COP 4600 - Homework 1

Due October 2, 2012
Problem 1: (60 pts + 40pts extra credit)

Write a C/C++ program which replaces the command shell in Unix.

· After started, it prints a prints a prompt “>” and reads a command line terminated by newline.

· If the command line is “exit”, it terminates.

· If the command line is something other than “exit”, it interprets the first word as the name of a program to execute, and the others as parameters. It uses fork() + exec() to start the program with the corresponding parameters.

· If the command line terminates in “&”, the shell returns the prompt and is ready to receive another command. If it is not, the shell waits until the started program is terminated (using the waitpid() call).

· Print an error message for all error situations encountered.

To help you, you might want to read a tutorial on

 http://www.yolinux.com/TUTORIALS/ForkExecProcesses.html
I have also linked from the webpage a code segment which might help you in reading in code etc.

As a note: the easiest way to program this assignment is if you are using a native Unix system, such as Linux. Alternatively, you can use the Cygwin environment in Windows.

Submit the code as a single .c or .cpp file.

For extra credit, implement any of these

· Support for a “for” loop

· Support for a “while” loop

· Support for if-then-else statement.

Note that your implementation does not necessarily follow the same syntax as the one in shells such as bash. Please provide a description and example of use.
Problem 2: (20pts)
An I/O bound program is one that, if run alone, would spend more time waiting for I/O than using a processor. A processor bound program is the opposite. Suppose a short-term scheduling algorithm favors those programs that have used little processor time in the recent past. Explain why this algorithm favors I/O bound programs and yet does not permanently deny processor time to processor bound programs.

Problem 3: (20pts)
Consider a computer with N processors. What is the minimum and maximum number of processes that can be in each of the ready, running and waiting states?
