most recent of those upgrade attempts. There
were various technical and political hurdles that initially im-
peded and then ultimately doomed those full scale replace-
ments of LPS.

NESTA’s infusion of state-of-the-art Al technologies and
engineering within the legacy launch system, LPS, is partic-
ularly notable given the number and size of the preceding
attempts to modernize the ground control system at KSC.
Those fallen projects, despite having much grander objec-
tives, had little to no spinoffs within the LPS community. In
contrast, NESTA is becoming accepted and internalized by
members of the launch team and appears to be on its way as

Rules

Measurement

Data Format

Database *‘;‘:\

Data Monitoring Request

Notification (e.g. email, page) Internet

Status Q
-

|

»| Enabled

Measurement

Shuttle Data
Stream

Message

Log

Client Create Monitoring Request

NASA Engineer

Figure 2: NESTA Context Diagram

a widely used tool. From a business vantage point, NESTA’s
greatest asset is its development and marketing as a value
added product. That is helping pave its path to acceptance.

Application Description
System Components and How They Interact

Figure 2 shows the context diagram for NESTA. The agent
process is represented in the middle circle. It communi-
cates with various sources and data stores. A measurement
database is used to decode the SDS into usable measure-
ments. The SDS source broadcasts measurements as data
packets over local area networks. NESTA monitors this
stream for data patterns specified by the Shuttle engineers.
If a pattern is matched, a notification is sent in the form of
an email or wireless page. The Rules data store represents
the Jess scripts and knowledge base that defines the rules
for the monitoring criteria. All messages and relevant agent
activities are also locally logged.

Languages and Al Tools Used in Application

The Java Expert System Shell (Jess) (Friedman-Hill 2003)
was selected as the rule engine. Jess was developed and
supported by another government agency, Sandia National
Labs. As such, our development team and customer have
full usage of the tool via government licensing without any
fees. This includes access to all the Jess source code.

Jess’ forward chaining reasoning system was modeled
after production systems such as OPS5 (Brownston et al.
1986) and CLIPS (Wygant 1989). It contains highly effi-
cient and sophisticated pattern matching based on the Rete
algorithm (Forgy 1982). This enables its inference engine to
process many rules and data rapidly. The engine repeatedly
processes through a match-select-act cycle. As a production
system, its consequents can be actions. A conflict resolution
strategy determines the precedence of rule firings.

Several hundred monitoring rules have been written thus
far for monitoring Shuttle ground telemetry. Jess’ predi-
cate logic lends itself to capturing and specifying the heuris-
tics and engineering rules of this spaceport domain. The

declarative paradigm of this rule-based agent application
also makes it highly modular and scalable to span multi-
ple subsystems of the Shuttle. Jess also includes a fourth
generation scripting language and interactive command line
which are very conducive for prototyping and testing.

Jess is written entirely in Java and has access to the full
Java application programming interface from the scripting
language. It provides standard control flow constructs and
supports variables, strings, objects, and function calls. Jess
automatically converts between its own types and Java types
insulating the developer from manually performing the con-
versions. Its use as a Java library made Jess’ selection more
appealing since Java supports multiple platforms with its
“write once, run anywhere” paradigm. Beyond that, the need
for NESTA to support web enabled clients also made Java a
natural fit given its origins and strong support for developing
Internet based applications.

Design

Java classes were developed to parse and decode the data
stream and represent measurements as facts in Jess’ working
memory. To interface Jess’ rule engine with the SDS, each
data measurement is modeled and implemented as a Java
bean (Sun 2004). Java beans provide a component architec-
ture to enable easier integration of applications. A property
change notification mechanism is supported that allows one
object to become a registered listener of another object. The
listener object will then automatically receive changes from
the source object. This is also known as a publish-subscribe
or observer pattern (Gamma et al. 1995). Within Jess, each
Java bean corresponds to what is known as a shadow fact.
A Jess shadow fact is a mirror image of a Java bean, such
as a pressure measurement, within Jess’ working memory.
All shadow facts are registered listeners of their Java bean
counterparts. Thus, whenever a measurement changes in the
data stream, a property change event is automatically gener-
ated for the given measurement and its sibling shadow fact
is updated in Jess’ working memory. Figure 3 illustrates this
path.

After a shadow fact is updated, the Jess pattern matcher

Shuttle Data Stream Shuttle Data Stream Reader

ED Measurement (JavaBean)

PropertyChangeSupport Jess Shadow Fact

getNextPacket()

setValue()

Y

firePropertyChange()

propertyChange()

-y ___

|
|
|
|
|
|
|
|
|
|
|
>
»
|
|
I
|
|
|

Figure 3: Sequence Diagram Illustrating Update to Jess Working Memory from Shuttle Data Stream

will determine if the premises of any rules match the new or
modified facts. Rules are compared to working memory to
identify premises that are matched by the data in working
memory. For NESTA, this data represents measurements
from the SDS and rules represent data monitoring criteria
submitted by NASA Shuttle and system engineers. Rules
with matching premises are activated and placed onto an
agenda. Next, the agenda is ordered according to Jess’ de-
fault conflict resolution strategy. The highest priority rule is
then fired and executed. This match-select-act cycle repeats
until no more rules are available to fire. An action handler
class was developed and is used to build and send the no-
tification message to the Shuttle engineer whenever a rule
fires.

Knowledge Capture and Representation

Figure 4 shows the knowledge acquisition workflow for cre-
ating or modifying a rule to monitor specific measurements
on the Shuttle data stream. The Shuttle engineer must spec-
ify who is responsible for the rule, the contents of the email
notifications, the rule’s firing conditions (i.e. antecedent, left
hand side), and rearming conditions. That is, some rules
may need to have a “one shot” behavior and only fire once
when activated the first time. Other rules may need to be
re-armed after a given time period or when certain types of
conditions are met.

The current version of NESTA does not have a graphical
user interface capturing this workflow, but all of the steps
are effectively provided within script files. Those files are
editable with a plain text editor by the end users. Hundreds
of rules have been produced by the customer.

As the rule database grew, patterns of rules began to
emerge. Patterns in software design and modeling have
been extensively investigated and reported (Gamma et al.
1995). Analogous to those design patterns, the development
team and customer began recognizing knowledge patterns
for this domain and developed rules following these struc-
tures. Some patterns include:

e One shot: Rule fires once regardless of how many times
facts cause the premise to reactivate.

e Recurring: Rule fires each time the premise reactivates.

e Timed: Rule fires every X minutes as premise remains
true.

Queued: Multiple rules will fire but notifications are sent
to a queue that gets flushed based on a user configurable
amount of time or maximum number of firings. One com-
posite notification is sent when the queue is flushed. That
composite notification contains what would have other-
wise been multiple emails or wireless pages.

Some sample rules in English prose include:

o Notify Shuttle Engineer when measurement V7954126E1
or V7984132E1 or V7984138E1 or V79S4143E1 equal
ON. Indicates that Flight Control Power (ASA 1-4) has
been activated.

o Notify Shuttle Engineer when measurement V90Q8001C1
equals 801. Indicates that a Shuttle is in orbit and is
preparing to initiate the on-orbit flight control checkout
activity.

o Notify Shuttle Engineer every 60 minutes with current
values of Flight Control launch countdown measurement
list when measurement NMAJORTEST equals 7. Indi-
cates launch countdown test is occurring. While in launch
countdown test, send a current value email containing a
list of Flight Control measurements every hour.

o Notify Shuttle Engineer when FD N791V019D Bit masked
0x0001 equals 1. Indicates that an LPS command and
control program has stopped due to a failure and is waiting
on the operator for action.

This is an actual NESTA rule written in the Jess scripting
language:
(defrule vehicle-pwr-on-rule
"Orbiter electrical power is up."
(recipient-list (recipient-list-name vehicle-pwr-on-rule))
?notPowered <- (vehicle-not-powered)

(DigitalPatternFd (fdName "NORBTAILNO"))

(AnalogFd (fdName "V76V0100A1") (valid TRUE) (value ?vall)
(AnalogFd (fdName "V76V0200A1") (valid TRUE) (value ?val2))
(AnalogFd (fdName "V76V0300A1") (valid TRUE) (value ?val3))
(

test
(and
(> 2vall 26.0)
(> 2?2val2 26.0)
(> 2?2val3 26.0)

)
=>

(retract ?notPowered)
(assert (vehicle-powered))

(notifyActionHandler nil nil)

For this rule, if all three analog bus voltage measurements,
V76V0100A1, V76V0200A1, and V76V0300A1, concur-
rently exceed 26 volts, the Shuttle Orbiter is considered to
be powered on. Another indicator, SOIADATAY, is used to
assure the validity of the incoming data. Data validity is
discussed later in the paper. Finally, another measurement,
NORBTAILNO, is located on the rule’s left hand side. In
our terminology, we call this an informational measurement
as its specific value has no bearing on whether the rule fires,
but it is necessary to include it on the rules left hand side
so that it becomes part of Jess’ activation object and then
its value is included in the notification. The action handler
parses the fields in the activation object and builds an email
with all of the measurements’ values that were listed on the
left hand side of the rule. The notifyActionHandler
call has two arguments that allow for the notification to be
queued. This particular example does not use queuing and
simply passes nil arguments in the call. Queuing is also
discussed later in the paper.

Figure 5 shows an email that was generated for the pre-
ceding rule. As illustrated, the exact values of all three
bus voltages are listed along with the informational mea-
surement showing which of the three Orbiters was powered
up. In this case, 103 refers to Discovery. The informational
measurement proves useful in not only allowing the Orbiter
reference to be included in the email, but it does not bind
the rule to a particular Orbiter. That is, NASA Shuttle engi-
neers are interested in any Orbiter that may become powered
up. The rule’s pattern matching provides that level of gener-
icity in a very straight forward representation. Of course,
the engineer may be interested in being notified only about
a specific Orbiter. This would require a simple modifica-
tion to the rule. One additional slot would be referenced in
the DigitalPatternFd template narrowing the focus to
a particular Orbiter. Thus, minor modifications to the rule
demonstrate the rich behavior available to the Shuttle engi-
neer and show the semantic power of pattern matching.

Hardware and Software Environment

The NESTA application resides on a Dell 1.7 GHz Pentium
server. The server includes the necessary user and support
files such as the facts scripts, rules scripts, measurement
database, logs, and more. Currently, the server executes on a
Microsoft Windows 2000 operating system. However, since
Java was used exclusively along with its virtual machine,
the ability to execute software on other types of servers is
readily available. Again, this was a primary driver in the
selection of Java and Jess so as to not be bound to a partic-
ular hardware platform or operating system. Customers re-
ceive notification on standard email clients including Win-
dows workstations, wireless pagers, personal digital assis-
tants, cell phones, and more.

Performance Requirements and Testing

Performance Characteristics of Shuttle Data Stream
At application startup, NESTA connects to a datastream se-

Shuttle Engineer

CCreate or modify existing ru@

B
a

@efine creator and maintainer of ru@

@rovide descriptive title for ru@

CEnter email and pager addresses to receive notificatio@

@efine contents of email notificatio@ [rule not correct]

Define rule's premises

(Enter rule's rearming conditio@

@eview rule for correctnes@

[rule correct]

®

Figure 4: NESTA Knowledge Acquisition Workflow

lected by the user. The datastream includes all measure-
ments at their respective change rates. No data changes will
be missing from this stream. For this discussion, only the
FIFO stream will be presented as it is the stream of choice
for the NESTA customer.

The datastream averages 5 to 10 packets per second and
peaks around 50 packets per second at launch. Each SDS
data packet can hold up to 360 measurement changes be-
fore rolling over to another packet. This calculates to an
average of 1,800 changes per second for the FIFO stream
nominally, and 18,000 changes per second peak at launch.
During peak data loads, the SDS is throttled at the source
and does not maintain true real time updates. It may lag up
to 1 minute or so, but all measurement changes are buffered
and none is ever dropped from the data stream. Throttling
of the data typically begins at T+1 second, that is, just after
launch. Even though it is the hypothetical peak limit, 18,000
changes per second is the performance load that NESTA is
expected to meet to avoid missing a measurement change.
This is referring strictly to updating 18,000 facts per second
and not indicating how many rules might fire. In fact, only
a small percentage of those facts is expected to result in a
small percentage of the total rules to fire at any given time,
even during the peak launch data rates.

The measurement data in the stream is refreshed every
three minutes regardless as to whether or not it has changed.
Since the stream is based on User Datagram Protocol (UDP),
this results in an unreliable datagram packet service. When

=~ [NESTA] FR3, SB114D, 03Jan2005, 20:14:46 local - |) in Tex =k
!W&eply |@01Reph«r to All |‘o!3Forﬂard |§ By | ¥ |f§§ P | o A| M.
IEiIe Edit View Insert Format Tools Actions Help ‘
From: MESTA Server Sent: Mon 1/3/2005 2:16 PM
Tao: kevin.e.smith
G
Subject: [MESTA]FR3, SB114D, 03Jan2005, 20:14:46 local
= |
Event: FR3, SB114D, 03Jan2005, 20:14:4¢ local
Orbiter electrical power 1s up.
004:0112/48.340 : v76v01l00Al {MAIN BUS A VOLTAGE} is 29.439955 V.
004:0112/43.780 V7ev0200A1 {MAIN BUS B VOLTAGE} is 29.439%99L0 V.
004:0112/48.420 V7ev0300A1 {MAIN BUS C VOLTAGE} is 28.639994 V.
002:0856/12.923 NORBTAILNCO {ORBITER TAIL NUMBER} is 103 (DEC) was O.
WARNING: The NASA Engineering Shuttle Telemetry Agent (NESTA) is an
uncertified advisory application and ig NOT to be usged in making critical
launch decisions!
|

Figure 5: Email Generated by NESTA

a packet is dropped on the network, all measurements are
marked invalid and the measurements change back to valid
one by one as refresh data is received until the completion
of a three minute refresh cycle.

Performance Testing Performance testing occurred on an
Intel Pentium 4, 1.7 GHz desktop workstation with 768 MB
of RAM running Microsoft Windows XP Professional. The
SDS reader class in NESTA parses the data stream and up-
dates facts in Jess’ working memory. To test the reader class,
12 high speed analog measurements were selected and in-
stantiated as shadow facts. In the range of 18,000 (nominal)
to 36,000 (peak at launch) data changes occurred every sec-
ond in the test-enhanced data stream and were processed by
the SDS reader class. This included various types of mea-
surements such as discretes and analogs. 12,000 analog data
changes per second were being processed into current values
and updated in Jess’ working memory by a property change
event handler.

Rules were written for 6 of the high speed analog mea-
surements. The other 6 measurements were still relevant to
stress the SDS reader class and updating of facts. 5 of the 6
rules fired once every minute. The 6th rule fired once for ev-
ery single measurement change (1,000 per sec) for two full
seconds sustained out of every minute. Thus, a total of 2005
rules fired every minute, with 2000 of them firing within a
2 second period. Analog measurements have considerably
more processing overhead than the discrete measurements
so it was not possible to sustain thousands of rules contain-
ing analogs to fire every second without causing CPU star-
vation. However, the “fair test” was considered to have only
a very small percentage of the measurements that are in the

stream actually causing rules to fire. It was considered fair
to have short bursts of high rate rule firings but not long term
sustained high rate rule firings. NESTA is not intended for
users to write rules to notify them via email hundreds or
thousands of times each second for a long and sustained pe-
riod of time.

To summarize, NESTA sustained the above scenario for
many cycles on the test-enhanced playback file without CPU
starvation and without reporting any packet losses. The CPU
utilization on the development workstation was about 90%
prior to launch and higher than that after T-0. It was heavily
loaded, but NESTA maintained the pace. NESTA performed
well considering that the data stream was stuffed with be-
tween 1 and 2 times the hypothetical peak load of measure-
ment changes for the performance test. The “long pole” in
the process appeared to be the number of rules that actually
fired every second sustained. However, even under launch
conditions when a heavy data change load exists, there is
not expected to be many thousands of rules firing every sec-
ond. Even several hundred rules firing per minute is consid-
ered unrealistically high, but this performace test suggests
NESTA could readily handle that load.

Development and Deployment
Application Use and Payoff

At the time of writing of this paper, the customer had used
NESTA for over a half a year. Hundreds of rules have been
written. Along with that, hundreds of NESTA notifications
have been generated for multiple NASA engineers. These
users have received both emails and wireless pages at KSC
and other remote sites. Since the customer is a NASA en-
gineer responsible for oversight of contractors, the notifica-

tions act as an extra set of eyes that further assure the quality
of government oversight.

To better understand NESTA’s payoff, the responsibilities
of NASA Shuttle Engineers must be examined. They in-
clude:

e Understanding their system and supporting equipment.
o Knowing how their systems are tested and processed.

e Being aware of when their systems are activated, tested,
or in use.

e Analyzing performance and data retrievals from any use
of a system.

e Being ready to answer questions about their systems such
as

— When was it tested?
— How did testing proceed? How did the data look?
— Isitready to fly?

NESTA has helped Shuttle Engineers meet these respon-
sibilities in varying degrees. In one recent usage, a Shut-
tle avionics system was powered up over a weekend. The
NASA Shuttle Engineer, being responsible for that system,
would not have been aware that the system was powered up
except for receiving a NESTA notification. In this case, the
avionics user was not part of the Shuttle Engineer’s immedi-
ate organization. Thus, the Shuttle Engineer did not receive
any communiqués regarding the system’s weekend usage.
Due to NESTA, the Shuttle Engineer was better prepared
to address questions about his system’s usage were they to
arise. This has not been an uncommon occurrence. Shut-
tle Engineers utilizing NESTA began realizing that some of
their systems were being utilized much more than previously
thought. Situational awareness increased markedly.

Aside from increased awareness, NESTA increases effi-
ciency. Some ground operations span 24 hours and include
dozens of asynchronous events that are broadcast on the data
stream. For example, checkout of flight control hardware in
the Orbiter Processing Facility occurred 4 to 6 times within
the last year. The checkout included long hydraulic oper-
ations, powering up different parts of avionics, pressuriz-
ing/depressurizing the Orbiter, and other work. During a
recent flow, the NESTA notifications gave exact times of
events of interest to the Shuttle Engineer. That allowed
the Shuttle Engineer to quickly identify timelines of these
lengthy operations. Effectively, a virtual roadmap identify-
ing significant events was automatically generated and that
saved an hour of labor. More efficient data retrievals re-
sulted.

Phased Approach to Implementation and Delivery

Multiple releases of NESTA have been delivered to the cus-
tomer. The development team has four members each work-
ing approximately sixty percent of his time on the project.
The team works very closely with the customer. Generally,
the team meets with the customer at least once per week and
has multiple other correspondences via email and phone.
The initial NESTA release required six months. There-
after, a release occurred approximately every month. Prior

to adopting Java and Jess, some preliminary performance
testing was completed to verify that the Java language and
Jess rule engine were fast enough to handle the Shuttle data
stream rates. Concurrent with that coarse performance test-
ing, the initial set of requirements were being developed.

Development Tools
In addition to Java and Jess, other tools used include:
e Eclipse as an integrated development environment.

e Visio 2000 to develop Unified Modeling Language mod-
els.

e CVS for configuration management.
e Ant for automating builds.
e JUnit for automated Java unit testing.

e Emma for Java code coverage including measurements
and reporting.

e Optimizeit by Borland for profiling performance and de-
tecting and isolating problems

Technical Difficulties

Data Validity As indicated earlier in the paper, the data
stream is based on User Datagram Protocol (UDP). As such,
the connection is not always reliable and packets may get
dropped. This poses problems when rules are waiting for
data to arrive. Data health and validity become questionable.
If the data stream connection is lost entirely or data becomes
stale (i.e. not updated), false positives or false negatives may
result. That is, notifications of hardware events may never
be sent or be sent in error.

To partially address this data validity issue, additional
measurements are included in the rules to check for the va-
lidity of the stream. Measurements are now marked invalid
for a dropped packet(s) or when the source of the measure-
ment becomes bad. There is still a larger problem of false
negatives and never receiving an email if the data stream
drops packets while a monitored event occurred. Aside from
notifying the Shuttle engineer of a data loss when it happens,
we have not yet identified a mechanism that guarantees all
notifications since the data stream is unreliable.

Measurement Databases Changes Multiple data streams
and control rooms exist. Often, the measurement database,
which is used to decode the SDS, dynamically changes on
the stream as a result of operations. When that happens,
decoding measurements becomes impossible and facts can
no longer be updated in Jess’ working memory. A short
term fix to this problem was to simply notify the NESTA
system administrator when the stream changes. A measure-
ment database Java bean was added and is used within a user
rule as a fact. When the measurement database changes, the
administrator automatically gets an email and may restart
NESTA accordingly. Longer term, automatic restarts of the
agent will be provided.

Flood of Emails If an end user incorrectly writes a rule, a
possibility existed of flooding the network and servers with
hundreds or even thousands of notifications. To prevent that,

multiple safeguards, such as user defined limits, were pro-
vided to filter emails after a given number have been gener-
ated for a particular email account.

Beyond that possibility of user error, there was a separate
need to queue emails that may be related to some sequence.
Queuing provides a mechanism where multiple messages
expected to occur within a short time period are grouped
together before being emailed in bulk. For example, four
flight control avionics boxes are often powered up in a short
time period. Rather than a user receiving four separate flight
control emails that may be interrelated, it was necessary to
provide a queuing mechanism that allows a user to tie re-
lated emails to the same queue and receive one bulk email
that was a compilation of what would otherwise be multiple
emails. Both the queue time and queue length are config-
urable by the end user.

Maintenance

New releases are delivered approximately every month by
the development team. Those releases may include bug fixes
for problems reported in the former release. However, new
releases are generally driven by new functionality as op-
posed to being driven by software errors.

The design of the NESTA application facilities update by
the end user. The application uses a data driven approach
for the user files. All of the rules and facts are stored in Jess
scripts. When rules have to be created or modified, the user
has access to several text based files. A facts file allows a
user to add measurements that should be monitored. A rules
file allows the entry of new rules. Since these are text-based
script files, no compilation is required by the end user. The
files are parsed at application startup. This data driven ap-
proach is powerful in that it enables the end users to maintain
their own files and not be at the mercy of the development
team to add new support for new facts and rules.

Conclusion and Future Work

NESTA has increased situational awareness of ground pro-
cessing at NASA KSC. More and more Shuttle engineers
are relying on NESTA each month and are creating addi-
tional rules for monitoring the data stream. The infusion of
Al technologies, particularly the Jess rule-based library, has
proved very fruitful. Interfacing and integrating these mod-
ern Al tools with a legacy launch system demonstrates the
scalability and applicability of the tools and paradigm.

The knowledge patterns that are evolving within NESTA
will make it easier to train new users and also allow faster
creation of rules. Many other enhancements are planned
such as providing an advanced graphical user interface for
creating the rules. Another project using Jess is also under
development at NASA KSC. It is called the Launch Com-
mit Criteria Monitoring Agent (LCCMA) and is intended to
identify limit warnings and violations of launch commit cri-
teria. As opposed to being used primarily for day to day
operations as NESTA is intended, its scope is targeted more
for launch countdown activities.

We are investigating agents that possess the ability to re-
vise previously concluded assertions based on what may

now be false or retracted data. Belief revision (de Kleer
1986), also known as truth maintenance, is particularly im-
portant when deep reasoning of long inferences is necessary.
Jess currently has a very simple form of truth maintenance
that we are looking to extend with a full blown truth mainte-
nance system.

References

Boloni, L., and Marinescu, D. C. 2000. An Object-
Oriented Framework for Building Collaborative Network
Agents. In Teodorescu, H.; Mlynek, D.; Kandel, A.;
and Zimmerman, H.-J., eds., Intelligent Systems and In-
terfaces, International Series in Intelligent Technologies.
Kluwer Publising House. chapter 3, 31-64.

Brownston, L.; Farrell, R.; Kant, E.; and Martin, N. 1986.
Programming Expert Systems in OPS5: An Introduction
to Rule-Based Programming. Reading, MA: Addison-
Wesley.

de Kleer, J. 1986. An assumption-based TMS. Artificial
Intelligence 28(2):127-162.

FIPA. 2002. Foundation for intelligent physical agents
abstract architecture specification.

Forgy, C. L. 1982. Rete: A fast algorithm for the many
pattern/many object pattern match problem. In Artificial
Intelligence, volume 19(1), 17-37.

Friedman-Hill, E. 2003. Java Expert System Shell. Green-
wich, CT: Manning Publications.

Gamma, E.; Helm, R.; Johnson, E.; and Vlissides, J. 1995.
Design Patterns: Elements of Reusable Object-Oriented
Software. Greenwich, CT: Addison-Wesley.

Gehman, H.; Turcotte, S.; Barry, J.; Hess, K.; Hallock, J.;
Wallace, S.; Deal, D.; Hubbard, S.; Tetrault, R.; Widnall,
S.; Osheroff, D.; Ride, S.; and Logsdon, J. August 2003.
Columbia Accident Investigation Board (CAIB), Volume 1.
Washington D.C.: NASA.

JADE. 2004. Java agent development framework.
http://jade.tilab.com/.

Lockheed. 1991. Pcgoal requirements document. Techni-
cal Report KSCL-1100-0804, Lockheed Space Operations
Company.

NASA. 2004. The vision for space exploration. Technical
Report NP-2004-01-334-HQ, NASA.

NASA. 2005. Operations and maintenance
requirements and specifications document.
http://kscgrndtsk1.ksc.nasa.gov.

Russell, S., and Norvig, P. 2003. Artificial Intelligence: A
Modern Approach. Prentice Hall, 2nd edition.

Sun. 2004. Java bean specification. http://java.sun.com/.

Wooldridge, M. 2000. Reasoning about Rational Agents.
Cambridge, Massachusetts: The MIT Press.

Wygant, R. M. 1989. Clips: A powerful development and
delivery expert system. In Computers and Industrial Engi-
neering, volume 17, 546-549.

