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The concept of one event happening before another 
in a distributed system is examined, and is shown to 
define a partial ordering of the events. A distributed 
algorithm is given for synchronizing a system of logical 
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Introduction 

The concept of time is fundamental to our way of 
thinking. It is derived from the more basic concept of  
the order in which events occur. We say that something 
happened at 3:15 if it occurred after our clock read 3:15 
and before it read 3:16. The concept of the temporal 
ordering of  events pervades our thinking about systems. 
For example, in an airline reservation system we specify 
that a request for a reservation should be granted if it is 
made before the flight is filled. However, we will see that 
this concept must be carefully reexamined when consid- 
ering events in a distributed system. 
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A distributed system consists of  a collection of distinct 
processes which are spatially separated, and which com- 
municate with one another by exchanging messages. A 
network of  interconnected computers, such as the ARPA 
net, is a distributed system. A single computer can also 
be viewed as a distributed system in which the central 
control unit, the memory units, and the input-output 
channels are separate processes. A system is distributed 
if the message transmission delay is not negligible com- 
pared to the time between events in a single process. 

We will concern ourselves primarily with systems of  
spatially separated computers. However, many of  our 
remarks will apply more generally. In particular, a mul- 
tiprocessing system on a single computer involves prob- 
lems similar to those of  a distributed system because of  
the unpredictable order in which certain events can 
o c c u r .  

In a distributed system, it is sometimes impossible to 
say that one of  two events occurred first. The relation 
"happened before" is therefore only a partial ordering 
of  the events in the system. We have found that problems 
often arise because people are not fully aware of  this fact 
and its implications. 

In this paper, we discuss the partial ordering defined 
by the "happened before" relation, and give a distributed 
algorithm for extending it to a consistent total ordering 
of  all the events. This algorithm can provide a useful 
mechanism for implementing a distributed system. We 
illustrate its use with a simple method for solving syn- 
chronization problems. Unexpected, anomalous behav- 
ior can occur if the ordering obtained by this algorithm 
differs from that perceived by the user. This can be 
avoided by introducing real, physical clocks. We describe 
a simple method for synchronizing these clocks, and 
derive an upper bound on how far out of  synchrony they 
can drift. 

The Partial Ordering 

Most people would probably say that an event a 
happened before an event b if a happened at an earlier 
time than b. They might justify this definition in terms 
of  physical theories of time. However, if a system is to 
meet a specification correctly, then that specification 
must be given in terms of  events observable within the 
system. If the specification is in terms of  physical time, 
then the system must contain real clocks. Even if it does 
contain real clocks, there is still the problem that such 
clocks are not perfectly accurate and do not keep precise 
physical time. We will therefore define the "happened 
before" relation without using physical clocks. 

We begin by defining our system more precisely. We 
assume that the system is composed of  a collection of  
processes. Each process consists of  a sequence of events. 
Depending upon the application, the execution of  a 
subprogram on a computer could be one event, or the 
execution of a single machine instruction could be one 
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event. We are assuming that the events of  a process form 
a sequence, where a occurs before b in this sequence if 
a happens before b. In other words, a single process is 
defined to be a set of  events with an a priori total 
ordering. This seems to be what is generally meant  by a 
process.~ It would be trivial to extend our definition to 
allow a process to split into distinct subprocesses, but we 
will not bother to do so. 

We assume that sending or receiving a message is an 
event in a process. We can then define the "happened 
before" relation, denoted by "---~", as follows. 

Definition. The relation "---->" on the set of  events of  
a system is the smallest relation satisfying the following 
three conditions: (1) I f  a and b are events in the same 
process, and a comes before b, then a ~ b. (2) I f  a is the 
sending of  a message by one process and b is the receipt 
o f  the same message by another process, then a ~ b. (3) 
I f  a ~ b and b ~ c then a ---* c. Two distinct events a 
and b are said to be concurrent if  a ~ b and b -/-* a. 

We assume that a ~ a for any event a. (Systems in 
which an event can happen before itself do not seem to 
be physically meaningful.) This implies that ~ is an 
irreflexive partial ordering on the set of  all events in the 
system. 

It is helpful to view this definition in terms of a 
"space-time diagram" such as Figure 1. The horizontal 
direction represents space, and the vertical direction 
represents t ime-- la ter  times being higher than earlier 
ones. The dots denote events, the vertical lines denote 
processes, and the wavy lines denote messagesfl It is easy 
to see that a ~ b means that one can go from a to b in 

' The choice of what constitutes an event affects the ordering of  
events in a process. For example, the receipt of a message might denote 
the setting of an interrupt bit in a computer, or the execution of  a 
subprogram to handle that interrupt. Since interrupts need not be 
handled in the order that they occur, this choice will affect the order- 
ing of a process' message-receiving events. 

2 Observe that messages may be received out of order. We allow 
the sending of several messages to be a single event, but for convenience 
we will assume that the receipt of a single message does not coincide 
with the sending or receipt of  any other message. 
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the diagram by moving forward in time along process 
and message lines. For example, we have p, --~ r4 in 
Figure 1. 

Another way of  viewing the definition is to say that 
a --) b means that it is possible for event a to causally 
affect event b. Two events are concurrent if neither can 
causally affect the other. For example, events pa and q:~ 
of  Figure 1 are concurrent. Even though we have drawn 
the diagram to imply that q3 occurs at an earlier physical 
time than 1)3, process P cannot know what process Q did 
at qa until it receives the message at p ,  (Before event p4, 
P could at most know what Q was planning to do at q:~.) 

This definition will appear  quite natural to the reader 
familiar with the invariant space-time formulation of  
special relativity, as described for example in [1] or the 
first chapter of  [2]. In relativity, the ordering of  events is 
defined in terms of  messages that could be sent. However, 
we have taken the more pragmatic approach of  only 
considering messages that actually are sent. We should 
be able to determine if a system performed correctly by 
knowing only those events which did occur, without 
knowing which events could have occurred. 

Logical Clocks 

We now introduce clocks into the system. We begin 
with an abstract point of  view in which a clock is just a 
way of  assigning a number  to an event, where the number  
is thought of  as the time at which the event occurred. 
More precisely, we define a clock Ci for each process Pi 
to be a function which assigns a number  Ci(a) to any 
event a in that process. The entire system ofc lbcks  is 
represented by the function C which assigns to any event 
b the number  C(b) ,  where C(b)  = C/(b) i fb  is an event 
in process Pj. For now, we make no assumption about 
the relation of  the numbers Ci(a) to physical time, so we 
can think of  the clocks Ci as logical rather than physical 
clocks. They may be implemented by counters with no 
actual timing mechanism. 
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We now consider what it means for such a system of 
clocks to be correct. We cannot base our definition of  
correctness on physical time, since that would require 
introducing clocks which keep physical time. Our defi- 
nition must be based on the order in which events occur. 
The strongest reasonable condition is that if an event a 
occurs before another event b, then a should happen at 
an earlier time than b. We state this condition more 
formally as follows. 

Clock Condition. For any events a, b: 
if a---> b then C(a )  < C(b) .  

Note that we cannot expect the converse condition to 
hold as well, since that would imply that any two con- 
current events must occur at the same time. In Figure 1, 
p2 and p.~ are both concurrent with q3, so this would 
mean that they both must occur at the same time as q.~, 
which would contradict the Clock Condition because p2 
-----> /93. 

It is easy to see from our definition of  the relation 
"---~" that the Clock Condition is satisfied if the following 
two conditions hold. 

C 1. I f  a and b are events in process P~, and a comes 
before b, then Ci(a) < Ci(b). 

C2. I f  a is the sending of  a message by process Pi 
and b is the receipt of  that message by process Pi, then 
Ci(a)  < Ci(b). 

Let us consider the clocks in terms of a space-time 
diagram. We imagine that a process' clock "ticks" 
through every number,  with the ticks occurring between 
the process' events. For example, if a and b are consec- 
utive events in process Pi with Ci(a) = 4 and Ci(b) = 7, 
then clock ticks 5, 6, and 7 occur between the two events. 
We draw a dashed "tick line" through all the like- 
numbered ticks of  the different processes. The space- 
time diagram of  Figure 1 might then yield the picture in 
Figure 2. Condition C 1 means that there must be a tick 
line between any two events on a process line, and 
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condition C2 means that every message line must cross 
a tick line. From the pictorial meaning of--->, it is easy to 
see why these two conditions imply the Clock Con- 
dition. 

We can consider the tick lines to be the time coordi- 
nate lines of  some Cartesian coordinate system on space- 
time. We can redraw Figure 2 to straighten these coor- 
dinate lines, thus obtaining Figure 3. Figure 3 is a valid 
alternate way of representing the same system of events 
as Figure 2. Without introducing the concept of  physical 
time into the system (which requires introducing physical 
clocks), there is no way to decide which of  these pictures 
is a better representation. 

The reader may find it helpful to visualize a two- 
dimensional spatial network of processes, which yields a 
three-dimensional space-time diagram. Processes and 
messages are still represented by lines, but tick lines 
become two-dimensional surfaces. 

Let us now assume that the processes are algorithms, 
and the events represent certain actions during their 
execution. We will show how to introduce clocks into the 
processes which satisfy the Clock Condition. Process Pi's 
clock is represented by a register Ci, so that C~(a) is the 
value contained by C~ during the event a. The value of  
C~ will change between events, so changing Ci does not 
itself constitute an event. 

To guarantee that the system of clocks satisfies the 
Clock Condition, we will insure that it satisfies conditions 
C 1 and C2. Condition C 1 is simple; the processes need 
only obey the following implementat ion rule: 

IR1. Each process P~ increments Ci between any 
two successive events. 

To meet condition C2, we require that each message 
m contain a timestamp Tm which equals the time at which 
the message was sent. Upon receiving a message time- 
s tamped Tin, a process must advance its clock to be later 
than Tin. More precisely, we have the following rule. 

IR2. (a) I f  event a is the sending of  a message m 
by process P~, then the message m contains a t imestamp 
Tm= Ci(a). (b) Upon  receiving a message m, process 
Pi sets Ci greater than or equal to its present value and 
greater than Tin. 

In IR2(b) we consider the event which represents the 
receipt of  the message m to occur after the setting of  C i. 
(This is just a notational nuisance, and is irrelevant in 
any actual implementation.) Obviously, IR2 insures that 
C2 is satisfied. Hence, the simple implementat ion rules 
IR l and IR2 imply that the Clock Condition is satisfied, 
so they guarantee a correct system of  logical clocks. 

Ordering the Events Totally 

We can use a system of  clocks satisfying the Clock 
Condition to place a total ordering on the set of  all 
system events. We simply order the events by the times 
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at which they occur. To break ties, we use any arbitrary 
total ordering < of  the processes. More precisely, we 
define a relation ~ as follows: if  a is an event in process 
Pi and b is an event in process Pj, then a ~ b if and only 
if either (i) Ci{a) < Cj(b) or (ii) El(a) ----" Cj(b) and Pi 
< Py. It is easy to see that this defines a total ordering, 
and that the Clock Condition implies that if  
a ----> b then a ~ b. In other words, the relation ~ is a 
way of completing the "happened before" partial order- 
ing to a total ordering, a 

The ordering ~ depends upon the system of  clocks 
Cz, and is not unique. Different choices of  clocks which 
satisfy the Clock Condition yield different relations ~ .  
Given any total ordering relation ~ which extends --->, 
there is a system of  clocks satisfying the Clock Condition 
which yields that relation. It is only the partial ordering 

which is uniquely determined by the system of  events. 
Being able to totally order the events can be very 

useful in implementing a distributed system. In fact, the 
reason for implementing a correct system of  logical 
clocks is to obtain such a total ordering. We will illustrate 
the use of  this total ordering of  events by solving the 
following version of  the mutual exclusion problem. Con- 
sider a system composed of a fixed collection of  processes 
which share a single resource. Only one process can use 
the resource at a time, so the processes must synchronize 
themselves to avoid conflict. We wish to find an algo- 
rithm for granting the resource to a process which satis- 
fies the following three conditions: (I) A process which 
has been granted the resource must release it before it 
can be granted to another process. (II) Different requests 
for the resource must be granted in the order in which 
they are made. (III) I f  every process which is granted the 
resource eventually releases it, then every request is 
eventually granted. 

We assume that the resource is initially granted to 
exactly one process. 

These are perfectly natural requirements. They pre- 
cisely specify what it means for a solution to be correct /  
Observe how the conditions involve the ordering of  
events. Condition II says nothing about which of  two 
concurrently issued requests should be granted first. 

It is important to realize that this is a nontrivial 
problem. Using a central scheduling process which grants 
requests in the order they are received will not work, 
unless additional assumptions are made. To see this, let 
P0 be the scheduling process. Suppose P1 sends a request 
to Po and then sends a message to P2. Upon receiving the 
latter message, Pe sends a request to Po. It is possible for 
P2's request to reach P0 before Pl's request does. Condi- 
tion II is then violated if P2's request is granted first. 

To solve the problem, we implement a system of  

;~ The ordering < establishes a priority among the processes. If a 
"fairer" method is desired, then < can be made a function of the clock 
value. For example, if Ci(a) = C/b) andj < L then we can let a ~ b 
if j  < C~(a) mod N --< i, and b ~ a otherwise; where N is the total 
number of processes. 

4 The term "eventually" should be made precise, but that would 
require too long a diversion from our main topic. 
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clocks with'rules IR 1 and IR2, and use them to define a 
total ordering ~ of  all events. This provides a total 
ordering of  all request and release operations. With this 
ordering, finding a solution becomes a straightforward 
exercise. It just involves making sure that each process 
learns about all other processes' operations. 

To simplify the problem, we make some assumptions. 
They are not essential, but they are introduced to avoid 
distracting implementation details. We assume first o f  all 
that for any two processes P / a n d  Pj, the messages sent 
from Pi to Pi are received in the same order as they are 
sent. Moreover, we assume that every message is even- 
tually received. (These assumptions can be avoided by 
introducing message numbers and message acknowledg- 
ment protocols.) We also assume that a process can send 
messages directly to every other process. 

Each process maintains its own request queue which 
is never seen by any other process. We assume that the 
request queues initially contain the single message To:Po 
requests resource, where Po is the process initially granted 
the resource and To is less than the initial value of any 
clock. 

The algorithm is then defined by the following five 
rules. For  convenience, the actions defined by each rule 
are assumed to form a single event. 

1. To request the resource, process Pi sends the mes- 
sage TIn:P/requests resource to every other process, and 
puts that message on its request queue, where T,~ is the 
t imestamp of  the message. 

2. When process Pj receives the message T,~:P~ re- 
quests resource, it places it on its request queue and sends 
a (timestamped) acknowledgment message to P~.'~ 

3. To release the resource, process P~ removes any 
Tm:Pi requests resource message from its request queue 
and sends a (timestamped) Pi releases resource message 
to every other process. 

4. When process Pj receives a Pi releases resource 
message, it removes any Tm:P~ requests resource message 
from its request queue. 

5. Process P/is granted the resource when the follow- 
ing two conditions are satisfied: (i) There is a Tm:Pi 
requests resource message in its request queue which is 
ordered before any other request in its queue by the 
relation ~ .  (To define the relation " ~ "  for messages, 
we identify a message with the event of  sending it.) (ii) 
P~ has received a message from every other process time- 
stamped later than Tin. ~ 

Note that conditions (i) and (ii) of  rule 5 are tested 
locally by P~. 

It is easy to verify that the algorithm defined by these 
rules satisfies conditions I - I I I .  First of  all, observe that 
condition (ii) of  rule 5, together with the assumption that 
messages are received in order, guarantees that P~ has 
learned about all requests which preceded its current 

'~ This acknowledgment message need not be sent if Pj has already 
sent a message to Pi timestamped later than T .... 

" If P, -< Pi, then Pi need only have received a message timestamped 
_> T,,, from P/. 
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request. Since rules 3 and 4 are the only ones which 
delete messages from the request queue, it is then easy to 
see that condition I holds. Condition II follows from the 
fact that the total ordering ~ extends the partial ordering 
---~. Rule 2 guarantees that after Pi requests the resource, 
condition (ii) of  rule 5 will eventually hold. Rules 3 and 
4 imply that if each process which is granted the resource 
eventually releases it, then condition (i) of  rule 5 will 
eventually hold, thus proving condition III. 

This is a distributed algorithm. Each process inde- 
pendently follows these rules, and there is no central 
synchronizing process or central storage. This approach 
can be generalized to implement any desired synchroni- 
zation for such a distributed multiprocess system. The 
synchronization is specified in terms of a State Machine, 
consisting of a set C of  possible commands, a set S of  
possible states, and a function e: C ×  S--~ S. The relation 
e(C, S) -- S' means that executing the command C with 
the machine in state S causes the machine state to change 
to S'. In our example, the set C consists of  all the 
commands Pi requests resource and P~ releases resource, 
and the state consists of a queue of waiting request 
commands, where the request at the head of  the queue 
is the currently granted one. Executing a request com- 
mand adds the request to the tail of  the queue, and 
executing a release command removes a command from 
'he queue. 7 

Each process independently simulates the execution 
of the State Machine, using the commands issued by all 
the processes. Synchronization is achieved because all 
processes order the commands according to their time- 
stamps (using the relation ~ ) ,  so each process uses the 
same sequence of commands. A process can execute a 
command timestamped T when it has learned of  all 
commands issued by all other processes with timestamps 
less than or equal to T. The precise algorithm is straight- 
forward, and we will not bother to describe it. 

This method allows one t o  implement any desired 
form of  multiprocess synchronization in a distributed 
system. However, the resulting algorithm requires the 
active participation of  all the processes. A process must 
know all the commands issued by other processes, so 
that the failure of  a single process will make it impossible 
for any other process to execute State Machine com- 
mands, thereby halting the system. 

The problem of failure is a difficult one, and it is 
beyond the scope of this paper to discuss it in any detail. 
We will just observe that the entire concept of  failure is 
only meaningful in the context of  physical time. Without 
physical time, there is no way to distinguish a failed 
process from one which is just pausing between events. 
A user can tell that a system has "crashed" only because 
he has been waiting too long for a response. A method 
which works despite the failure of  individual processes 
or communication lines is described in [3]. 

7 If each process does not strictly alternate request and release 
commands, then executing a release command could delete zero, one, 
or more than one request from the queue. 

Anomalous Behavior 

Our resource scheduling algorithm ordered the re- 
quests according to the total ordering =*. This permits 
the following type of  "anomalous behavior." Consider a 
nationwide system of  interconnected computers. Suppose 
a person issues a request A on a computer A, and then 
telephones a friend in another city to have him issue a 
request B on a different computer B. It is quite possible 
for request B to receive a lower timestamp and be ordered 
before request A. This can happen because the system 
has no way of  knowing that A actually preceded B, since 
that precedence informatiori is based on messages exter- 
nal to the system. 

Let us examine the source of the problem more 
closely. Let O ° be the set of all system events. Let us 
introduce a set of  events which contains the events in b ° 
together with all other relevant external events, such as 
the phone calls in our example. Let ~ denote the "hap- 
pened before" relation for ~.  In our example, we had A 

B, but A-~ B. It is obvious that no algorithm based 
entirely upon events in 0 °, and which does not relate 
those events in any way with the other events i n~ ,  can 
guarantee that request A is ordered before request B. 

There are two possible ways to avoid such anomalous 
behavior. The first way is to explicitly introduce into the 
system the necessary information about the ordering 
--~. In our example, the person issuing request A could 
receive the timestamp TA of  that request from the system. 
When issuing request B, his friend could specify that B 
be given a timestamp later than TA. This gives the user 
the responsibility for avoiding anomalous behavior. 

The second approach is to construct a system of  
clocks which satisfies the following condition. 

Strong Clock Condition. For any events a, b in O°: 
i f a  --~ b then C(a} < C(b). 

This is stronger than the ordinary Clock Condition be- 
cause ~ is a stronger relation than ---~. It is not in general 
satisfied by our logical clocks. 

Let us identify ~ with some set of  "real" events in 
physical space-time, and let ~ be the partial ordering of  
events defined by special relativity. One of  the mysteries 
of  the universe is that it is possible to construct a system 
of  physical clocks which, running quite independently of  
one another, will satisfy the Strong Clock Condition. We 
can therefore use physical clocks to eliminate anomalous 
behavior. We now turn our attention to such clocks. 

Physical Clocks 

Let us introduce a physical time coordinate into our 
space-time picture, and let Ci(t) denote the reading of  
the clock Ci at physical time t. 8 For mathematical con- 

We will assume a Newtonian space-time. If the relative motion 
of the clocks or gravitational effects are not negligible, then CM) must 
be deduced from the actual clock reading by transforming from proper 
time to the arbitrarily chosen time coordinate. 

562 Communications July 1978 
of Volume 2 l 
the ACM Number 7 



venience, we assume that the clocks run continuously 
rather than in discrete "ticks." (A discrete clock can be 
thought of  as a continuous one in which there is an error 
of  up to ½ "tick" in reading it.) More precisely, we 
assume that Ci(t) is a continuous, differentiable function 
of  t except for isolated j ump  discontinuities where the 
clock is reset. Then dCg(t) /dt  represents the rate at which 
the clock is running at time t. 

In order for the clock Cg to be a true physical clock, 
it must run at approximately the correct rate. That  is, we 
must have dCi ( t ) /d t  -~ 1 for all t. More precisely, we will 
assume that the following condition is satisfied: 

PCI .  There exists a constant x << 1 
such that for all i: [dCg(t) /dt  - 1 [ < x. 

For typical crystal controlled clocks, x _< 10 -(~. 
It is not enough for the clocks individually to run at 

approximately the correct rate. They must be synchro- 
nized so that Cg(t) = C/(t) for all i , j ,  and t. More precisely, 
there must be a sufficiently small constant e so that the 
following condition holds: 

PC2. For all i, j: [ C i ( t )  - Cy(t)[ < •. 

I f  we consider vertical distance in Figure 2 to represent 
physical time, then PC2 states that the variation in height 
of  a single tick line is less than E. 

Since two different clocks will never run at exactly 
the same rate, they will tend to drift further and further 
apart. We must therefore devise an algorithm to insure 
that PC2 always holds. First, however, let us examine 
how small x and • must be to prevent anomalous behav- 
ior. We must insure that the system 5e of  relevant physical 
events satisfies the Strong Clock Condition. We assume 
that our clocks satisfy the ordinary Clock Condition, so 
we need only require that the Strong Clock Condition 
holds when a and b are events in 0 ° with a 4-> b. 
Hence, we need only consider events occurring in differ- 
ent processes. 

Let # be a number  such that if  event a occurs at 
physical time t and event b in another process satisfies 
a ~ b, then b occurs later than physical time t + bt. In 
other words,/~ is less than the shortest transmission time 
for interprocess messages. We can always choose # equal 
to the shortest distance between processes divided by the 
speed of light. However, depending upon how messages 
in ~ are transmitted, # could be significantly larger. 

To avoid anomalous behavior, we must make sure 
that for any i, j,  and t: Ci(t + #) - CAt) > 0. Combining 
this with PC I and 2 allows us to relate the required 
smallness of  x and ~ to the value of  # as follows. We 
assume that when a clock is reset, it is always set forward 
and never back. (Setting it back could cause C I to be 
violated.) PCI then implies that Cg(t + #) - Cg(t) > (1 
- x)#. Using PC2, it is then easy to deduce that Cg(t + 
#) - C/(t) > 0 if the following inequality holds: 

E / ( I  - ~) _< ~. 

This inequality together with PC 1 and PC2 implies that 
anomalous behavior is impossible. 
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We now describe our algorithm for insuring that PC2 
holds. Let m be a message which is sent at physical time 
t and received at time t'. We define l, m ~ -  t t - -  I to be the 
total  delay  of  the message m. This delay will, of  course, 
not be known to the process which receives m. However, 
we assume that the receiving process knows some mini-  
m u m  delay  tzm >_ 0 such that ~£m ~ Pro. We call ~,, = I,m 
-- #m the unpredictable  delay  of the message. 

We now specialize rules IRI  and 2 for our physical 
clocks as follows: 

IR 1'. For each i, if Pi does not receive a message at 
physical time t, then C/is differentiable at t and dCg(t) /dt  
> 0 .  

IR2'. (a) I f  Pg sends a message m at physical time t, 
then m contains a t imestamp T m =  C / ( t ) .  ( b )  Upon 
receiving a message m at time t', process P/ sets C/(t') 
equal to maximum (Cj(t' - 0), Tm + /Zm). 9 

Although the rules are formally specified in terms of 
the physical time parameter,  a process only needs to 
know its own clock reading and the t imestamps of  mes- 
sages it receives. For  mathematical  convenience, we are 
assuming that each event occurs at a precise instant of  
physical time, and different events in the same process 
occur at different times. These rules are then specializa- 
tions of  rules IR1 and IR2, so our system of clocks 
satisfies the Clock Condition. The fact that real events 
have a finite duration causes no difficulty in implement- 
ing the algorithm. The only real concern in the imple- 
mentation is making sure that the discrete clock ticks are 
frequent enough so C 1 is maintained. 

We now show that this clock synchronizing algorithm 
can be used to satisfy condition PC2. We assume that 
the system of processes is described by a directed graph 
in which an arc from process Pi to process P/represents 
a communication line over which messages are sent 
directly from Pi to P/. We say that a message is sent over 
this arc every T seconds if for any t, Pi sends at least one 
message to P /be tween  physical times t and t + -r. The 
diameter  of  the directed graph is the smallest number  d 
such that for any pair of  distinct processes P/, Pk, there 
is a path from P/ to  P~ having at most d arcs. 

In addition to establishing PC2, the following theo- 
rem bounds the length of  time it can take the clocks to 
become synchronized when the system is first started. 

THEOREM. Assume a strongly connected graph of  
processes with diameter d which always obeys rules IR 1' 
and IR2'.  Assume that for any message m, #m --< # for 
some constant g, and that for all t > to: (a) PC 1 holds. 
(b) There are constants ~" and ~ such that every ~- seconds 
a message with an unpredictable delay less than ~ is sent 
over every arc. Then PC2 is satisfied with • = d(2x~- + 
~) for all t > to + Td, where the approximations assume 
# + ~<< z. 

The proof  of  this theorem is surprisingly difficult, 
and is given in the Appendix. There has been a great 
deal of  work done on the problem of  synchronizing 
physical clocks. We refer the reader to [4] for an intro- 

:) C/(t '  - 0) = lim C,(t '  - 181). 
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duct ion to the subject. The  methods  described in the 
l i terature are useful for  est imating the message delays 
ktm and for adjust ing the clock frequencies d C i / d t  (for 
clocks which permit  such an adjustment) .  However ,  the 
requi rement  that  clocks are never  set backwards  seems 
to distinguish our  si tuation f rom ones previously studied, 
and we believe this theorem to be a new result. 

C o n c l u s i o n  

W e  have  seen that  the concept  o f  "happen ing  before"  
defines an invar iant  par t ia l  ordering of  the events in a 
dis t r ibuted mul t iprocess  system. We  described an algo- 
r i thm for  extending that  part ial  ordering to a somewhat  
a rb i t ra ry  total  ordering,  and  showed how this total  or- 
der ing can be used to solve a s imple synchronizat ion 
problem.  A future  pape r  will show how this approach  
can be extended to solve any  synchronizat ion problem.  

The  total  order ing def ined by  the a lgor i thm is some-  
what  arbi t rary.  It  can produce  anomalous  behav io r  if  it 
disagrees with the order ing perceived by the system's  
users. This  can be p reven ted  by  the use of  p roper ly  
synchronized physical  clocks. Our  theorem showed how 
closely the clocks can be synchronized.  

In  a dis t r ibuted system, it is impor tan t  to realize that  
the order  in which events  occur  is only  a part ial  ordering.  
W e  believe that  this idea is useful  in unders tanding  any  
mult iprocess  system. It  should help  one to unders tand  
the basic p rob lems  o f  mult iprocessing independent ly  of  
the mechan i sms  used to solve them. 

A p p e n d i x  

P r o o f  o f  the  T h e o r e m  
For  any  i and  t, let us define C~ t to be a clock which 

is set equal  to C~ at t ime t and  runs at the same rate as 
Ci, but  is never  reset. In  other  words, 

C i t ( t  ')  = Ci(t) + [ d C z ( t ) / d t l d t  (1) 

for all t' >_ t. Note  that  

Ci(t') >_ Cit(t ' )  for all t' >__ t. (2) 

Suppose  process P~ at t ime tl sends a message to 
process Pz which  is received at t ime t2 with an unpre-  
dictable delay _< ~, where  to <- ta _< t2. Then  for  all t ___ t2 
we have: 

C~(t) >_ C~(t2) + (1 - x)(t - t2) [by (1) and  PCI ]  
> Cfftl) +/~m + (1 -- x)(t -- t2) [by IR2 '  (b)] 
= Cl(t l )  + (1 - x ) ( t  - t l )  - [(t2 - tO - ~m] + x ( t 2  - t , )  

>-- Cl(tl) + (1 - x ) ( t  - t l )  - 4. 

Hence,  with these assumptions,  for all t >_ t2 we have: 

C~(t) _> Cl(tl) + (1 - x)(t - / 1 )  - -  4" (3) 

NOW suppose that  for  i = 1, . . . ,  n we have  t, _< t ~, < 

t i+l,  to <-- t~, and that  at t ime t[ process Pi sends a message 
to process Pi+l which is received at t ime ti+l with an 
unpredic table  delay less than  4. Then  repeated  applica-  
t ion o f  the inequal i ty  (3) yields the following result for 
t >_ tn+l .  

Ct~t( t)  --> Cl(tl ' )  + (1 - ~)(t - tl ') - n~. (4) 

F r o m  PC1, I R I '  and  2' we deduce that  

C l ( / l ' )  >" C l ( t l )  + (1 --  K)(tl '  - -  /1). 

Combin ing  this with (4) and using (2), we get 

Cn+a(t) > C~(tl) + (1 - x)(t - t~) - n~ (5) 

for t > tn+l .  

For  any  two processes P and P', we can find a 
sequence of  processes P -- Po, P~ . . . . .  Pn+~ = P',  n _< d, 
with communica t i on  arcs f rom each Pi to Pi+~. By hy- 
pothesis (b) we can find t imes t i ,  t[ with t[ - ti <- T and 
ti+l - t" <_ v, where  v = # + 4. Hence,  an inequal i ty  o f  
the fo rm (5) holds with n <_ d whenever  t >_ t~ + d('r + 
v). Fo r  any  i, j and  any  t, tl with tl > to and  t ___ t~ + d(z 
+ v) we therefore  have: 

Ci(t) _> Cj(ta) + (1 - x ) ( t  - tx) - d~. (6) 

N o w  let m be any  message t imes tamped  Tin, and  
suppose it is sent at t ime t and  received at t ime t'. We  
pre tend  that  m has a clock Cm which runs at a constant  
rate such that  C,~(t) = tm and Cm(t') = tm +/~m. Then  
#0, ___ t' - t implies that  d C m / d t  _< 1. Rule  IR2 '  (b) s imply  
sets Cj(t') to m a x i m u m  (Cj(t' - 0), Cm(t')). Hence,  clocks 
are reset only  by  setting them equal  to other  clocks. 

Fo r  any  t ime tx >-- to + / ~ / ( 1  - ~), let Cx be the clock 
having the largest value at t ime t~. Since all clocks run  
at a rate less than  1 + x, we have  for  all i and  all t >_ tx: 

Ci(t) _< Cx(tx) + (1 + x ) ( t  - tx). (7) 

W e  now consider  the following two cases: (i) Cx is the 
clock Cq o f  process Pq.  (ii) Cx is the clock Cm of  a 
message sent at t ime ta by  process Pq. In  case (i), (7) 
s imply  becomes  

El(t) -< Cq(tx) + (1 + x ) ( t  - tx). (8i) 

In  case (ii), since Cm(tx) = Cq( t l )  and d C m / d t  _ 1, we 
have  

Cx( tx )  <_ Cq(tl) + (tx - tO. 

Hence,  (7) yields 

Ci( t )  <-~ Cq(/1) + (1 + K)(t --  /1). 

Since tx 

C q ( t x  - -  

(8ii) 

>-- to + ~t/(1 -- X), we get 

~/(1 -- K)) <_ Cq(tx) - ~ [by PCI ]  
___ Cm(tx) - / z  [by choice o f  m] 
-< Cm(tx) - (tx - t l ) # m / V m  [tXm <-- r.t, tx - t l  <_ v,,] 
= T m  [by defini t ion o f  Cm] 
= Cq(tl) [by IR2'(a)] .  

Hence,  Cq( tx  - / L / ( 1  - x)) ___ Cq(tl), so tx - t l  < - / x / ( l  - 
~) and  thus ll ~ to. 
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Let t ing tl = tx in case (i)~ we can  combine  (8i) and  
(8ii) to deduce  that  for any  t, tx wi th  t _> tx _> to + # /  
(1 - x) there  is a process  Pq and  a t ime tl wi th  tx - # /  
(1 - i¢) ~ tl "< tx such tha t  for  al l  i: 

Ci(t) _< Cq(t~) + (1 + x)( t  - h) .  (9) 

Choos ing  t and  tx with t _ tx + d ( r  + ~,), we can  combine  
(6) and  (9) to conc lude  that  there  exists a tl and  a process  
Pq such that  for al l  i: 

Cq(t 0 + (1 - x)(t - tl) - d~ -< Ci(t) (10) 

<: Cq(tl) + (1 + tc)(t - t]) 

Let t ing t = t~ + d( r  + u), we get 

d ( r + p ) _ _ . t - t l _ < d ( r + v ) + # / ( 1 - x ) .  

C o m b i n i n g  this wi th  (10), we get 

Cq(tl) + (t - tl) - xd(r  + p) - d~ -< Ci(t) _< Cq(tl) (11) 

+ (t - tl) + x[d(r  + u) + / z / ( 1  - x)] 

Us ing  the hypotheses  that  x << 1 a n d / t  _< ~, << r, we can 
rewri te  (11) as the fol lowing a p p r o x i m a t e  inequal i ty .  

Cq(tl) + (t - tl) - d(tg'r + ~) ~.< Ci(t) (12) 

~ '  Cq(/1)  + ( l  - -  t l )  -I- dKr. 

Since this holds  for  al l  i, we get 

[Ci(t) - CAt)[ ~< d(2xr + O, 

and  this holds  for  all  t > to + dr. [] 
Note  that  re la t ion  (11) o f  the p r o o f  yields  an exact  

u p p e r  b o u n d  for  [Ci(t) - Cj(t) l in case the a s sumpt ion  
/~ + ~ << r is inval id .  A n  examina t ion  o f  the p r o o f  
suggests a s imple  m e t h o d  for  rap id ly  ini t ia l iz ing the 
clocks, or  resynchroniz ing  them i f  they  should  go out  o f  
synchrony  for any  reason.  Each  process sends a message 
which  is r e layed  to every o ther  process.  The  p rocedure  
can  be in i t ia ted  by  any  process,  and  requires  less than  
2 d ~  + ~) seconds to effect the synchroniza t ion ,  assuming  
each  o f  the messages  has an  unpred ic t ab le  de lay  less 
than  ~. 

P r o g r a m m i n g  J . J .  H o m i n g  
Languages  Ed i to r  

Shallow Binding in 
Lisp 1.5 
Henry G. Baker, Jr. 
Massachusetts Institute of Technology 

Shallow binding is a scheme which allows the value 
of a variable to be accessed in a bounded amount of 
computation. An elegant model for shallow binding in 
Lisp 1.5 is presented in which context-switching is an 
environment tree transformation called rerooting. 
Rerooting is completely general and reversible, and is 
optional in the sense that a Lisp 1.5 interpreter will 
operate correctly whether or not rerooting is in- 
voked on every context change. Since rerooting leaves 
assoc [ v, a] invariant, for all variables v and all 
environments a, the programmer can have access to a 
rerooting primitive, shallow[], which gives him dynamic 
control over whether accesses are shallow or deep, and 
which affects only the speed of execution of a program, 
not its semantics. In addition, multiple processes can be 
active in the same environment structure, so long as 
rerooting is an indivisible operation. Finally, the 
concept of rerooting is shown to combine the concept of 
shallow binding in Lisp with Dijkstra's display for Algol 
and hence is a general model for shallow binding. 
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