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Abst rac t  

An interrupt is precise if the saved process state corresponds with 
the sequential model of program execution where one instruction com- 
pletes before the next begins. In a pipelined processor, precise inter- 
rupts are difficult to achieve because an instruction may be initiated 
before its predecessors have been completed. This paper describes and 
evaluates solutions to the precise interrupt problem in pipelined proces- 
sors. 

The precise interrupt problem is first described. Then five solu- 
tions are discussed in detail. The first forces instructions to complete 
and modify the process state in architectural order. The other four 
allow instructions to complete in any order, but additional hardware is 
used so that a precise state can be restored when an interrupt occurs. 
All the methods are discussed in the context of a parallel pipeline struc- 
lure. Simulation results based on the CR.AY-IS scalar architecture are 
used to show that, at best, the first solution results in a performance 
degradation of about 16~ .  The remaining four solutions offer similar 
performance, and three of them result in as litlle as a 3% performance 
loss. Several extensions, including virtual memory and linear pipeline 
structures, are briefly discussed. 

1. In t roduct ion  

Most current computer architectures are based on a sequential 
model of program execution in which an architectural program counter 
sequences through instructions one-by-one, finishing one before start- 
ing the next. In contrast, a high performance implementation may be 
pipelined, permining several instructions to be in some phase of execu- 
tion at the same time. The use of a sequential architecture and a pipe- 
lined implementation clash at the time of an interrupt; pipelined 
instructions may modify the process state in an order different from that 
defined by the sequential architectural model. At the time an interrupt 
condition is detected, the hardware may not be in a state that is con- 
sistent with any specific program counter value. 

When an interrupt occurs, the state of  an interrupted process is 
typically saved by the hardware, the software, or by a combination of 
the two. The process state generally consists of the program counter, 
registers, and memory.  If the saved process state is consistent with the 
sequential architectural model then the interrupt is precise. To be more 
specific, the saved state should reflect the following conditions. 

(1) All instructions preceding the instruction indicated by the saved 
program counter have been executed and have modified the pro- 
oess state correctly. 

(2) All instructions following the instruction indicated by the saved 
program counter are unexecuted and have not modified the pro- 
cess state. 

(3) If  the interrupt is caused by an exception condition raised by an 
instruction in the program, the saved program counter points to 

the interrupted instruction. The interrupted instruction may or 
may not have been executed, depending on the definition of the 
architecture and the cause of the interrupt. Whichever is the 
case, the interrupted instruction has either completed, or has not 
started execution. 

If the saved process state is inconsistent with the sequential architec- 
tural model and does not satisfy the above conditions, then the interrupt 
is imprecise. 

This paper describes and compares ways of implementing precise 
interrupts in pipelined processors. The methods used are designed to 
modify the state of an executing process in a carefully controlled way. 
The simpler methods force all instructions to update the process state in 
the architectural order. Other,  more complex methods save portions of  
the process state so that the proper state may be restored by the 
hardware at the time an interrupt occurs. 

l , l ,  C |ass i f ica t ion of In t e r rup t s  

We consider interrupts belonging to two classes. 

(1) Program interrupts, sometimes referred to as " t raps ' ,  result from 
exception conditions detected during fetching and execution of 
specific instructions. These exceptions may be due m software 
errors,  for example trying to execute an illegal opcode, numerical 
errors such as overflow, or they may be part of normal execution, 
for example page faults. 

(2) Exwrnal inwrrupls are not caused by specific instructions and are 
often caused by sources outside the currently executing process, 
sometimes completely unrelated to it. I/O interrupts and timer 
interrupts are examples. 

For a specific architecture, all interrupts may be defined to be 
precise or only a proper subset. Virtually every architecture, however, 
has some types of interrupts that must be precise. There are a number  
of conditions under which precise interrupts are either necessary or 
desirable. 

(1) For I /O and timer interrupts a precise process state makes res- 
tarting possible. 

(2) For software debugging it is desirable for the saved state to be 
precise. This information can be helpful in isolating the exact 
instruction and circumstances that caused the exception condition. 

(3) For graceful recovery from arithmetic exceptions, software rou- 
tines may be able to take steps, re-scale floating point numbers  
for example, to allow a process to continue. Some end cases of  
modern floating point arithmetic systems might best be handled 
by software; gradual underflow in the proposed IEEE floating 
point standard [Stev81], for example. 

(4) In virtual memory systems precise interrupts allow a process m 
be correctly restarted aher a page fault has been serviced. 

(5) Unimplemented opcodes can be simulated by system software in a 
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way transparent to the programmer if interrupts are precise. In 
this way, lower performance models of an architecture can main- 
rain compatibility with higher performance models using extended 
instruction sets. 

(6) Virtual machines can be implemented if privileged instruction 
faults cause precise interrupts. Host software can simulate these 
instructions and return to the guest operating system in a user- 
transparent way. 

1.2. Historical Survey' 

The precise interrupt problem is as old as the first pipelined com- 
puter and is mentioned as early as Stretch [Buch62]. The IBM 360191 
[Ande67] was a well-known computer that produced imprecise inter- 
rupts under s o m e  circumstances, floating ix~int exceptions, for exam- 
ple. Imprecise interrupts were a break with the IBM 360 architecture 
which made them even more noticeable. All subsequent IBM 360 and 
370 implementations have used less aggressive pipeline designs where 
instructions modify the process state in strict program order, and all 

interrupts are precise, t A more complete description of the method 
used in these "linear" pipeline implementations is in Section 8.4. 

Most pipelined implementations of general purpose architectures 
are similar to those used by IBM. These pipelines constrain all 
instructions to pass through the pipeline in order with a stage at the end 
where exception conditions are checked before the process state is 
modified. Examples include the Amdahl 470 and 580  
[AmdhS1,AmdhS0] and the Gould/SEL 32187 [Ward82]. 

The high performance CDC 6600 [Thor70J, CDC 7600 
[Bons69]. and Cray Research [Russ78. Cray79] computers allow 
instructions to complete out of the architectural sequence. Conse- 
quently, they have some exception conditions that result in imprecise 
interrupts. In these machines, the advantages of precise interrupts have 
been sacrificed in favor of maximum parallelism and design simplicity, 
I /O interrupts in these machines are precise, and they do not imple- 
ment virtual memory. 

The CDC STAR-100 [HiTa72] and CYBER 200 [CDCSI] series 
machines also allow instructions to complete out of order, and they do 
support virtual memory. In these machines the use of vector 
instructions further compficates the problem, and all the difficulties 
were not fully recognized until late in the development of the STAR- 
100. The eventual solution was the addition o f  an invisible excha~tge 
package [CDCSI]. This captures machine-dependent state information 
resulting from partially completed instructions. A similar approach has 
more recently been suggested in MIPS [Henri82] where pipeline infor- 
mation is dumped at the time of an interrupt and restored to the pipeline 
when the process is resumed. This solution makes a process restartable 
although it is arguable whether it has all the features and advantages of 
an architecturally precise interrupt. For example, it might be neces- 
sary to have implementa'tion-dependent software sift through the 
machine-dependent state in order to provide complete debug informa- 
tion. 

The recently-announced CDC CYBER 180/990 [CDC84] is a 
pipelined implementation of a new architecture that supports virtual. 
memory, and offers roughly the same performance as a CRAY-IS. To 
provide precise interrupts, the CYBER 180/990 uses a history buffer, 
to be described later in this paper, where state information is saved just 
prior to being modified. Then when an interrupt occurs, this "history" 
information can be used to back the system up into a precise state. 

1.3. Paper  Overview 

This paper concentrates on explaining and discussing basic 
methods for implementing precise interrupts in pipelined processors. 
We emphasize scalar architectures (as opposed to vector architectures) 
because of their applicabilit 3, to a wider range of machines. Section 2 

IExcept for the models 95 and 195 which were derived from the original model 91 
design. Also. the models 85 and 165 had imprecise interrupts for the cgse of protection 
exceplions and .addressing exceptions caused b)' store oIx'rations. 

describes the model architecture to be used in describing precise inter- 
rupt implementations. The model architecture is very simple so that the 
fundamentals of the methods can be clearlv described. Sections 3 
through 6 describe methods for implementing precise interrupts. Sec- 
tion 3 describes a simple method thal is easy to implement, but which 
reduces performance. It forces instructions to complete'in architectural 
order which sometimes inhibits the degree of parallelism in a pipelined 
system. Section 4 describes a higher performance variation where 
results may be bypassed to other instructions before the results are used 
to modify the process state. Sections 5 and 6 describe methods where 
instructions are allowed to complete in any order, but where state infor- 
mation is saved so that a precise state may be restored when an inter- 
rupt occurs. The descriptions of these methods assume that the only 
state information is the program counter, general purpose registers, 
and main memo~-. The methods are also discussed in the absence of a 
data cache. Section 7 presents simulation results. Experimental results 
based on these CRAY-IS simulations are presented and discussed. 
Section 8 contain a brief discussion of 1) saving additional state infor- 
mation, 2) supporting virlual memory, 3) precise interrupts when a 
data cache is used, and 4) linear pipeline structures. 

2. Preliminaries 

2,1. Model  Archi tec ture  

For describing the various techniques, a model architecture is 
chosen so that the basic methods are not obscured by details and 
unnecessary complications brought about by a specific architecture. 

We choose a ' regis ter-regis ter  architecture where all memory 
accesses are through registers and all functional operations involve 
registers. In this respect it bears some similarity to the CDC and Cray 
architectures, but has only one set of registers. The load instructions 
are of  the form: Ri = (Rj+disp).  That is, the content of Rj plus a dis- 
placement given in the instruction are added to form an effective 
address. The content of the addressed memory location is loaded into 
Ri. Similarly, a store is of the form: (Rj + disp) = RJ, where Ri is 
stored at the address found by adding the content of  Rj and a displace- 
ment. The functional instructions are of the form Ri = Rj up Rk, 
where up is the operation being performed. For unary operations, the 
degenerate form Ri s up Rk is used. Conditional instructions are of 
the form P = disp : Ri up Rj, where the displacement is the address of 
the branch target; up is a relational operator, = ,  > ,  < ,  etc. 

The only process state in the model architecture consists of the 
program counter, the general purpose registers and main memory. 
The architecture is simple, has a minimal amount of process state, can 
be easily pipelined, and can be implemented in a straightforward way 
with parallel" functional units like the CDC and Cray architectures. 
Hence, implementing precise interrupts for the model architecture 
presents a realistic problem. 

Initially. we assume no operand cache. Similarly, condition 
codes are not used. They add other problems beyond precise interrupts 
when a piperined intplementation is used. Extensions for operand 
cache and condition codes are discussed in Section 8. • 

The implementation for the simple architecture is shown in Fig. 
1. It uses an instruction fetch/decode pipeline which processes instruc- 
tions in order. The last stage of the fetch/decode pipeline is an issue 
register where all register interlock conditions are checked. If there 
are no register conflicts, an instruction issues to one of the parallel 
functional units. Here, the memory access function is implemented as 
one of the functional units. The operand registers are read at the time 
an instruction issues. There is a single result bus that returns results to 
the register file. This bus may be reserved at the time an instruction 
issues or when an instruction is approaching, completion. This 
assumes the functional unit times are deterministic. A new instruction 
can issue every clock period in the absence of register or result bus 
conflicts. 
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Figure 1. Pipelined implementation of our model architecture. Not 
shown is the result shift register used to control the result bus. 

Example  l 

To demonstrate how an imprecise process state may occur in our 
model architecture, consider the following section of code which sums 
the elements of arrays A and B into array C. Consider the instructions 
in statements 6 and 7. Although the integer add which increments the 
loop count will be issued after the floating point add, it will complete 

Comments Execute 
Time 

0 R2 < -  0 Init. loop index 
1 R0 < -  0 Init. loop count 
2 R5 < -  1 Loop inc. value 
3 R7 < -  100 Maximum loop count 
4 LI :  RI < -  (R2 + A) Load A(I) l l cp  
5 R3 < -  (R.2 + B) Load B(I) 11 cp 
6 R4 < -  R1 + f R3 Floating add 6ep 
7 R0 < -  R0 + R5 Inc. loop count 2cp 
8 (R0 + C) < -  R4 Store C(1) 
9 R2 < -  R2 + R5 Inc. loop index 2cp 

10 P =  L1 : R0 ! = R7 con& branch not equal 

before the floating poim add. The integer add will therefore change the 
process state before an overflow condition is detected in the floating 
point add. In the event of such an overflow, there is an imprecise 
interrupt. 

2.2.  I n t e r rup t s  Prior  to Ins t ruc t ion  I s sue  

Before proceeding with the various precise interrupt methods, we 
discuss interrupts that occur prior to instruction issue separately 
because they are handled the same way by all the methods. 

In the pipeline implementation of Fig. 1, instructions stay in 
sequence until the time they are issued. Furthermore,  the process state 
is not modified by an instruction before it issues. This makes precise 
interrupts a simple matter when an exception condition can be detected 
prior to issue. Examples of such exceptions are privileged instruction 
faults and unimplemented instructions. This class also includes exter- 
nal interrupts which can be checked at the issue stage. 

When such an interrupt condition is detected, instruction issuing 
is halted. Then,  there is a wait while all previously issued instructions 
complete. After they have completed, the process is in a precise state, 

with the program counter value corresponding to the instruction being 
held in the issue register. The registers and main memory are in a 
state consistent with this program counter value. 

Because exception conditions detected prior to instruction can be 
handled easily as described above, we will not consider them any  
further. Rather, we will concentrate on ex~ption conditions detected 
after instruction issue. 

3. In -o rde r  Ins t ruc t ion  Complet ion 

With this method, instructions modif 3" the process state only when 
all previously issued instructions are known to be free of exception con- 
ditions. This section describes a strategy that is most easily imple- 
mented when pipeline delays in the parallel functional units are fixed. 
That is, they do not depend on the operands, only on the function. 
Thus ,  the result bus can be reserved at the time of issue. 

First, we consider a method commonly used to control the pipe- 
lined organization shown in Fig. 1. This method may be used regard- 
less of whether precise interrupts are to be implemented. The precise 
interrupt methods described in this paper are integrated into this basic 
control strategy, however. To control the result bus, a "result shift 
register" is used: see Fig. 2. Here, the stages are labeled 1 through n, 
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where n is the length of the longest functional unit pipeline. An 
instruction that takes i clock periods reserves stage i of the result shift 
register at the time it issues. If the stage already contains valid control 
information, then issue is held until the next clock period, and stage i is 
checked once again. An issuing instruction places control information 
in the result shift register. This control information identifies the func- 
tional unit that will be supplying the result and the destination register 
of the result. This control information is also marked "valid" with a 
validity bit. Each clock period, the control information is shifted down 
one stage toward stage one. When it reaches stage one, it is used dur- 
in~ the next clock to control the result bus so that the functional unit 
result is placed in the correct result register, 

Still disregarding precise interrupts, it is possible for a short 
instruction to be placed in the result pipeline in stage i when previously 
issued instructions are in stage j ,  j > i. This leads to instructions fin- 
ishing out of the original program sequence. If the instruction at stage 
j eventually encounters an exception condition, the interrupt will be 
imprecise because the instruction placed in stage i will complete and 
modify the process state even though the sequential architecture model 
says i does not begin until j completes. 

Example  2 

If one considers the section of code presented in Example 1, and 
an initially empty result shift register (all the entries invalid), the float- 
ing point add would be placed in stage 6 while the integer add would be 
placed in stage 2. The result shift register entries shown in Fig. 2 
reflect the state of the result shift register after the integer add issues. 
Notice that the floating point add entry is in stage 5 since one clock 
period has passed since it issued. As described above, this situation 
leads to instructions finishing out of the original program sequence. 
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3.1. Registers 

To implement precise interrupts with respect to registers using 
the above pipeline control structure, the control should "reserve" stages 
i < j as well as stage j. That is, the stages i < j that were not previ- 
ously reserved by other instructions are reserved, and they are loaded 
with null control information so that they do not affect the process state. 
This guarantees that instructions modifying registers finish in order. 

There is logic on the result bus that checks for exception condi- 
lions in instructions as thev complete. If an instruction contains a 
non-masked exception condition, then control logic "cancels" all subse- 
quent instructions coming on the result bus so that they do not modif 3 
the process stale. 

Example 3 

For our sample section of code given in Example 1, assuming the 
the result shift register is initially empty, such a policy would have the 
floating point add instruction reserve stages 1 through 6 of the result 
shift register. When, on the next clock cycle, the integer add is in the 
issue register, it would normally issue and reserve stage 2. However, 
this is now prohibited from happening because stage 2 is alread)- 
reserved. Thus, the integer add must wait at the issue stage until stage 
2 of the result shift register is no longer reserved. This would be 5 
clock periods after the issue of the floating point add. 

A generalization of this method is to determine, if possible, that 
an instruction is free of exception conditions prior to the time it is com- 
plete. Only result shift register stages that will finish before exceptions 
are detected need to be reserved (in addition to the stage thai controls 
the result). 

3.2. Main ~lemory 

Store instructions modify the pot-lion of process state that resides 
in main memory. To implemenl precise interrupts with respect to+ 
memory, one solution is to force store instructions to wait for the result 
shift register to be empty before issuing. Alternatively, stores can issue 
and be held in the load/store pipeline until all preceding instructions 
are known to be exception-free. Then the store can be released to 

memory. 

To implement the second alternative, recall that memory can be 
treated as a special functional unit. Thus, as with any other instruc- 
lion, the store can make an entry in the result shift register. This entry 
is defined as a dummy store. The dummy store does not cause a result 
to be placed in the registers, but is used for controlling the memory 
pipeline. The dummy store is placed in the result shift register so that 
it will not reach stage ] until the store is known to be exception-free. 
When the dummy store reaches stage 1, all previous instructions have 
completed without exceptions, and a signal is sent to the load/store unit 
to release the store to memory. If the store itself contains an exception 
condition, then 'the store is cancelled, all following load/store instruc- 
tions are cancelled, and the store unit signals the pipeline control so 
that all instructions issued subsequent to the store are cancelled as they 
leave the result pipeline. 

3.3. Program Counter  

To implement precise interrupts with respect to the program 
counter, the result shift register is widened to include a field for the 
program counter of each instruction (see Fig. 2). This field is filled as 
the instruction issues. When an instruction with an exception condition 
appears at the result bus. its program counter is available and becomes 
parl of the saved slate. 

4, The Reorder Buffer 

The primary disadvantage of the above method is that fast instruc- 
lions may sometimes get held up at the issue register even though the) 
have no dependencies and would otherwise issue. In addition, the)' 
block the issue register while slower instructions behind them could 
conceivably issue. 

This leads us to a more complex, but more general solution. 
Instructions are allowed to finish out o f  order, bul a special buffer 
calico the reorder buffer is used to reorder them before the), modify the 
process slate. 

4.1. Basic Method 

The overall organization is shown in Fig. 3a. The reorder buffer, 
Fig. 3b, is a circular buffer with head and tail pointers. Entries 
between the head and tail are considered valid. At instruction issue time 
the next available reorder buffer entry, pointed to by the 'tail pointer, is 
given to the issuing instruction. The tail pointer value is used as a lag 
to idemify the entry in the buffer reserved for the instruction. The tag is 
placed in the result shift register along with the other control informa- 
lion, The tail pointer is then incremented, modulo the buffer size. 
The result shift register differs from the one used earlier because there 
is a field containing a reorder tag instead of a field specifying a destina- 
tion register. 
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Figure 3. (a) Reorder Duffer Organization. (b) Reorder Buffer and 
associated Result Shift Register. 
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When an instruction completes, both results and exception condi- 
tions are sent to the reorder buffer. The tag from the result shift regis- 
ter is used to guide them to the correct reorder buffer entry. When the 
entry at the head of the reorder buffer contains valid results (its instruc- 
tion has finished) then its exceptions are checked. If there are none, the 
results are written into the registers. If an exception is detected, issue is 
stopped in preparation for the interrupt, and all further writes into the 
register file are inhibited. 

Example  4 

The entries in the reorder buffer and result shift register shown 
in Figure 3b reflect their state after the integer add from Example 2 has 
issued. Notice that the result shift register entries are vet 3, similar to 
those in the Figure 2. The integer add will complete execution before 
the floating point add and its results will be placed in entry 5 of the 
reorder buffer. These results, however, will not be wrhaen into R0 
until the floating point result, found in entry 4, has been placed in R4. 

4.2. Main  M e m o r y  

Preciseness with respect to memory is maintained in manner 
similar to that in the in-order completion scheme (Section 3.2). The 
simplest method holds stores in the issue register until all previous 
instructions are known to be free of exceptions. In the more complex 
method, a store signal is sent to the memor 3, pipeline as a "dummy" 
store is removed from the reorder buffer. Stores are allowed to issue, 
and block in the store pipeline prior to being committed to memory 
while they wait for their dummy counterpart. 

,4.3, P rog ram Counte r  

To maintain preciseness with respect to the program counter, the 
program counter can be sent to a reserved space in the reorder buffer at 
issue time (shown in Figure 3b). While the program counter could be 
sent to the result shift register, it is expected that the result shift register 
will contain more stages than the reorder buffer and thus require more 
hardware. The length of the result shift register must be as long as the 
longest pipeline stage. As will be seen in Seclion 7, the number of 
entries in the reorder buffer can be quite small. When an instruction 
arrives at the head of the reorder buffer with an exception condition, 
the program counter found in the reorder buffer emrx, becomes part of 
the saved precise state. 

4.4. Bypass Pa ths  

While an improvement over the method described in Section 3, 
the reorder buffer still suffers a performance penalty. A computed 
result that is generated out of order is held in the reorder buffer until 
previous instructions, finishing later, have updated the register file. An 
instruction dependent on a result being held in the reorder buffer can- 
not issue until the result has been wrirten into the register file. 

The reorder buffer may, however, be modified to minimize some 
of the drawbacks of finishing strictly in order. For results to be used 
early, bypass paths may be provided from the entries in the reorder 
buffer to the register file ourput latches, see Fig. 4. These paths allow 
data being held in the reorder buffer to be used in place of register 
data. The implementation of this method requires comparators for each 
reorder buffer stage and operand designator. If an operand register 
designator of an instruction being checked for issue matches a register 
designator in the reorder buffer, then a multiplexer is set to gaie the 
data from the reorder buffer to the register output latch. In the absence 
of other issue blockage conditions, the instruction is allowed to issue, 
and the data from the reorder data is used prior to being written into the 
register file. 

There may be bypass paths from some or all of the reorder buffer 
entries. If multiple bypass paths exist, it is possible for more than one 
destination entry in the reorder buffer to correspond to a single regis- 
t e l  Clearly only the latest reorder buffer entry" that corresponds to an 
operand designator should generate a bypass path to the register output 
latch. To prevent muhiple bypassing of the same register, when an 
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Figure 4. Reorder Buffer Method with Bypasses. 

instruction is placed in the reorder buffer, an}' entries with the same 
destination register designator must be inhibited from malching a 
bypass check. 

When bypass paths are added, preciseness with respect to the 
memory and the program counter does not change from the previous 
method. 

The greatest disadvantage with this method is the number  of 
bypass comparators needed and the amount of circuitr 3' required for the 
multiple bypass check. While Ibis circuitry is conceptually simple, 
there is a great deal of it. 

5, History Buffer 

The methods presented in this section and the next are intended to 
reduce or eliminate performance losses experienced with a simple 
reorder buffer, but without all the control logic needed for multiple 
bypass paths. Primarily, these methods place computed results in a 
working register file, but retain enough state information so a precise 
state can be restored if an exception occurs. 

Fig. 5a illustrates the histo~' buffer method. The history buffer 
is organized in a manner verx similar to the reorder buffer. At issue 
time, a buffer entry is loaded with control information, as with the 
reorder buf fer ,  but the value of the destination register (soon to be 
overwritten) is also read from the register file and written into the 
buffer entry. Results on the result bus are written directly into the 
register file when an instruction completes. Exception reports come 
back as an instruction completes and are written into the history buffer. 
As with the reorder buffer, the exception reports are guided to the 
proper history buffer entry through the use of tags found in the result 
shift register. When the history buffer contains an element at the head 
that is known to have finished without exceptions, the history buffer 
entry is no longer needed and that buffer location can be re-used (the 
head pointer is incremented). As with the reorder buffer, the history 
buffer can be shorter than the maximum number  of pipeline stages. If 
all history buffer entries are used (the buffer is too small), issue must  
be blocked until an entry becomes available. Hence the buffer should 
be long enough so that this seldom happens. The effect of the history 
buffer on performance is determined in Section 7. 

Example  5 

'The entries in the history buffer and result shift register shown 
Fig. 5b correspond to our code in Example 1, after the integer add has 
issued. The only differences between this and the reorder buffer 
method shown in Fig. 3b are the addition of an "old value" field in the 
history buffer and a "destination register" field in the result shift regis- 
ter. The result shift register now looks like the one shown in Fig. 2. 
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Figure 5. (a) History Buffer Organization. (b) History Buffer and 
associated Resuh Shift Register. 

When an exception condition arrives at the head of the buffer, the 
buffer is held, instruction issue is immediately halted, and there is a 
wait until pipeline activity completes. The active buffer entries are then 
emptied from tail to head, and the history values are loaded back into 
their original registers. The program counter value found in the head 
of the history buffer is the precise program counter. 

To make main memory precise, when a store entry emerges from 
the buffer, it sends a signal that another store can be commiued to 
memory. Stores can either wait in the issue register or can be blocked 
in the memory pipeline, as in the previous methods. 

The extra hardware required by this method is in the form of a 
large buffer to contain the history information. Also the register file 
must have three read ports since the destination value as well as the 
source operands must be read at issue time. There is a slight problem 
if the basic implementation has a by'pass of the resuh bus around the 
register file. In such a case, the bypass must also be connected into the 
history buffer. 

6. Future  File 

The future file method (Fig. 6) is similar to the history buffer 
method, however it uses two separate register files. One register file 
reflects the state of the architectural (sequential) machine. This file 
will be referred to as the architectural file. A second register file is 
updated as soon as instructions finish and therefore runs ahead of the 
architectural file (i.e. it reflects the future with respect to the architec- 
tural file). This ./u|ure f i le is the working file used for computation by 
the functional units. 

I .  . . . . . . .  
U6ED (~ l_Y  

ON EXCEPT I Ot~ 

FUTURE 

coNrR~_T/ FILE 

RESULT 
SHIFT 
REGISTER 

---'----•'SOURCE DATA 

TO FUNCTIONAL 

UNITS 

RESULT BUS FROM FUNCTIONAL UNITS 

ARCHITECTURAL~ REORDER 
FILE i~ I BUFFER 

Figure 6. Future File Organization. 

Instructions are issued and results are returned to the future file 
in any order, just as in the original pipeline model. There is also a 
reorder buffer that receives results at the same time they are written 
into the future file. When the head pointer finds a completed instruc- 
tion (a valid entry), the re suh associated with that entry is written in the 
architectural file. 

Example 6 

If we consider the code in Example 1 again, there is a period of 
time when the architecture file and the future file contain different 
entries. With this method, an instruction may finish out of order, so 
when the integer add finishes, the future file contains the new contents 
of R0. The architecture file however does not. and the new contents of 
R0 are buffered in the reorder buffer entry corresponding to the integer 
add. Between the time the integer add finishes and the time the floating 
'point add finishes, the two files are different. Once the floating point 
finishes and its results are written into R4 of both files, R0 of the archi- 
tecture file is written. 

Just as with the pure reorder buffer method, program counter 
values are wrinen into the reorder buffer at issue time. When the 
instruction at the head of the reorder buffer has completed without 
error, its result is placed in the architectural file. If it completed with 
an error, the register designators associated with the buffer entries 
between the head and tail pointers are used to restore values in the 

future file from the architectural file. 2 

The primary advantage of the future file method is realized when 
the architecture implements interrupts via an "exchange" where all the 
registers are automatically saved in memory and new ones are restored 
(as is done in CDC and Cray architectures). In this case. the architec- 
tural file can be stored away immediately: no restoring is necessary as 
in history buffer method. There is also no .bypass problem as with the 
history buffer method. 

2The fesloration is l'~..rtormt,d from the al-chitecltu(al tile since the tutttr¢ l~[c is re- 
~i~tcr file florll which all execution takt,~ place 
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7. Pe r fo rmance  Evaluat ion 

To evaluate the effectiveness of our precise interrupt schemes, we 
use a CRAY-1S simulation system developed at the University of 
Wisconsin [PaSmg3]. This trace-driven simulator is extremely accu- 
rate, due to the highly deterministic nature of the CRAY-1S, and gives 
the number of clock periods required to execute a program. 

The scalar portion of the CRAY-1S is verx similar to the model 
architecture described in Section 2.1. Thus,  casting the basic 
approaches into the CRAY-IS scalar architecture is straightforward. 

For a simulation workload, the first fourteen Lawrence Liver- 
more Loops ~McMa72] were used. Because we are primarily 
interested in pipelined implementations of conventional scalar architec- 
tures, the loops were compiled by the Crav FORTRAN compiler with 
the vectorizer turned off. 

In the preceding sections, five methods were described thal could 
be used for guaranteeing precise interrupts. To evaluate the effect of 
these methods on system performance, the methods were partitioned 
into three groups. The first and second group respectively contain the 
in-order method and the simple reorder buffer method. The third 
group is composed of the reorder buffer with bypasses, the history 
buffer, and the future file. This partitioning was performed because 
the methods in the third group result in identical system performance. 
This is because the future file has a reorder buffer embedded as part of 
its implementation. And the history buffer length constrains perfor- 
mance in the same way as a reorder buffer: when the buffer fills, issue 
must stop. All the simulation results are reported as for the reorder 
buffer with bypasses. They apply equally well for the history buffer 
and future file methods. The selection of a particular method depends 
not only on its effect on system performance but also the cost of imple- 
mentation and the ease with which the precise CPU state can be 
restored. 

For each precise interrupt method, two methods were described 
for handling stores, Simulations were run for each of these methods. 
For those methods other than the in-order completion method, the size 
o f  the reorder buffer is a parameter. Sizing the buffer with too few 
entries degrades performance since instructions thal might issue could 
block at the issue register. The blockage occurs because there is no 
room for a new entry in the buffer. 

Table 1 shows the relative performance of the In-order, Reorder 
Buffer,  and Reorder Buffer with bypass methods when the stores are 
held until the result shift register is empty. The results in the table 
indicate the relative performance of these methods with respect to the 
CRAY-IS across the first 14 Lawrence Livermore Loops; real CRAY- 
1S performance is 1.0. A relative performance greater than 1.0 indi- 
cates a degradation in performance. The number  of entries in the 
reorder buffer was varied from 3 to 10. 

Table 1. Relative Performance for the first I4 Lawrence Livermore 
Loops, with stores blocked until the results pipeline is empt 3. 

I N u m b e r o f  I 
Envies  l ln-order Reorder R w / B P  

3 

4 

5 

8 

10 

1.2322 1.3315 1.3069 

1.2322 1.2183 1.1743 

1.2322 1.1954 1.1439 

1.2322 1.1808 1.1208 

1.2322 1.1808 1.1208 

The simulation results for the In-order column are constant since 
this method does not depend on a buffer that reorders instructions. For 
all the methods, there is some performance degradation. Initially, 
when the reorder buffer is small, the In-order method produces the 
least performance degradation. A small reorder buffer (less than 3 
entries) limits the number  of instructions that can simultaneously be in 
some stage of execution. Once the reorder buffer size is increased 
beyond 3 entries, either of the other methods results in belier perfor- 
mance. As expected, the reorder buffer ~ith bypasses offers superior 
performance when compared with the simple reorder buffer. When the 
size of the buffer was increased beyond 10 entries, simulation results 
indicated no further performance improvements. (Simulations were 
also run for buffer sizes of 15, 16, 20, 25, and 60.) At best, one can 
expect a 12% performance degradation when using a reorder buffer 
with bypasses and the first method for handling stores. 

Table 2 indicates the relative performance when stores issue and 
wait at the same memory pipeline stage as for memo~ '  bank conflicts in 
the original CRAY-IS. After issuing, stores wait for their counterpart 
dummy store to signal that all previously issued register instructions 
have finished. Subsequent loads and stores are blocked from issuing. 

Table 2. Relan\e Pertormance tor the first 14 Lavrence Li \ermore 
Loops, w'ith store.- held in the memor 3, pipeline after issue. 

Number  of { 
Entries In-order Reorder R w / B P  

3 

4 

5 

8 

10 

1.1560 1.3058 1.2797 

1.1560 1.1724 1.1152 

1.1560 1,1348 1.0539 

1.1560 1.1167 1.0279 

1.1560 1.1167 1.0279 

As in Table 1, the In-order results are constant across all entries. 
For the simple reorder buffer, the buffer must have at least 5 entries 
before it results in beuer performance than the In-order method. The 
reorder buffer with bypasses, however, requires only 4 entries before it 
is performing more effectively than the In-order m e t h o d . . l u s t  as in 
Table l ,  having more than 8 entries in the reorder buffer does not 
result in improved performance. Comparing Table 1 to Table 2, the 
second method for handling stores offers a clear improvement over the 
first method, If the second method is used with an 8 entry re, order 
buffer that has bypasses, a performance degradation of only 3% is 
experienced. 

Clearly there is a trade-off be~'een performance degradation and 
the cost of  implementing a method. For essentially no cost, the In- 
order method can be combined with the first method of handling stores. 
Selecting this 'cheap'  approach results in a 23% performance degrada- 
tion. If this degradation is too great, either the second store method 
must  be used with the In-order method or one of the more complex 
methods must be used. If the reorder buffer method is used, one must 
use a buffer with at least 3 or 4 entries. 

8. E x t e n s i o n s  

In previous sections, we described methods 'that could be used to 
guarantee precise interrupts with respect to the registers, the main 
memory, and the program counter of our simple architectural model. 
In the following sections, we extend the previous methods to handle 
additional state information, virtual memory,  a cache, and linear pipe- 
lines. Effectively, some of lhese machine features can be considered to 
be functional units with non-deterministic execution times. 
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8.1. Handling Other  State Values 

Most architectures have more state information than we have 
assumed in the model architecture. For example, a process may have 
state registers that point to page and segment tables, indicate interrupt 
mask conditions, etc. This additional state information can be precisely 
maintained with a method similar to that used for stores to memory. If 
using a reorder buffer, an instruction that changes a state regisfer 
reserves a reorder buffer entry and proceeds to the pan of the machine 
where the state change will be made. The instruction then waits there 
until receiving a signal to continue from the reorder buffer. When its 
entry arrives at the head of the buffer and is removed, then a signal is 
sent to cause the state change. 

In architectures that use condition codes, the condition codes are 
state information. Although the problem condition codes present to 
conditional branches is not totally unrelated to the topic here, solutions 
to the branch problem are not the primary topic of this paper. It is 
assumed thin the conditional branch problem has been solved in some 
way, e.g. [Ande67]. If a reorder buffer is being used, condition codes 
can be placed in the reorder buffer. That is, just as for data. the 
reorder buffer is made sufficiently wide to hold the condition codes. 
The condition code entry is then updated ',,,'hen the condition codes 
associated with the execution of an instruction are computed. Just as 
with data in the reorder buffer, a condition code entry is not used to 
change processor state until all previous instructions have completed 
without error (however condition codes can be bypassed to the instruc- 
tion fetch unit to speed up conditional branches). 

Extension of the history buffer and future file methods to handle 
condition codes is very similar to that of the reorder buffer. For the 
history buffer, the condition code settings at the time of instruction 
issue must be saved in the history buffer. The saved condition codes 
can then be used to restore the processor state when an exception is 
detected. Since the future file method uses a reorder buffer, the above 
discussion indicates how condition codes may be saved. 

8,2, Virtual Memory 

Virtual memory is a very important reason for supporting precise 
interrupts; it must be possible to recover from page faults. First, the 
address translation pipeline should be designed so that all the load/store 
instructions pass through it in order. This has been assumed 
throughout this paper. Depending on the method being used, the 
load/store instructions reserve time slots in the result pipeline and/or 
re-order buffer that are read no earlier than the time at which the 
instructions have been checked for exception conditions (especially page 
faults). For stores, these entries are not used for data; just for exception 
reporting and/or holding a program counter value. 

If there is an addressing fault, then the instruction is cancelled in 
the addressing pipeline, and all subsequent load/store instructions are 
cancelled as they pass through the addressing pipeline. This guaran- 
tees that no additional loads or stores modify the process state. The 
mechanisms described in the earlier sections for assuring preciseness 
with respect to registers guarantee that non-load/store instructions fol- 
lowing the faulting load/store will not modify the process state; hence 
the interrupt is precise. 

For example, if the reorder buffer method is being used, a page 
fault would be sent to the reorder buffer when it is detected. The tag 
assigned to the corresponding load/store instruction guides it to the 
correct reorder buffer entry. The reorder buffer entry is removed from 
the buffer when it reaches the head. The exception condition in the 
entry causes all further entries of the reorder buffer to be discarded so 
that the process state is modified no further (no more registers are writ- 
ten). The program counter found in the reorder buffer entry is precise 
with respect to the fault. 

8.3. Cache-Memory 

Thus far we have assumed systems that do not use a cache 
memory. Inclusion of a cache in the memory hierarchy affects the 
implementation of precise interrupts. As we have seen, an important 

part of all the methods is that stores are held until all previous instruc- 
tions are known to be exception-free. With a cache, stores may be 
macle into the cache earlier, and for performance reasons should be. 
The actual updating of main memory, however, is still subject to the 
same constraints as before. 

8.3.1. Store-through Caches 

With a store-through cache, the cache can be updated intmedi- 
ately, while the store-through to main memory is handled as in previ- 
ous sections. That is, all previous instructions must first be known to 
be exception-free. Load instructions are free to use the cached copy, 
however, regardless of whether the store-through has taken place. This 
means that main memory is always in a precise state, but the cache 
contents may "run ahead" of the precise state. If an interrupt should 
occur while the cache is potentially in such a state, then the cache 
should be flushed. This guarantees that prematurely updated cache. 
locations will not be used. However, this can lead to performance 
problems, especially for larger caches. 

Another alternative is to treat the cache in a way similar to the 
register files. One could, for example, keep a history buffer for the 
cache. Just as with registers, a cache location would have to be read 
just prior to writing it with a new value. This does not necessarily 
mean a performance penalty because the cache must be checked for a 
hit prior to the write cycle. In many high performance cache organiza- 
tions, the read cycle for the history data could be done in parallel with 
the bit check. Each store instruction makes a buffer entry indicating 
the cache location it has written. The buffer entries can be used to 
restore the state of the cache. As instructions'complete without excep- 
tions, the buffer entries are discarded. The future file can be extended 
in a similar way. 

8.3.2. Write-Back Cache 

A write-back cache is perhaps the cache type most compatible 
with implementing precise interrupts. This is because stores in a 
write-back cache are not made directly to memory; there is a built-in 
delay between updating the cache and updating main memory. Before 
an actual write-back operation can be performed, however, the reorder 
buffer should be emptied or should be checked for data belonging to the 
line being written back. If such data should be found, the write-back 
must wait until the data has made its way into the cache. If a history 
buffer is used, either a cache line must be saved in the history buffer, 
or the write-back must wait until the associated instruction has made its 
way to the end of the buffer. Notice that in any case, the write-back 
will sometimes have to wait until a precise state is reached. 

8,4. Linear Pipeline Structures 

An alternative to the parallel functional unit organizations we 
have been discussing is a linear pipeline organization. Refer to Fig. 7. 
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Figure 7. Example of a linear pipeline implementation. 
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Linear pipelines provide a more natural implementation of register- 
storage architectures like the IBM 370. Here, the same instruction can 
access a memory' operand and perform some function on it. Hence, 
these linear pipelines have an instruction fetch/decode phase, an 
operand fetch phase, and an execution phase, any of which may be 
composed of one or several pipeline stages. 

In general, reordering instructions after execution is not as signi- 
ficant an issue in such organizations because it is natural for instruc- 
tions to sta) in order as they pass through the pipe. Even if they finish 
early in the pipe, they proceed to the end where exceptions are checked 
before modifying the process state. Hence, the pipeline itself acts as a 
sort of reorder buffer. 

The role of the resuh shift register is played by the control infor- 
mation that riot's down the pipeline alongside the data path. Program 
counter values for preciseness may also riot' down the pipeline so that 
the 3 , are available should an exception arise. 

Linear pipelines often have several bypass paths connecting inter- 
mediate pipeline stages. A complete sel of bypasses is t3'pically not 
used, rather there is some critical subset selected to maximize perfor- 
mance while keeping control complexil 3' manageable. Hence, using the 
terminolog3 of this paper, linear pipelines achieve precise interrupts by 
using a reorder buffer method with bypasses. 

9. Summary and Conclusions 

Five methods have been described thai solve the precise interrupt 
problem. These methods were then eva/uated through simulations of a 
CRAY-1S implemented with these methods. These simulation results 
indicate that. depending on the method and the way stores are handled, 
the performance degradation can range from between 25% to 3%. It is 
expected that the cost of implementing these methods could vary sub- 
stantially, with the method producing the smallest performance degra- 
dation probably being the most expensive. Thus, selection of a particu- 
lar method will depend not only on the performance degradation, but 
whether the implementor is willing to pay for that method. 

It is important to note that some indirect causes for performance 
degradation were not considered. These include longer control paths 
that would rand to lengthen the clock period. Also, additional logic for 
supporting precise interrupts implies greater board area which implies 
more wiring delays which could also lengthen the clock period. 
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