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Abstract. Reconfigurability and mutability are features frequently found
in agents operating in heterogeneous computing environment. At the
same time, they pose major challenges to the software engineering pro-
cess. In this paper we review these challenges and discuss their implica-
tions towards the agent oriented software engineering methodologies.

We propose a set of extensions to the Gaia agent-oriented design and
analysis methodology. These extensions allow the methodology to handle
certain important classes of mutable systems. These results are presented
in the context of the Bond system, a FIPA compliant agent framework,
with support for reconfigurability and mutability.

1 Introduction

Reconfigurable and mutable systems are an increasingly frequent occurrences in
todays computing landscape. As early as 1975, the Microsoft Basic interpreter
for Altair contained self-modifying code, introduced to overcome resource limi-
tations (only 4K of memory available for the interpreter). For example, a web
browser is custom application, consisting of a basic framework with multiple
API’s for configuration and extension, and a large number of extensions (plug-
ins, codecs, drivers, applets, controls, themes and so on). These extensions are
usually developed by third parties, are installed and uninstalled dynamically
during the lifetime of the application, and frequently changing the behavior of
the application in a radical way.

Some of the changes in the functionality of the application are desired or at
least approved by the user: an example of such an extension is the ability to view
new media formats. Frequently, some of the effects are undesirable from the point
of view of the user: some third party extensions contain spyware, pieces of code
which report usage statistics and other information about the user. Occasionally,
viruses and worms can use the very same extension API’s. Although software
upgrades are usually considered beneficial, the externally initiated upgrade to
the version 2.0 of the software in the Tivo digital video recorders have actually
removed functionality previously existent on the system, an action considered
malicious by users, but beneficiary by the company.



While web browsers are the quintessential user driven applications, reconfig-
uration and mutability are even more important for autonomous agents. Many
popular agent frameworks can be used to implement reconfigurable agents, and
a number of recent work explicitly focuses on reconfigurability. Varela and Agha
[26] proposed the SALSA language based on the actor programming paradigm.
The SALSA language is compiled to Java and targets dynamically reconfigurable
Internet and mobile computing applications. The SmartApps project proposed
by Rauchwerger [22] takes an approach of ”measure, compare, and adapt if bene-
ficial” for scientific applications. Restructuring occurs during various stages from
the selection of the algorithm to compiler parameter tuning. The Bond agent sys-
tem [5, 6] was one of the first Java based agent systems with support for strong
mutability. A series of primitive operations performed on a multi-plane state
machine supports reconfigurability of Bond agents. This mutation technique is
called agent surgery [3].

The terms of mutability and reconfigurability are related but not identical.
Generally, the term mutable is applied to cases when the behavior of the appli-
cation is changed in a radical way, through the manipulation of ”code”, while
reconfiguration is a change of behaviour through mainly ”data”. In practice the
distinction between code and data is frequently blurred and modifications on
the agent behaviour can fill the full scale between slight adaptations through
the tweaking of configuration parameters to radical mutations.

Reconfigurability presents both an opportunity for developing more powerful
software systems but can also be a Pandora’s box. One way to study the effects
of reconfiguration is to identify and enforce invariants which are maintained
during an operation. One such invariant is that a successful run in the original
agent should also be successful in the modified agent. Other invariants can cover
resource management, error handling, and security aspects.

Reconfigurable and mutable agents have a special appeal for highly hetero-
geneous systems where there is a strong interdependency between mobility and
reconfigurability. For instance, the resources available on a laptop and on a cell-
phone differ so widely that agents cannot migrate from one to the other without
being significantly reconfigured. The solution is to migrate only part of an agent
to the new location and replace some of its components with ones compatible
with the new environment (this leads to the concept of plasticity of user inter-
faces as discussed in [25]).

In the remainder of this article we will introduce a typical agent framework
with support for reconfigurabity and mutation, the Bond agent system (Section
2). Next we overview the challenges posed by reconfigurability for the agent
oriented software engineering process and propose a set of extensions to one of
the popular agent design methodologies (Section 3). We conclude in section 4.



2 Implementing mutability in software agents

2.1 Methods of implementing mutability in agents

Mutable software can be implemented using a large number of techniques. There
are two important classification criteria in this respect: the granularity of the
mutation and the mutation technique deployed by the agent system.

The granularity of the mutation refers to the size of the smallest component
being changed. Source code level mutation refers to performing changes in the
source code of the applications. This is a well known technique for interpreted
languages such as Lisp or Prolog. Recently, many popular applications targeting
the Java platform, such as the aspect-oriented programming tool AspectJ [16] or
code instrumentation systems such as JFluid [14] are working in this way. Ma-
chine code level mutation involves performing transformations in the executable
code of fully compiled languages. The mutation can happen either on the exe-
cutable file as residing on the filesystem or in the runtime executable format in
the operational memory. Object level code mutation includes transformations at
the level of compiled but not linked libraries. Code obfuscators [10] or orthogonal
persistency systems are working this way. A special case of these applications
are adaptive libraries which can decide during runtime the algorithm to deploy
such as Standard Template Adaptive Parallel Library [1]. The most popular
way to perform mutation on applications is at the component level. Components
have the advantage that they are sufficiently large and their behavior is well
understood and can be isolated in specifications. Also, the interaction between
components happens through relatively well documented interfaces. Develop-
ers of components are usually encouraged to implement and use components as
black boxes. Thus the accidental side effects, which are the most difficult aspect
of source code level mutation are significantly reduced at the component level.

Our last classification criteria is based on the techniques used to perform
the mutation or adaptation operation. The typical weak mutability applications
are implemented through extension API through which external components
(plugins) can be plugged to the unchanged main application. The advantage of
this approach is that the main application can still retain the control through
the well controlled application interface. The plugins can run in a controlled
environment (such as the sandbox model of the Java applets). Another advantage
is that mutation though an extension API are reversible, which is not true in
general for other techniques.

Runtime composition API’s allow strong mutation by changing the structure
of the application, through the way in which its components are assembled. In
these techniques the components are considered closed primitives. We need to
identify two important concepts in this approach: the nature of the components
and their assembly model. In order to be suitable for mutation techniques, a
component model need to allow the runtime assembly of components. For ex-
ample, the C++ class model can be seen as a component approach but it does
not allow for runtime assembly. However, C++ based component models such
as Microsoft DCOM, KDE KParts or Gnome’s Bonobo does allow runtime as-



sembly. The Java class model on the other hand, allow runtime modification,
provided that custom classloaders and special access methods are used. For the
Bond agent framework, the primitive components are the strategy objects while
the assembly model follows the multiplane state machine model of agenthood.

In absence of a explicit API, mutability can be implemented through reverse
engineering. Most of the time, this approach is taken for non-cooperative agents,
for externally initiated mutations. This is the approach taken by viruses, but
also by many legitimate applications, such as code instrumentation applications
(for the purpose of debugging or performance profiling), or some persistency
applications. One can argue, that the reflection capabilities offered by many
modern languages, such as Java or Python are in fact low-level API’s towards
reverse engineering the code (of course, useable only if code obfuscators were not
used).

2.2 The Bond agent system

The Bond agent system (currently at version 3) is a FIPA compliant agent devel-
opment environment. As the high level architecture of the Bond system (Figure
1) shows, the Bond system integrates a number of high quality open source tools.
The communication framework and the strategy model is built on top of Java
Agent Development Environment (JADE) framework [29]. The knowledgebase
model is using the the Protégé-2000 ontology editor. The scripting support is
based on the Jython [30] implementation of the Python language. Reasoning is
implemented using the Jess expert system shell. Besides integrating these tools
into an easy to use, consistent framework, the Bond system provides an addi-
tional set of functionalities and serve as an experimental platform. A screenshot
of a running Bond agent is shown in Figure 2.
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Fig. 2. A screenshot of the Bond agent system

In this article we will concentrate on those features of the Bond system which
provide explicit support for reconfigurability and mutability: the multiplane state
machine model and the Blueprint agent description language.

2.3 Multiplane state machine framework

Most agent frameworks are based on the notion of discrete actions generated
the agent framework. The components generating the actions are usually called
behaviors or strategies, and they are assembled into a structure usually being
a variation of the active object design pattern (reactor [23] or proactor [21]).
The activation model of the agent framework is an important component in
the behavior of an agent, and it is usually a trade-off between expressivity and
enforced order.

While agent frameworks such as Jade allow an essentially arbitrary compo-
sition of the behaviors, others, such as SmartAgent [12] or the Bond framework
enforce a simpler framework, which is easier to manage and model. The data
structure enforced by the Bond agent model for behavior composition is the



multi-plane state machine (Figure 3). The planes of the state machine express
the concept of parallelism, the simultaneously active behaviors are described by
a state vector.
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Fig. 3. The finite state machine model: Active states are grayed out

2.4 The Blueprint agent description language. Mutability support

Bond agents are assembled using the Python based Blueprint agent description
language. Although strategies can be written directly in Blueprint, the main
purpose of the language is the assembly of the agents from components, initial-
ization of the knowledgebase and description of the mutation operations. The
multi-plane state machine of the individual agent is assembled from strategies
pre-existent in the strategy database based on a description in Blueprint.

A Blueprint specification is a set of declarative statements that describe the
internal structure of the agent, i.e. its knowledgebase, set of planes, set of states
within each plane and the transitions between these states.

Besides describing the initial multi plane state machine of the agent, it can
also be used to specify surgical operations on the agent by adding or removing
states/transitions from the state machine by modifying the blue print descrip-
tion.

There are seven primitive mutation actions allowed by blueprint language:

– Adding a state (addState)
– Removing a state which doesn’t have any incoming or outgoing transitions.

(removeState)
– Adding a transition between two states. (addTransition)
– Removing a transition (removeTransition)
– Adding a plane (addPlane)
– Removing an empty plane. (removePlane)
– Replacing the strategy of an inactive state. (switchStrategy)



The first six operations are a complete set of operations on the multiplane
state machine. In [3] we have proved invariants regarding all these operations.
The rationale behind the seventh operation is, that although it can be decom-
posed into a sequence of the first six, this decomposition is usually very complex
(removing the transitions, removing the state, re-adding the state with a differ-
ent strategy, re-adding the transitions). This sequence of operations, however,
breaks the conditions of most invariants which can be proven on the agent. These
invariants can be more easily proven to hold in the case of a ”switch” operation.

We called the type of mutability implemented this way agent surgery. While
this name is intended to be taken with tongue in cheek, it is a surprisingly
good description of what is actually happening. It is a change, enacted on a
living agent (Bond agents do not need to be stopped for this operation), it
is performed by a knowledgeable entity (as opposed to random mutation) and
it consists of removing unnecessary components or adding new components /
prostesis / enhancements.

We now proceed to present an example of specifying an agent through a
Blueprint description, and follow up to reconfigure it using a surgical Blueprint
script. The agent we are using in our sample is a simplified version of a computa-
tion steering agent, a part of a grid application framework. The agent contains an
application scheduler, a monitoring system and a user interface. The Blueprint
description for this agent is presented below. The structure of the multi plane
state machine constructed based upon this specification is shown in Figure 3.

includeKnowledgeBase("Grid")

# the application scheduler
createPlane("ApplicationScheduler")
strategy = bond.strategydb.GreedyApplicationScheduler(agent)
addFirstState(strategy, ’scheduler’)
strategy = bond.strategydb.ErrorHandler(agent)
addState(s,’errorhandler’)
addTransition(’scheduler’, ’errorhandler’, FAILURE)

# the monitoring plane
createPlane("Monitoring")
strategy = bond.strategydb.Monitoring(agent)
addFirstState(strategy, ’monitoring’)
addState(WaitAndTransitionStrategy(agent, 1000, SUCCESS), "wait")
addTransition(’monitoring’, ’wait’, SUCCESS)
addTransition(’wait’, ’monitoring’, SUCCESS)

# the Java Swing based user interface
createPlane("SwingUserInterface")
s = bond.strategydb.SwingUi(agent)
addFirstState(s,’swingUi’)
addState( DummyStrategy(agent), ’dummy’)



addTransition(’swingUi’, ’dummy’, HIDE_UI)
addTransition(’dummy’, ’swingUi’, SHOW_UI)

The agent presented here has a Java Swing based user interface. This Java
user interface library is known to be a large consumer of resources, and it is
currently not available for embedded Java implementations. This would prevent
the agent to migrate to portable devices. One solution is to replace the user
interface with an interface based on the AWT library - which is relying on
the native windowing toolkits of the platform and is available on embedded
computers 1. The change from a Swing user interface to an AWT one can be
performed with the following surgical blueprint script.

setPlane("SwingUserInterface")
if currentPlane()==’swingUi’:

triggerTransition(HIDE_UI)
# removing the old visual strategy
removeTransition(’swingUi’, ’dummy’, HIDE_UI)
removeTransition(’dummy’, ’swingUi’, SHOW_UI)
removeState(’swingUi’)
# adding the new, AWT based user interface
s = bond.strategydb.AWTExecutor(agent)
addState(s, ’awtUi’)
addTransition(’awtUi’, ’dummy’, HIDE_UI)
addTransition(’dummy’, ’awtUi’, SHOW_UI)
triggerTransition(SHOW_UI)

An alternative, simpler way of transforming the agent is:

if currentPlane()==’swingUi’:
triggerTransition(HIDE_UI)

s = bond.strategydb.AWTExecutor(agent)
changeStrategy(plane = ’IntentionExecutor’, state = ’UIStrategy’, s)
triggerTransition(SHOW_UI)

The Swing execution engine is seamlessly replaced by AWT execution engine.
Such surgical operations will frequently be required to make an agent conform
to a volatile environment in which it has to operate.

3 The software engineering perspective of adaptive
agents

As agent systems migrate from research laboratories to the world of commercial
software development and enterprise computing, new design and analysis tech-
niques must be developed. It becomes increasingly clear that the established soft-
ware methodologies, such as object-oriented analysis and design, are inadequate
1 But AWT is a considerable less advanced user interface than Swing, and it is almost

never used on desktop platforms



or insufficient for the analysis and design of agent systems. Software engineering
methodologies specifically designed for agent systems become necessary.

Some of these new developments, such as [17, 27], are building upon the ex-
isting object oriented methodologies and techniques and design patterns. There
are a number of efforts underway to extend the UML language and the asso-
ciated software methodology for agent oriented programming ([19, 9, 2]) or for
modelling the knowledge-base of the agents [11, 13]. Many methodologies are
drawing inspiration from the Belief-Desire-Intention model [17, 20]. Other ap-
proaches are building on techniques for knowledge engineering [7] or on formal
methods and languages, e.g., the extensions for the Z language [18]. The Tropos
methodology [8] is adapting ideas from techniques developed for business process
modelling and reengineering (the i* notation [28]), at the same time retaining
the mentalistic notions of belief-desire-intention and related models. Some agent
systems have developed their own analysis and design approaches, targeted to
the particularities of the agent system such as Cassiopeia.

The introduction of mutable agents creates new problems for the agent anal-
ysis and design methodologies. The analysis step needs to take into consideration
the possibility of the agent being significantly modified during its lifetime. The
design step needs to offer information about which agents should be mutated,
at what moment of their lifecycle, and what kind of mutation should be per-
formed. Generally, the methodological discipline is more important for the case
of mutable agents.

We now discuss the effect of mutable agents on one of the popular agent
design methodologies, the Gaia approach [27]. The Gaia methodology, with its
roots in object oriented approaches such as FUSION, is a good fit for FIPA
compliant agent systems such as Bond, as long as they do not mutate. In fact,
the authors of [27] explicitly spell out among the applicability requirements
that (a) the organizational structure of the system is static and (b) the abilities
of the agents and the services they provide are static, do not change during
runtime. Several extensions proposed to the Gaia methodology extend the scope
of the methodology. The ROADMAP methodology [15] extends Gaia with formal
models of knowledge, role hierarchies and representation of social structures. It
also extends the permission attributes to allow roles to change the definition or
attributes of other roles, although it does not cover the issue of how the modified
agents are represented.

Our goal is to investigate the feasibility of the removal of these constraints
and the changes in the methodology implied by this removal.

We emphasize that no methodology can handle randomly mutating agents.
Fortunately, the most frequently encountered operations can be classified in a
set of well understood classes:

– Adding new functionality to the agent (understood as the ability to function
in new roles).

– Removing functionality from an agent (understood as the inability to func-
tion in a set of roles in the future).



– Adapting the agent to new requirements or a different set of available re-
sources.

– Splitting an agent.
– Merging agents.

While many other types of change can be envisioned (for example, transfer-
ring a functionality from an agent to a different agent), we will concentrate in
this paper on the five mutation types shown above.

3.1 Adding new functionality to the agent

In terms of the Gaia methodology, adding new functionality to the agent is
equivalent to saying that the agent will be able to function in new roles, while
maintaining the previously existing ones. More formally, considering the recon-
figuration event e, we can say that if the agent was able to fulfill a set of roles
R before the event, and after the event, it will be able to fulfill a set of roles R′

with R ⊂ R′.
The corresponding structural definition in the AMmp

1 model, employed by the
Bond system, is that the extending functionality is an agent surgery operation,
which transforms agent A to agent A′ and for every run R where the agent A
is successful, the agent A′ will be successful as well. In [4], we demonstrated
that elementary surgical operations, such as adding states, adding transitions,
and removing transitions labelled with FAILURE, maintain this property. In
addition, the surgical operation of adding a plane can also maintain this property
subject to a set of disjointness conditions.

We found a good mapping between the Gaia concept of roles and the struc-
tural implementation. Just as the agent might not be taking on a certain role,
although it would be qualified to do it, the agent might not perform certain runs.
Thus we can say that by adding new functionality to the agent by agent surgery,
the agent acquires the ability to fulfill new roles.

The attributes associated with the roles in the Gaia methodology will also be
maintained: the responsibilities, permissions, activities, and protocols. As these
attributes are applied to the agent in a cumulative way, an important goal of the
analysis process of an agent surgery operation is to determine that there is no
conflict between the attributes of the agents, that is, the invariants of the agents
are properly maintained.

A different question, which needs to be answered by the analysis process, is
the opportunity and moment in the agent lifecycle when the new functionality
needs to be added to the agent. The answer to this question is not an explicit
point in the lifecycle of the agent, but a trigger, a specific set of conditions under
which the mutation becomes desirable. 2

2 Although one might argue that the agents can be designed so that they can fulfill all
the possible roles needed during its lifetime. This argument ignores the cost associ-
ated with having such a multifaceted agent. To put this in a different context, not all
the workers of a company need to be qualified for all the professions. Nevertheless, it



For a concrete example of how the diagrams of the Gaia method can be
annotated to handle reconfigurable agents, let us turn to the airline industry for
an example. During a flight, the number of (human) agents on the airplane are
playing a set of well defined roles: passenger, pilot, stewardess and so on. There
are, however, exceptional situations, such as an emergency landing in which case
some of the passengers are required to take on new roles, such as to assist the
crew in opening the doors.

The agent model diagram of this situation is modelled in Figure 4. In this
approach, the exceptional situation is modelled as the mutation trigger. The
new state of the agent is modelled in the Gaia agent diagram as a new agent
type. Mutated agent types are marked in the diagram with the letter M. The
mutation operation is specified using a thick arrow with the ”+” label attached
(indicating that the mutation retains all the previous roles of the agent 3 ).

One of the potential difficulties associated with this model is the potential
for an agent type space explosion.

(M)EmergencyDoorOpenerAgent

PassengerAgent

Customer DoorOpener

80..140

5..8Trigger:

EmergencyLanding
+

Fig. 4. Agent model for an airplane emergency situation

Another diagram which needs to be adapted to handle the needs of the recon-
figurable agents is the acquaintance model. While the Gaia acquaintance model
does not deal with the details of the interaction, mutations on the agents can
frequently change the acquaintances as well. The example presented in Figure
5 also deals with a fictional situation on an airplane. The sudden symptoms of
sickness on some passengers and a stewardess triggers a request from a stew-
ardess which makes a passengers step into the role of a doctor. This creates a
new interaction pattern, between the doctor and the sick stewardess and the
sick passenger. These acquaintance lines would have not existed if the mutation
would not have happened.

is a frequent occurrence that a worker needs to be sent to additional training so that
he or she can fulfill new roles. In many cases, these events can be quite accurately
predicted and even planned. Similar considerations apply to agents.

3 Strictly speaking, the ”+” label is not needed on the agent model diagram, because
the operation can be inferred from the role inheritance lines. It is however useful on
the other diagrams where the role inheritance is not present.
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Fig. 5. Acquiantance diagram for the ”sickness on an airplane” scenario

3.2 Removing functionality from an agent

There can be several reasons for removing functionality from an agent. One of
them is the course-grain equivalent of garbage collecting. At some moment in
the agent’s lifecycle we might find that some of the roles of the agent will never
be activated. The ability to perform roles which will not be activated usually
implies some kind of waste of resources. Examples are memory and disk space
occupied, network bandwidth by polling for messages which will never arrive,
processor time for maintaining data structures which will never be queried. It is
therefore useful to periodically perform a role-based garbage collection process
on the agent. While the process is related to the garbage collection process in
programming languages automated programming languages such as Java, there
are also some specific differences.

– The garbage collection process happens at the level of components and sub-
sections of the knowledgebase (instead of allocated memory chunks).

– Active components (code) can be also garbage collected.
– The internal structure of the agents can greatly simplify the garbage collec-

tion process. For example, for agents based on a multiplane state machine
model, the garbage collection process can be reduced to a reacheability anal-
ysis on the state machines.

– The probability that a garbage collection step will recover some resources
is generally lower, then in the case of garbage collecting memory in appli-
cations. Moreover, the benefits of role-based garbage collection will tend
asymptotically to zero, unless some other mutation operations in the mean-
while new components.

The role-based garbage collection can happen any time during the agent’s
lifetime. However, the life cycle of an agent provides some natural points where
the side effects of the garbage collection process are minimal. Such points are:
after every transition (for state machine or Petri net based agents), before check-
pointing, before moving (for mobile agents) and after every mutation.



Another scenario for removing functionality from agents, is to trigger special-
ization in groups of large agents. In this case an agent factory generates agents
with the ability to perform a set of tasks. The agents are then specialized through
removing their ability to perform a certain subset of tasks (Figure 6). The spe-
cialization mutation can be either performed under the control of a remote agent,
or it can be performed by the agent itself, based on the initial experiences of its
lifecycle. This approach is very natural for distributed solution of problems with
the ”divide and conquer” approach, such as the popular Contract Net protocol
[24]. Another application is the emergence of communication patterns. There is
solid evidence that the visual and auditory pathways of mammals are generated
using a similar method in the early stages of life. The hardware industry had
chosen a similar approach for the zone codes of DVD drives. The DVD drives
are manufactured as generic devices, which are capable to play DVDs from any
zone. During the first several uses, the DVD drives decides on a particular zone
coding, and it permanently removes its own ability to play DVD’s from other
zones.

Execution Communication
User

Interface Scheduler

A

(M)Computation

Steering

(M)Application

Wrapper

Generic Agent

--

Fig. 6. Specialization of generic agents through removal of roles.

3.3 Adapting an agent to new requirements

Another very important subclass of agent mutations are when an agent is re-
configured to adapts a changing environment expressed with a changing set of
resources. The most typical one is that the reconfiguration needed after migra-
tion to a new host computer. Another example, which does not involve migra-
tion, when an agent running on a host computer needs to adapt between the
almost complete control over resources (when the user is not logged in) with
only minimal resource allowances (when the user is logged in and working).

Expressed in the terms of the Gaia methodology, the agents will implement
the same set of roles with a different set of attributes.



– The responsibilities and the protocols implemented by the role will remain
unchanged during this operation4.

– The permissions associated with the role will be different. The Gaia method-
ology collects under the concept of permissions notions such as resource usage
and security permissions. The analysis process is responsible to assure that
the permissions required by the agent after the transformation are satisfied
by its new context. For example, it has to be assured that the memory and
processor power requirement are satisfied.

As in the case discussed in the previous section, the goal of the agent analysis
and design is to determine the opportunity and the nature of the agent muta-
tion. The opportunity for migration can be expressed in terms of hard and soft
triggers. A hard trigger is a boolean function which tells us if an agent can not
fulfill the requirements of its role in a given context. A soft trigger, on the other
hand, is a cost-benefit analysis of the agent which might suggest a mutation
if this leads to an increased performance of an agent. Generally, hard triggers
are leading to changes with implementations with lower resource usage, while
soft triggers are biased towards implementations with higher performance and
associated higher resource (permission) requirements.
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Fig. 7. Design decision tree

The adaptation scenarios can be described in the terms of a design decision
tree. In the Gaia approach (as in many other software engineering approaches)
the designer moves from an initial, very high level specification, to an increasingly
more specialized choice. These choices for a design tree, which will be assumed
to be a separate one for every role the agent can play. For the example given in
Figure 7, the choices are all valid approaches to create a user interface of the
program. During the design process, a set of decisions are made to determine
the permissions (in the resource usage sense) of the program. The leaf nodes
typically correspond to the actual implementation of a program, but of course,
4 This is a relatively crude approximation which assumes that the functionality of an

application is completely specified by the original specification.



not all the potential choices are actually implemented. For an agent which does
not require reconfiguration, only one branch of the design tree is explored. Once
the decision is made, the design tree is not used in the actual operation of the
agent, although it might be kept, implicitly in the design documentation.

For a reconfigurable agent, more than one leaf node is fully instantiated. We
need to emphasize that this involves the same analysis and programming steps as
for any other agent. However, in this case, the design tree has a practical utility
during the lifetime of the agent. Let us assume an agent which is executed with a
Swing based, fully graphic user interface, and needs to be migrated to a Personal
Digital Assistant. A simple check of the permissions of the role will tell us that
the current implementation will not work and a reconfiguration operation is
needed.

The role, therefore will be moved backwards in the design tree. At every
steps releasing the assumptions made at the given point, until the assumptions
on the current point in the tree do no conflict with the new context of the agent.
Normally, however, we are usually at a more or less abstract specification level,
which on its own, is not runnable. Therefore, we will start to move toward the
leafs of the decision tree again, this time however making decisions according
to the new context. Our goal is to reach a fully implemented leaf node which
conforms to the current set of permissions. The required transformation will be,
therefore, one which transforms from the original design choice into a new design
choice.

3.4 Splitting and merging agents

Splitting and merging agents are operations which are surprisingly easily imple-
mentable in many agent systems. Moreover, very compelling application scenar-
ios can be found for them. The reason why this technique is not more frequently
used in applications is because there is no accepted software engineering method-
ology to specify them. Also, splitting and merging is not a mechanically intuitive
concept such as agent mobility5.

The software engineering process for the splitting and merging agents involves
most of the notions presented in the previous sections. We need to identify the
triggers of the split and merge mutation, and the resulting new agent types need
to be fit in the agent models. We propose the use of the split and merge operators
as presented in Figure 8.

5 Agent mobility, in practice involves: stopping an agent, serializing it, transfering
data and code over the network, signalling back that the transfer was succesful,
destroying the agent in the original location, restarting it on the new location. It
is quite obvious that this is a complex, and not entirely intuitive process which
has little to do with movement in the mechanical sense. However, the power of the
metaphor made people accept the notion of mobile agents easier because most of us
can visualize it.
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Fig. 8. The agent model for splitting and merging operations

4 Summary

Although need for reconfigurable and adaptable systems seems to be unani-
mously accepted, the use of mutable agents, in the sense presented in this paper,
is more controversial. For example, adaptation can be achieved at the level of
societies of agents - through the creation and termination of statically config-
ured agents. Agents can be reconfigured with configuration files, without radical
changes in the code. Further research is needed to establish the domain where
mutability is more desirable than other approaches. One direction of research is
the extension to other agent oriented software engineering methodologies, such
as Tropos or Agent UML. Our current experiments used the Bond agent sys-
tem which was explicitly designed to support mutability. One of our research
directions is to determine the minimal sets of requirements against of a general
purpose component system, such as Enterprise Java Beans or Microsoft .NET
which would allow the use of mutation techniques.

In conclusion, the software engineering of mutable agents opens many contro-
versies and difficult theoretical and practical questions. The results presented in
this paper show that one of the popular agent development methodologies (Gaia)
can be extended for the design and analysis of populations of mutable agents.
An unexpectedly good fit between the Gaia design methodology and mutable
agents seems to exist. While new questions need to be answered and new invari-
ants must be verified, we found no need to introduce new high level concepts.
This is a good omen for the reconfigurable agent technology. The populations of
changeable and mutable agents might be manageable, after all.
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