

• A Hadoop job consists of Map tasks and Reduce tasks
• Only one job in entire cluster => it occupies cluster
• Multiple customers with multiple jobs

– Users/jobs = “tenants”
– Multi-tenant system

• => Need a way to schedule all these jobs (and their
constituent tasks)

• => Need to be fair across the different tenants
• Hadoop YARN has two popular schedulers

– Hadoop Capacity Scheduler
– Hadoop Fair Scheduler

Hadoop Scheduling

• Contains multiple queues
• Each queue contains multiple jobs
• Each queue guaranteed some portion of the cluster capacity

E.g.,
– Queue 1 is given 80% of cluster
– Queue 2 is given 20% of cluster
– Higher-priority jobs go to Queue 1

• For jobs within same queue, FIFO typically used
• Administrators can configure queues

Hadoop Capacity Scheduler

Source: http://hadoop.apache.org/docs/r2.3.0/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html

• Administrators can configure each queue with limits
– Soft limit: how much % of cluster is the queue guaranteed to occupy
– (Optional) Hard limit: max % of cluster the queue is guaranteed

• Elasticity
– A queue allowed to occupy more of cluster if resources free
– But if other queues below their capacity limit, now get full, need to

give these other queues resources

• Pre-emption not allowed!
– Cannot stop a task part-way through
– When reducing % cluster to a queue, wait until some tasks of that

queue have finished

Elasticity in HCS

• Queues can be hierarchical
– May contain child sub-queues, which may contain child sub-queues,

and so on
– Child sub-queues can share resources equally

• Scheduling can take memory requirements into account
(memory specified by user)

Other HCS Features

• Goal: all jobs get equal share of resources
• When only one job present, occupies entire cluster
• As other jobs arrive, each job given equal % of cluster

– E.g., Each job might be given equal number of cluster-wide YARN
containers

– Each container == 1 task of job

Hadoop Fair Scheduler

Source: http://hadoop.apache.org/docs/r1.2.1/fair_scheduler.html

• Divides cluster into pools
– Typically one pool per user

• Resources divided equally among pools
– Gives each user fair share of cluster

• Within each pool, can use either
– Fair share scheduling, or
– FIFO/FCFS
– (Configurable)

Hadoop Fair Scheduler (2)

• Some pools may have minimum shares
– Minimum % of cluster that pool is guaranteed

• When minimum share not met in a pool, for a while
– Take resources away from other pools
– By pre-empting jobs in those other pools
– By killing the currently-running tasks of those jobs

• Tasks can be re-started later
• Ok since tasks are idempotent!

– To kill, scheduler picks most-recently-started tasks
• Minimizes wasted work

Pre-emption in HFS

• Can also set limits on
– Number of concurrent jobs per user
– Number of concurrent jobs per pool
– Number of concurrent tasks per pool

• Prevents cluster from being hogged by one user/job

Other HFS Features

• HCS/HFS use FIFO
– May not be optimal (as we know!)
– Why not use shortest-task-first instead? It’s optimal (as we know!)

• Challenge: Hard to know expected running time of task (before
it’s completed)

• Solution: Estimate length of task
• Some approaches

– Within a job: Calculate running time of task as proportional to size of
its input

– Across jobs: Calculate running time of task in a given job as average
of other tasks in that given job (weighted by input size)

• Lots of recent research results in this area!

Estimating Task Lengths

• Hadoop Scheduling in YARN
– Hadoop Capacity Scheduler
– Hadoop Fair Scheduler

• Yet, so far we’ve talked of only one kind of resource

– Either processor, or memory
– How about multi-resource requirements?
– Next!

Summary

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11

